Paleobiota of the Klondike Mountain Formation

Last updated

The Paleobiota of the Klondike Mountain Formation comprises a diverse suite of Early Eocene plants and animals recovered from North Central Washington State. The formation outcrops in locations across the north western area of Ferry County, with major sites in Republic, north west of Curlew Lake, and on the Toroda Creek area. The formation is the southern most of the Eocene Okanagan Highlands, sharing much of the paleoflora and paleofauna with site across Central and southern British Columbia.

Contents

Plants

Bryophytes

Dillhoff et al. (2013) reference undescribed moss specimens known from the Klondike Mountain Formation known from vegetative gametophytes and they noted them to be similar to undescribed specimens from the Allenby Formation and Horsefly shales. [1]

FamilyGenusSpeciesAuthorsYearNotesImages

Undescribed

Undescribed

Undescribed [1]

Undescribed moss specimens

undescribed bryophyte Bryophyte species SRIC SR 02-15-10 img1.tif
undescribed bryophyte

Lycophytes

Rare specimens of Selaginella fossils were noted by Wehr (1998), with no species level description. [2]

FamilyGenusSpeciesAuthorsYearNotesImages

Selaginellaceae

Selaginella

Undescribed [2]

A spikemoss
Not described to species

Selaginella species Selaginella species SRIC SR 95-15-07 img1.tif
Selaginella species

Pteridophytes

FamilyGenusSpeciesAuthorsNotesImages

Cystopteridaceae

Cf. Cystopteris

Undescribed [2]

A possible bladder fern relative
Not described to species

Dennstaedtiaceae

Dennstaedtia

Dennstaedtia christophelii [3]

Pigg et al.

A Hayscented fern

Dennstaedtia christophelii Dennstaedtia christophelii holotype SRIC SR 13-004-001 A img1.tif
Dennstaedtia christophelii

Equisetaceae

Equisetum

Undescribed [4] [2]

A scouring rush
Not described to species

Equisetum species
Not described Equisetum species stem SRIC SR 09-20-01 B img1.jpg
Equisetum species
Not described

Hymenophyllaceae

Hymenophyllum

Hymenophyllum axsmithii [3]

Pigg et al.

A filmy fern

Lygodiaceae

Lygodium

Undescribed [2] [5]

A climbing fern
Not described to species

Salviniaceae

Azolla

Azolla primaeva [6]

Arnold

A mosquito fern

Azolla primaeva Azolla primaeva 6-7-19 img1 cropped.jpg
Azolla primaeva

Salviniaceae

Salvinia

Undescribed [7]

A "watermoss" species.
Not described to species
Found only in Curlew half graben sites.

Salvinia species
Not described Salvinia species SRIC display specimen.jpg
Salvinia species
Not described

Gymnosperms

Three major groups of gymnosperms are present in the Klondike Mountain Formation, with the most speciose being the pinophytes. The ginkgophytes are represented by two species pf Ginkgo , while an undescribed Zamiaceae member is the sole cycadophyte.

Cycadophytes

FamilyGenusSpeciesAuthorsNotesImages

Zamiaceae

Undescribed

Undescribed [8] [9]

A zamiaceous cycad.
Not described to genus/species

Undescribed zamiaceous leaf Zamiaceae SRIC SR 95-13-03 img1.jpg
Undescribed zamiaceous leaf

Gingkophytes

FamilyGenusSpeciesAuthorsNotesImages
Ginkgoaceae Ginkgo

Ginkgo biloba [10]

Linnaeus

A ginkgo

Ginkgo biloba Ginkgo biloba 01 SR 87-36-02 A.jpg
Ginkgo biloba

Ginkgo dissecta [10]

Mustoe

A ginkgo

Ginkgo dissecta Ginkgo dissecta SR 96-08-01.JPG
Ginkgo dissecta

Pinophytes

FamilyGenusSpeciesAuthorsNotesImages
Cupressaceae

Calocedrus

Undescribed [9] [11]

An incense cedar
Not described to species

Chamaecyparis

Undescribed [12] [13]

A false cypress
Not described to species
Possibly in the Callitropsis nootkatensis lineage. [14] [13]

Cryptomeria

Undescribed [12] [5]

A sugi
Not described to species

Glyptostrobus

Undescribed [12]

A Chinese swamp cypress
Not described to species

Metasequoia

Metasequoia occidentalis [15] [16]

(Newberry) Chaney

A dawn redwood

Metasequoia occidentalis Metasequoia branchlet 02.jpg
Metasequoia occidentalis

Sequoia

Sequoia affinis [15]

Lesquereux

A coast redwood
Reported as "Sequoia langsdorfii" by Brown, 1935

Sequoia affinis Sequoia affinis SR 95-07-06 01.jpg
Sequoia affinis

Taiwania

Undescribed [7]

A Taiwania species
not described to species

Taxodium

Taxodium dubium [17] [15]

(Sternberg) Heer

A bald cypress

Thuja

Undescribed [12] [13]

An arborvitae
Not described to species

Thujopsis ?

Undescribed [13]

A possible Thujopsis
Not described to species.

Pinaceae

Abies

Abies milleri [18]

Shorn & Wehr

Oldest true fir described

Abies milleri Abies milleri SR 87-52-02 A.jpg
Abies milleri

Picea

Undescribed [12]

A spruce
Not described to species

Pinus

Pinus latahensis [17]

Berry

A 5-needle pine

Pinus latahensis Pinus latahensis needles SR 87-61-08 img2.jpg
Pinus latahensis

"Pinus macrophylla" [17]

Berry

A 3-needle pine, jr homonym to Pinus macrophylla Lindley 1839

"Pinus macrophylla" Pinus macrophylla Klondike Mtn Fmt 01.jpg
"Pinus macrophylla"

Pinus monticolensis [17]

Berry

A pine seed morphogenus

Pinus monticolensis Pinus species wing seed SRIC 01.jpg
Pinus monticolensis

Pinus tetrafolia [17]

Berry

A purported 4-needle pine
Noted by Berry as
"highly improbable that this should represent a distinct botanic species"

"Pinus tetrafolia" Pinus tetrafolia holotype USNM P38085 img2.jpg
" Pinus tetrafolia "

Pseudolarix

Pseudolarix wehrii [19]

Gooch

A golden larch
Originally described as Pseudolarix americana. [19]

Pseudolarix wehrii SR 06-19-03 Pseudolarix wehrii 2020-09-22 img2a.jpg
Pseudolarix wehrii

Tsuga

Undescribed [12]

A hemlock
Not described to species

Sciadopityaceae

Sciadopitys

Undescribed [12]

An umbrella pine
Not described to species

Sciadopitys species Sciadopitys needle 01.jpg
Sciadopitys species
Taxaceae

Amentotaxus

Undescribed [12] [13]

A yew
Not described to species

Amentotaxus sp. Amentotaxus needles 01.jpg
Amentotaxus sp.

Cephalotaxus

Undescribed [12]

A yew
Originally placed in the Miocene Cephalotaxus bonseri [17] [20]
Not described to species

Taxus

Undescribed [12]

A yew
Not described

Flowering plants

Angiosperms, commonly called flowering plants belong to a single plant clade which diverged from other plants during the prior to the Cretaceous, and began to rapidly evolve and radiate by the Middle Cretaceous. [21] Angiosperm diversification during the Cretaceous and Paleocene resulted in eight recognized clades that are segregated into two groups the Basal angiosperms and Core angiosperms. Present in the Klondike Mountain Formation are four of the eight groups, Nymphaeales representing Basal Angiosperms, plus Magnoliids, Monocots, and Eudicots all in the Core angiosperms.

Nymphaeales

The Basal Angiosperms are represented by a single Nymphaeales water-lily species Nuphar carlquistii , [22] though a second member, Allenbya collinsonae , has been described from the Princeton Chert. [23] Wehr (1995) illustrated two fossils that were tentatively identified as fruits of the banana genus Ensete and the extinct myrtle genus Paleomyrtinaea respectively, [24] however further fossil finds resulted in the re-identification of the first as a N. carlquistii rhizome section, and the second is a seed mass from the same water-lily. [22]

FamilyGenusSpeciesAuthorsNotesImages

Nymphaeaceae

Nuphar

Nuphar carlquistii [22]

DeVore, Taylor, & Pigg

A waterlily,
Rhizome sections were first identified as Ensete
Seed masses first identified as Paleomyrtinaea .

Nuphar carlquistii seeds Nuphar carlquistii seeds 01a.jpg
Nuphar carlquistii seeds

Magnoliids

Under the APG IV system of flowering plant classification, the magnoliids are divided into four orders Canellales, Laurales, Magnoliales, and Piperales. Member species and undescribed taxa placed confidently in the Laurales and Magnoliales are present in the formation. The laurales are the most diverse magnoliid order of the formation with one described species Sassafras hesperia plus three tentatively identified genera which have not been described. Of the magnoliales, only an undescribed Magnolia , having possible affinity with Magnolia subg. Talauma , is found in the formation, while Liriodendroxylon princetonensis has described from permineralized wood in the Princeton Chert. [25] The extinct angiosperm genus Dillhoffia has noted similarities to the piperalean family Aristolochiaceae, but was left incertae sedis as to family by Manchester and Pigg (2008) due to a lack of confident morphological characters for placement. Piperales are known from the Princeton chert, with Saururus tuckerae representing the oldest confident Saururaceae species in the fossil record. [26]

FamilyGenusSpeciesAuthorsNotesImages
Lauraceae

Litseaphyllum

Undescribed [2]

A lauraceous form species.
Not described to species

Ocotea

Undescribed [2]

A stinkwood species.
Not described to species

Phoebe

Undescribed [16]

A Phoebe species.
Not described to species

Sassafras

Sassafras hesperia [16]

Berry

A sassafras

Sassafras hesperia Sassafras hesperia 01.jpg
Sassafras hesperia

Magnoliaceae

Magnolia

Undescribed [27]

A magnolia, possibly Magnolia subgenus Talauma
Not described to species

Magnolia Magnoliaceae species leaf SRIC SR 06-18-05 B img1.tif
Magnolia

incertae sedis

Dillhoffia

Dillhoffia cachensis [28]

Manchester & Pigg

A flower of uncertain floral affinity

Dillhoffia cachensis Dillhoffia cachensis SR 92-17-20 1.jpg
Dillhoffia cachensis

Monocots

The second largest clade of flowering plants, monocots are divided into eleven separate orders and of those, the Alismatales, Asparagales, Liliales, and Poales are found in the Klondike Mountain Formation, each represented by a single taxon. The Alismatales are represented by the Araceae species Orontium wolfei , which is considered similar to the modern golden clubs of eastern North America, while the extinct Paleoallium belongs to the Liliales. Asparagales and Poales are both present as undescribed species associated with the genera Smilax and Typha respectively. Extinct genera of monocots are also represented in the Princeton chert by the arecalean palm Uhlia , [29] the alismatalean genus Heleophyton , [30] the alismatalean Keratosperma , [31] the asparagalean pollen morphogenus Pararisteapollis , [32] the lilialean genus Soleredera , [33] and the poalean genus Ethela , [34]

FamilyGenusSpeciesAuthorsNotesImages

Amaryllidaceae

Paleoallium

Paleoallium billgenseli [35]

Pigg, Bryan, & DeVore

An onion relative

Paleoallium billgenseli Paleoallium billgenseli SR 10-35-06 holotype.jpg
Paleoallium billgenseli

Araceae

Orontium

Orontium wolfei [36]

Bogner, Johnson, Kvaček & Upchurch

A golden club

Orontium wolfei Orontium wolfei 02.jpg
Orontium wolfei

Smilacaceae

Smilax

Undescribed [2]

A greenbrier species.
Not described to species.

Typhaceae

Typha

Undescribed [2]

A cattail species.
Not described to species.

Eudicots

Rhus hybrid leaf with lobed terminal leaflet Rhus sp hybrid SRIC SR 00-05-19.jpg
Rhus hybrid leaf with lobed terminal leaflet

Over a dozen different Rosaceae genera, both extant and extinct, have been identified in the formation providing some of the oldest reliable macrofossil records (excluding fossil pollen) for the family. [37] Benedict et al. (2011) described first fossils for the prunoid genus Oemleria along with the oldest Prunus flowers. The Prunus flowers are complemented by leaf fossils representing five to six distinct morphotypes. [38] Spiraea is known from an inflorescence with multiple flowers and leaves that are either from the genus or a closely related extinct type. The leaves frequently are preserved with a persistent stipule, a feature not found in modern Spiraea species. The firethorn genus Pyracantha and the South American genus Hesperomeles have been tentatively identified from leaves while Maloidea leaves belonging to either Malus or Pyrus have been found. Two distinct species of the Asian endemic genus Photinia are known, however only on of them Photinia pagae had been described as of 2007. [38] The rosaceous genus Physocarpus had been reported by Hopkins and Wehr (1994) as also occurring in the formation, [27] however subsequent examination of the fossils by Oh & Potter (2005) failed to find stellate trichomes which are a distinct feature of the genus. They noted the fossils might be stem Neillieae, the rose tribe containing both Physocarpus and Neillia , or possibly Rubus , Crataegus , or Ribes . [39]

Fossils of both Sorbus and Rhus species leaves showing evidence of being interspecies hybrids have been noted from the formation and Flynn, DeVore and Pigg (2019) described four species of sumac which formed multiple hybrids. [40] Between three and four Trochodendraceae species that have been described from the Klondike Mountain Formation. Broadly circumscribed four species in three genera have been identified at Republic, Paraconcavistylon wehrii , Pentacentron sternhartae , Tetracentron hopkinsii , and Trochodendron nastae . Additionally the species Trochodendron drachukii is known from related Kamloops group shales at the McAbee Fossil Beds near Cache Creek, British Columbia. Manchester et al. 2018 noted that Tr. drachukii is likely the fruits of Tr. nastae, while Pe. sternhartae are likely the fruits of Te. hopkinsii. [41] If fossils of the fruits and foliage in attachment are found, that would bring the species count down to three whole plant taxa. [41] Additionally, the extinct genus Nordenskioldia is also known from the formation. The placement of Nordenskioldia is debated, with some treatments placing it into Trochodendraceae, while a 2020 analysis placed it outside of the crown-group Trochodendaceae. [42] Wesley Wehr in 1994 reported Bignoniaceae seeds along with a single Rubiaceae fruit and an isolated Fabaceae leaf. [43] An update of the floral list by Wehr and Manchester published in 1996 added an additional fifteen taxa identified from reproductive structures such as flowers fruits or seeds. [24]

Pigg, Manchester, and Wehr (2003) noted in during the description of Corylus johnsonii and Carpinus perryae that they were the oldest confirmed hazelnut and hornbeam fossils. [44] That status was affirmed by Forest et al. (2005) who used both as fossil calibration points for phylogenetic analysis of Betulaceae. [45] Within the family Bignoniaceae, the fossil seeds and fruits are noted by Ze-Long Nie et al (2006) as the oldest confirmed for the family. [46]

FamilyGenusSpeciesAuthorsNotesImages
Anacardiaceae Rhus

Rhus boothillensis [40]

Flynn, DeVore, & Pigg

A sumac,
Hybridized with other Klondike Mountain Formation Rhus

Rhus boothillensis Rhus boothillensis SR 87-61-16 img4a.jpg
Rhus boothillensis

Rhus garwellii [40]

Flynn, DeVore, & Pigg

A sumac,
Hybridized with other Klondike Mountain Formation Rhus

Rhus garwellii Rhus garwellii SRIC SR 07-25-20 img1.jpg
Rhus garwellii

Rhus malloryi [16] [40]

(Wolfe and Wehr) Flynn, DeVore & Pigg

A sumac,
Hybridized with other Klondike Mountain Formation Rhus

Rhus malloryi Rhus malloryi SR 10-29-02 A img1a.jpg
Rhus malloryi

Rhus republicensis [40]

Flynn, DeVore, & Pigg

A sumac,
Hybridized with other Klondike Mountain Formation Rhus

Aquifoliaceae

Ilex

Undescribed [5]

A holly
Not described to species

Araliaceae

Aralia

Undescribed [9]

A spikenard species
Not described to species.

Betulaceae

Alnus

Alnus parvifolia [16]

(Berry) Wolfe & Wehr

An Alder

Alnus parvifolia Alnus parvifolia 03.jpg
Alnus parvifolia

Betula

Betula leopoldae [16] [47]

Wolfe & Wehr

A birch

Betula leopoldae Betula leopoldae 02.jpg
Betula leopoldae

Carpinus

Carpinus perryae [44]

Pigg, Manchester, & Wehr

A hornbeam

Carpinus parryae Carpinus parryae fruit SRIC SR 11-06-09 A img1.tif
Carpinus parryae

Corylus

Corylus johnsonii [44]

Pigg, Manchester, & Wehr

A hazel nut

Corylus johnsonii Corylus johnsonii Holotype SR 98-01-02 A.jpg
Corylus johnsonii
Palaeocarpinus

Palaeocarpinus barksdaleae [44]

Pigg, Manchester, & Wehr

A birch relative

Palaeocarpinus barksdaleae Palaeocarpinus barksdaleae fruit 01.jpg
Palaeocarpinus barksdaleae

Undescribed [44]

A birch relative
different from the other Okanagan Highlands species

undescribed Palaeocarpinus species Palaeocarpinus species SR 06-48-02.jpg
undescribed Palaeocarpinus species

Bignoniaceae

Undescribed

Undescribed [43]

A catalpa family member
Not described to species

Bignoniaceae sp. fruit Bignoniaceae Klondike Mtn Fmt 01.jpg
Bignoniaceae sp. fruit

Burseraceae

Barghoornia

Barghoornia oblongifolia [16]

Wolfe & Wehr

An extinct Bursera relative

Barghoornia oblongifolia Barghoornia oblongifolia wolf and wehr 1987 plate 12 fig 3-4.jpg
Barghoornia oblongifolia

Celtidaceae

Pteroceltis

Undescribed [48]

A cannabaceous fruit
Not described to species

Pteroceltis species fruit Pteroceltis species fruit UWBM 96986 Pigg & Wehr 2002 Plt1 fig9.png
Pteroceltis species fruit

Cercidiphyllaceae

Cercidiphyllum

Cercidiphyllum obtritum [16]

(Dawson) Wolfe & Wehr

A katsura with suggested affinity to † Joffrea , [9]
First described as "Populus" obtrita

Cercidiphyllum obtritum Cercidiphyllum obtritum 01.jpg
Cercidiphyllum obtritum

Cornaceae

Cornus

Undescribed [16] [9] [5]

A dogwood species,
Not described to species

Elaeocarpaceae

Sloanea

Undescribed [48]

An elaeocarpaceous fruit
Not described to species

Sloanea sp. Sloanea species SR 93-09-09 B img1.jpg
Sloanea sp.
Ericaceae

Arbutus

Undescribed [27] [5]

A madrone relative
Not described to species

Rhododendron

Undescribed [27] [9] [5]

A rhododendron
Not described to species

Cf. Leucothoe

Undescribed [27]

A doghobble relative
Not described to species

Eucommiaceae

Eucommia

Eucommia montana [49] [5]

Brown

A "hard rubber tree"

Eucommia montana Eucommia montana Klondike Mtn Fmt 01.jpg
Eucommia montana
Fagaceae

Castaneophyllum

Undescribed [5]

A Castanea relative
Not described to species

Fagopsis

Fagopsis undulata [16]

(Knowlton) Wolfe & Wehr

A beech relative

Fagopsis undulata Fagopsis undulata SRIC SR 08-33-07 img5a.jpg
Fagopsis undulata

Fagus

Fagus langevinii [50]

Manchester & Dillhoff

A beech

Fagus langevinii Fagus langevinii nutlet SRIC SR 99-10-01 img1.jpg
Fagus langevinii

Quercus

Undescribed [43] [9] [5]

An oak
Not described to species

Grossulariaceae Ribes

"Species 1" [27] [9] [5]

A current
Not described to species

"Species2" [27]

A current
Not described to species

Hamamelidaceae

Corylopsis

Corylopsis reedae [27] [51]

Radtke, Pigg, & Wehr

A winter-hazel

Corylopsis reedae Corylopsis readae SRIC img1.jpg
Corylopsis reedae

Fothergilla

Fothergilla malloryi [51]

Radtke, Pigg, & Wehr

A witch alder

Fothergilla malloryi Fothergilla malloryi without scale 01.jpg
Fothergilla malloryi
Hydrangeaceae

Hydrangea

Undescribed [27]

A Hydrangea.
Not described to species

Philadelphus

Undescribed [27]

A mock-orange
Not described to species

Icacinaceae

Palaeophytocrene

Unidentified [43] [9]

A Phytocrene relative
Not described to species

Iteaceae

Itea

Undescribed [16] [5]

A virginia willow species
Not described to species.

Juglandaceae

Carya

Undescribed [9] [5]

A walnut family relative.
Not described to species.

Cruciptera

Cruciptera simsonii [52]

(Brown) Manchester

A walnut family relative.

Juglans

Undescribed [9] [5]

A walnut family relative.
Not described to species.

Pterocarya

Undescribed [43]

A wing nut
Not described to species

Lythraceae

Decodon

Undescribed [9]

A swamp loosestrife
Not described to species

Malvaceae

Craigia

Undescribed [43]

A Craigia species
Not described to species

Craigia sp. Craigia samara SRIC 01.jpg
Craigia sp.

Florissantia

Florissantia quilchenensis [53]

(Mathewes & Brooke) Manchester

A chocolate relative

Florissantia quilchenensis Florissantia quilchenensis 01 SRIC.jpg
Florissantia quilchenensis

Hibiscus

Undescribed [27]

A hibiscus
Not described to species

Plafkeria

Undescribed [43]

A linden relative
Not described to species

Tilia

Tilia johnsoni [16]

Wolfe & Wehr

A Linden

Tilia johnsoni Tilia johnsoni 01.jpg
Tilia johnsoni

Cf. Tilia

Undescribed [48]

Linden relative fruits
Not described to species

Cf. Tilia fruits Cf.Tiia species fruits SRIC SR 01-01-07 A img1.tif
Cf. Tilia fruits

Melastomataceae?

"Schoepfia"

"Schoepfia" republicensis [16]

(LaMotte) Wolfe & Wehr

First described as a dogwood under "Cornus acuminata
then a possible Schoepfia species,
Placement in Schoepfiaceae rejected by Malécot and Lobreau‐Callen, (2005) [54]
S. republicensis fossil figured as Melastomataceae by Renner et al (2001) [55]

"Schoepfia" republicensis Schoepfia republicensis SRIC SR 98-11-05.jpg
"Schoepfia" republicensis

Menispermaceae

Calycocarpum

Undescribed [24]

A moonseed
Not described to species

Moraceae

Morus

Undescribed [27]

A mulberry, two types known.
Not described to species

Myricaceae

Comptonia

Comptonia columbiana [16]

Dawson

A Comptonia

Comptonia columbiana Comptonia columbiana SRIC SR 05-09-01 img1.jpg
Comptonia columbiana

Nyssaceae

Tsukada

Tsukada davidiifolia [16]

Wolfe & Wehr

A dove-tree relative

Tsukada davidiifolia Tsukada davidiifolia 01b 09-21-20 A.jpg
Tsukada davidiifolia

Oxalidaceae?

Averrhoites

Undescribed [9]

A leaf morphotype of uncertain affiliation.
First described as visually similar to Averrhoa
Not described to species.

Platanaceae

Langeranthus

Langeranthus dillhoffiorum [56]

Huegele & Manchester

A plane tree fruit taxon affiliated with Langeria

Langeria

Langeria magnifica [16]

Wolfe & Wehr

A plane tree
Formerly identified as a witch hazel relative

Langeria magnifica Langeria magnifica 02.jpg
Langeria magnifica

Macginicarpa

Undescribed [43]

Manchester

A plane tree fruit taxon
Not described to species

Macginicarpa species SR 10-20-37 Macginicarpa 2020-09-21 img2 cropped.jpg
Macginicarpa species

Macginitiea

Macginitiea gracilis [16]

(Lesquereux) Wolfe & Wehr

A plane tree relative

Macginitiea gracilis Macginitiea gracilis 01.jpg
Macginitiea gracilis

Platananthus

Undescribed [48]

A sycamore stamen head
isolated stamen clusters placed as Macginistemon
Not described to species

Macginistemon stamen cluster Platananthus stamen cluster, UWBM 73520 Pigg & Wehr 2002 Plt3 fig33.png
Macginistemon stamen cluster

Polygalaceae

Deviacer

Undescribed [43]

A milkwort relative
Not described to species

Deviacer species Deviacer species fruit SRIC SR 95-25-06 img1.tif
Deviacer species

Ranunculaceae

Clematis

Undescribed [27]

A Clematis
Not described to species

Clematis species Clematis species SRIC SR 94-02-05 img1.jpg
Clematis species
Rosaceae

Amelanchier

Undescribed [27]

A service berry
Not described to species

Cf. Crataegus

Undescribed [27]

A hawthorn relative
Not described to species

Malus

Undescribed [5]

An apple
Not described to species

Cf. Malus

Undescribed [38]

A maloid species possibly apple or pear
Not described to species

Neviusia

Undescribed [27]

A snow-wreath
Not described to species

Oemleria

Oemleria janhartfordae [37]

Benedict, DeVore, & Pigg

An Osoberry

Photinia

Photinia pageae [16]

Wolfe & Wehr

A Christmas-berry relative

Photinia pagae Photinia pagae 01.jpg
Photinia pagae

Aff. Physocarpus

Undescribed [9]

A possible nine-bark
Not described to species
Possibly stem Neillieae [39]

Prunus

Prunus cathybrownae [37]

Benedict, DeVore, & Pigg

A cherry relative

Prunus cathybrownae Prunus cathybrownae SRIC.jpg
Prunus cathybrownae

"Species 1" [16]

A prunoid leaf
Not described to species

"Species 2" [16]

A prunoid leaf
Not described to species

"Species 3" [16]

A prunoid leaf
Not described to species

Pyracantha

Undescribed [38]

A firethorn sp. [38]
Tentative record, Not described to species.

Cf. Pyrus

Undescribed [38]

A maloid species possibly apple or pear
Not described to species

Rubus

Undescribed [27]

A blackberry
Not described to species

Aff. Sorbus

Undescribed [9] [5]

A rowan relative
Not described to species.

Spiraea

Undescribed [9] [5]

A bridal wreath
Not described to species.

Cf. Spiraea

Undescribed [38]

A bridal wreath relative
Not described to species

Sabiaceae

Meliosma

Undescribed [24]

A Meliosma species
Not described to species

Sabia

Undescribed [24]

A Sabia species
Not described to species

Salicaceae

Populus

Undescribed [9] [5]

A cottonwood
Not described to species
First identified as † Populus lindgreni [17]

Pseudosalix

Undescribed [9]

A willow relative
Not described to species

Salix

Undescribed [9] [5]

A willow
Not described to species

Sapindaceae

Acer ?

"Acer" arcticum [57]

Heer, 1876

A possible maple

Acer

Acer hillsi [57]

Wolfe & Tanai

A maple

Acer republicense [57]

Wolfe & Tanai

A maple

Acer spitzi [57]

Wolfe & Tanai

A maple

Acer stonebergae [57]

Wolfe & Tanai

A maple

Acer toradense [57]

Wolfe & Tanai

A maple

Acer washingtonense [57]

Wolfe & Tanai

A maple

Acer wehri [57]

Wolfe & Tanai

A maple

Aesculus

Undescribed [9] [58]

A horse chestnut
Not described to species.

Cf. Boniodendron

"Koelreuteria" arnoldii [16] [59]

Becker

A sapindaceous species
first described as a Koelreuteria species,
considered Cf. Boniodendron by Wang et al. (2012).

"Koelreuteria" arnoldii 'Koelreuteria' arnoldii cf Boniodendron SRIC SR 16-13-04.jpg
"Koelreuteria" arnoldii

Bohlenia

Bohlenia americana [16]

(Brown) Wolf & Wehr

An extinct sapindalean species

Bohlenia americana Bohlenia americana 01.jpg
Bohlenia americana

Dipteronia

Dipteronia brownii [60]

McClain & Manchester

A Dipteronia

Dipteronia brownii Dipteronia brownii Samara SRIC 01.jpg
Dipteronia brownii

Koelreuteria

Koelreuteria dilcheri [59]

Wang et al.

A Koelreuteria species

Koelreuteria dilcheri Koelreuteria dilcheri SR 02-22-14 A img1.jpg
Koelreuteria dilcheri

Schisandraceae

Kadsura

Undescribed [2]

A kadsura species.
Not described to species

Theaceae

Ternstroemites

"Species A" [16]

A theaceous species similar to Gordonia
Not described to species

Ternstroemites

"Species B" [16]

A theaceous species similar to Cleyera
Not described to species

Trochodendraceae?

Nordenskioldia

Undescribed [43]

A trochodendroid of uncertain placement. [42]
Fruits of the leaf taxon Zizyphoides
Not described to species.

Trochodendraceae

Paraconcavistylon

Paraconcavistylon wehrii [41] [42]

(Manchester et al.)

A Trochodendrale
first described as "Concavistylon" wehrii
moved to a new genus in 2020.

Pentacentron

Pentacentron sternhartae [41]

Manchester et al.

A Trochodendrale

Pentacentron sternhartae Pentacentron sternhartae SR 93-08-02 img2a.jpg
Pentacentron sternhartae

Tetracentron

Tetracentron hopkinsii [41]

Pigg et al.

A Trochodendrale,
possibly the leaves of Pentacentron sternhartae

Tetracentron hopkinsii Tetracentron hopkinsii SR 02-28-07.jpg
Tetracentron hopkinsii

Trochodendron

Trochodendron nastae [61]

Pigg, Wehr, & Ickert-Bond

A Trochodendron
Possibly the leaves of Trochodendron drachukii

Trochodendron nastae Trochodendron nastae SR 08-44-01 A.jpg
Trochodendron nastae

Zizyphoides

Undescribed [9]

A trochodendroid of uncertain placement. [42]
Leaves of the fruit taxon Nordenskioldia
Not described to species.

Zizyphoides species Zizyphoides species leaf SRIC SR 02-28-23 img1.jpg
Zizyphoides species
Ulmaceae

Cedrelospermum

Undescribed [24]

An elm relative
Not described to species

Ulmus

Ulmus chuchuanus [62]

(Berry) LaMotte

An elm species
Leaves with features of Ulmus subg. Ulmus
fruits with features of Ulmus subg. Oreoptelea

Ulmus chuchuanus Ulmus chuchuanus SR 99-05-01.jpg
Ulmus chuchuanus

Ulmus okanaganensis

Denk & Dillhoff

An elm species,
the fruits were first identified as Ulmus section Chaetoptelea.

Ulmus okanaganensis Ulmus okanaganensis SR 92-04-06.jpg
Ulmus okanaganensis

Vitaceae

Vitis

Undescribed [27] [43]

Grape seeds [43] and leaves [27]
Not described to species

Incertae sedis

Calycites

Calycites ardtunensis [43]

Crane

A winged fruit of unidentified affinities

Calycites ardtunensis Calycites ardtunensis fruit SRIC SR 04-12-14 img1.tif
Calycites ardtunensis

Pteroheterochrosperma

Pteroheterochrosperma horseflyensis [63]

Smith, Greenwalt & Manchester

A samara of uncertain affiliation.

Pteroheterochrosperma horseflyensis Pteroheterochrosperma horseflyensis SRIC SR 19-006-005 img1.jpg
Pteroheterochrosperma horseflyensis

Pteronepelys

Pteronepelys wehrii [64]

Manchester

A samara of uncertain affinities.

Pteronepelys wehrii Pteronepelys wehrii samara SRIC 01.jpg
Pteronepelys wehrii

Republica

Republica hickeyi [16]

Wolfe & Wehr

An incertae sedis angiosperm
possibly of Hamamelididae affiliations

Republica hickeyi Republica hickeyi Wolf and Wehr 1987 plate 16 fig 4.jpg
Republica hickeyi

Animals

Arthropods

The insect fauna of the Klondike Mountain Formation includes representatives from over 13 orders, based on a 1992 estimate, including immature though adult specimens and both terrestrial and aquatic taxa. [65] The most prevalent orders are Diptera and Hemiptera, each making up approximately 30% of the fossil insects known in 1992.

Blattodea

FamilyGenusspeciesAuthorsNotesImages

Blaberidae

Undescribed

Undescribed [5]

A Diplopterine cockroach
Not described to genus/species

Blattoidae

Undescribed

Undescribed [65]

A blattoidean cockroach
Not described to genus/species

Undescribed Blattoidea Blattodae (Lewis, 1992) plate1, fig F.png
Undescribed Blattoidea

Isoptera

Undescribed

Undescribed [65]

Undescribed termites of uncertain affiliation

undescribed isopteran Isoptera (Lewis, 1992) plate1, fig I.png
undescribed isopteran

Coleoptera

A list of Coleopteran families identified by 1992 included Carabidae, Cerambycidae, Chrysomelidae, Curculionidae, Dytiscidae, Elateridae and Lucanidae, [65] but the beetle fauna has not been described in depth yet, with only two weevil species having been fully described. [66] [67] A third beetle group belonging to the bean beetle tribe Pachymerini has been identified as palm beetles of the Caryobruchus Speciomerus genus group. [68]

FamilyGenusSpeciesAuthorsNotesImages
Brentidae

Eoceneithycerus

Eoceneithycerus carpenteri [66]

Legalov, 2013

An Ithycerinae weevil

Eoceneithycerus carpenteri Eoceneithycerus carpenteri holotype (Lewis, 1992) plate2, fig I.png
Eoceneithycerus carpenteri

Ithyceroides

Ithyceroides klondikensis [67]

Legalov, 2015

An Ithycerinae weevil

Carabidae

Undescribed

Undescribed [65]

A ground beetle
Not described to genus/species

Unidentified Carabidae Carabidae (Lewis, 1992) plate2, fig E.png
Unidentified Carabidae

Cerambycidae

Undescribed

Undescribed [65]

A long-horn beetle
Not described to genus/species

Chrysomelidae

Caryobruchus Speciomerus genus group

Undescribed [68]

palm beetles in the tribe Pachymerini.
Not described to genus/species

Dytiscidae

Undescribed

Undescribed [65]

A diving beetle
Not described to genus/species

Elateridae

Undescribed

Undescribed [65]

A click beetle
Not described to genus/species

Lucanidae

Undescribed

Undescribed [65]

A stag beetle
Not described to genus/species

Unidentified

Undescribed

Undescribed [69]

A possible staphylinoid beetle
not described

Dermaptera

The order Dermaptera was first reported in 1992 [65] and is known from a series of isolated partial specimens, mostly abdominal sections with the distinct anal forceps attached. Based on the forceps structuring the specimens were tentatively assigned to the modern family Forficulidae, as the oldest North American representatives of the family known at that time. [70]

FamilyGenusSpeciesAuthorsNotesImages
Forficulidae?Unidentified

"Forficulid species 1" [70]

A possible forficulid earwig with long cerci
Not described to genus/species

"Forficulid species 1" Forficulidae species 1 (Lewis, 1992) plate1, fig C.png
"Forficulid species 1"

"Forficulid species 2" [70]

A possible forficulid earwig with short cerci
Not described to genus/species

"Forficulidae species 2"
undescribed Forficulidae sp2 SRIC SR 94-01-01 A img1.jpg
"Forficulidae species 2"
undescribed

Diptera

FamilyGenusSpeciesAuthorsNotesImages

Bibionidae

Undescribed

Undescribed [65]

A march fly
Not described to genus/species

unidentified Bibionidae Bibionidae (Lewis, 1992) plate2, fig J.png
unidentified Bibionidae

Cecidomyiidae

Undescribed

Undescribed [71]

Trace fossils
Cecidomyiid midge galling on various host leaves
Not described to genus/species

Cecidomyiidae gall on Prunus Cecidomyiidae gall on Prunus sp leaf SR 06-19-21 img1.jpg
Cecidomyiidae gall on Prunus

Empididae

Undescribed

Undescribed [69]

A dagger fly
Not described to genus/species

Mycetophilidae

Undescribed

Undescribed [65]

A fungus gnat
Not described to genus/species

Pipunculidae

Metanephrocerus

Metanephrocerus belgardeae [72]

Archibald, Kehlmaier, & Mathewes, 2014

A pipunculid big-headed fly

Metanephrocerus belgardeae Metanephrocerus belgardeae SR 08-06-02 01.jpg
Metanephrocerus belgardeae

Syrphidae

Unidentified

Unidentified [73]

A hover fly
Not described to genus/species

Tipulidae

Undescribed

Undescribed [65]

A crane fly
Not described to genus/species

Undescribed Tipulidae Tipulidae (Lewis, 1992) plate2, fig K.png
Undescribed Tipulidae

Ephemeroptera

Lewis (1992) listed one species of Heptageniidae and three specimens that he did not place to family. [65] The next year Lewis and Wehr (1993) gave a slightly more detailed description of the specimens again identifying one to Heptageniidae, possibly in the genera Heptagenia or Stenonema . [74] The specimens were later examined by Nina D. Sinitchenkova (1999) who described one as a squaregill mayfly and the oldest member of the genus Neoephemera , confirmed the Heptageniidae identification but that it was unidentifiable to genus. The last specimen she confirmed as an ephemeropteran, but unidentifiable below order level. [75]

FamilyGenusSpeciesAuthorsNotesImages

Heptageniidae

Indeterminate

Indeterminate [65]

A flat headed mayfly nymph.
Tentatively suggested as Heptagenia or Stenonema by Lewis & Wehr (1993)
Deemed indeterminate below family level by Sinitchenkova (1999) [75]

Heptageniidae nymph Heptageniidae incertae sedis (Lewis, 1992) plate1, fig B.png
Heptageniidae nymph

Neoephemeridae

Neoephemera

Neoephemera antiqua [75]

Sinitchenkova, 1999

A squaregill mayfly

Hemiptera

FamilyGenusSpeciesAuthorsNotesImages

Aphididae

Undescribed

Undescribed [65]

An aphid
Not described to genus/species.

Aphrophoridae

Aphrophora

Undescribed [65]

An aphrophorid spittlebug
Not described to species.

Aphrophora species Aphrophora (Lewis, 1992) plate2, fig C.png
Aphrophora species

Petrolystra

Undescribed [65]

An aphrophorid spittlebug
Not described to species.

Cercopidae

Palecphora

Undescribed [65]

A cercopid froghopper
Not described to species.

Undescribed

Undescribed [65]

A cercopid froghopper
Not described to genus/species.

undescribed Cercopidae Cercopidae forewing (Lewis, 1992) plate2, fig A.png
undescribed Cercopidae

Fulgoroidea

Undescribed

Undescribed [65]

A frog hopper
Not described to genus/species.

Pentatomidae

Undescribed

Undescribed [65]

A Shield or stink bug
Not described to genus/species

undescribed Pentatomidae Pentatomidae (Lewis, 1992) plate1, fig K.png
undescribed Pentatomidae

Hymenoptera

A review of the Okanagan highlands hymenoptera published in 2018 identified four "Symphyta" families in the formation Cimbicidae, Pamphiliidae, Siricidae, and Tenthredinidae. Of the "Apocrita" families thirteen are represented, the "Parasitica" families are Braconidae, Diapriidae Ichneumonidae, Proctotrupidae, and Roproniidae while the Vespoidea families are Formicidae, Pompilidae, Scoliidae and Vespidae. Within Apoidea the "Spheciformes" families include Angarosphecidae and Sphecidae while Halictidae is the sole "Apiformes" family known from body fossils. Prunus and Ulmus leaves have been found having damage that is consistent with the damage pattern left by Megachilidae species bees when they remove sections of tissue for nest lining. There are several additional Apoidea fossils that were left as incertae sedis in the group based on the similarity between them and Paleorhopalosoma menatensis , a Paleocene species described from the Menat Formation Auvergne, France. The placement of P. menatensis is uncertain, having been initially described as a member of Rhopalosomatidae, but is possibly an Angarosphecidae or closely related taxon, based on the wing and body morphology. [76]

FamilyGenusSpeciesAuthorsNotesImages
Angarosphecidae

Eosphecium

Undescribed [76]

An angarosphecid spheciform wasp.
Not described to species

Undescribed

Undescribed [76]

An angarosphecid spheciform wasp
Likely not Eosphecium .
Not described to species

Braconidae

Undescribed

Undescribed [65] [76]

braconid parasitic wasps
Not described to genus/species.

Unidentified Braconidae Braconidae (Lewis, 1992) plate2, fig O.png
Unidentified Braconidae
Cimbicidae Leptostigma [77]

Leptostigma alaemacula [76] [77]

Archibald & Rasnitsyn, 2023

A cenocimbicine cimbicid sawfly.

Leptostigma brevilatum [76] [77]

Archibald & Rasnitsyn, 2023

A cenocimbicine cimbicid sawfly
Tentatively identified from Republic
described from the McAbee fossil beds

Leptostigma brevilatum? Leptostigma brevilatum (Lewis, 1992) plate2, fig N.png
Leptostigma brevilatum ?

Cynipidae

Undescribed

Undescribed [71]

Trace fossils
cynipid Cynipoid gallwasp
galling on various host leaves
Not described to genus/species

Cynipidae gall on Prunus Cynipidae gall on Prunus sp leaf SR 06-19-21.jpg
Cynipidae gall on Prunus

Diapriidae

Undescribed

Undescribed [76]

A diapriid diaprioid wasp
Not described to species

Formicidae

Klondikia

Klondikia whiteae [78]

Dlussky & Rasnitsyn, 2003

An ant of uncertain subfamily affiliation

Myrmeciites

"Indesterminate" [79]

Archibald, Cover, & Moreau, 2006

A bulldog ant form genus

Myrmeciities sp. Myrmeciites SR 05-03-01 01.jpg
Myrmeciities sp.

Oecophylla

Oecophylla kraussei [80]

(Dlussky & Rasnitsyn, 1999)

An ant, described as Camponotites kraussei,
Moved to Oecophylla kraussei in 2017 [81]

Propalosoma

Propalosoma gutierrezae [80]

Dlussky & Rasnitsyn, 1999

A bulldog ant, first described as a Rhopalosomatidae wasp,
moved to myrmeciinae in 2018 [82]

Propalosoma gutierrezae Propalosoma gutierrezae SR 93-08-04 img1.jpg
Propalosoma gutierrezae

Undescribed

Undescribed [76]

Ants of uncertain subfamily placement. [76]

Unidentified formicidae Formicidae (Lewis, 1992) plate2, fig P.png
Unidentified formicidae

Halictidae (?)

Undescribed

Undescribed [76]

A possible sweat bee
Not described to genus/species

Ichneumonidae

Undescribed

Undescribed [76]

ichneumonid parasitic wasps unplaced to subfamily
Not described to genus/species

Undescribed Ichneumonidae Ichneumonidae (Lewis, 1992) plate2, fig M.png
Undescribed Ichneumonidae

Megachilidae

Undescribed

Undescribed [76]

Megachilid leaf-cutter bee herbivory trace fossils on leaves
Not described to genus/species

Pamphiliidae

Ulteramus

Ulteramus republicensis [83]

Archibald & Rasnitsyn, 2015

A parasitic wasp

Pompilidae

Undescribed

Undescribed [76]

A pompilid spider wasp
Not described to genus/species

Proctotrupidae

Undescribed

Undescribed [76]

A proctotrupid parasitic wasp
Not described to genus/species

Roproniidae

Undescribed

Undescribed [76]

A roproniid (sensu lato) proctotrupoid wasp
Not described to genus/species

Siricidae

Eourocerus

Eourocerus anguliterreus [84]

Archibald & Rasnitsyn, 2022

A siricine horntail.

Eourocerus anguliterreus SR UI 99-97-08 B Eourocerus anguliterreus 2015-04-17 img1a.jpg
Eourocerus anguliterreus

Scoliidae

Undescribed

Undescribed [76]

An archaeoscoliine scoliid wasps
Not described to genus/species

Sphecidae

Undescribed

Undescribed [76]

A sphecid (sensu stricto) wasp
Not described to genus/species

Tenthredinidae

Undescribed

Undescribed [76]

A Tenthredinid sawfly
Not described to genus/species

Vespidae

Undescribed

Undescribed [76]

A vespid wasp
Not described to genus/species

Lepidoptera

A solitary lepidopteran body fossil has been recovered, but no full descriptive work has been made on the specimen, aside from a single PhD dissertation. Early examination placed the moth in the family Geometridae, but later work has identified it as the oldest member of the tiger moth subfamily Arctiinae. [85] Trace fossil evidence from leaf fossil herbivory indicates at least four other possible lepidopteran families were present in the formation. The

FamilyGenusSpeciesAuthorsNotesImages

Coleophoridae

Undescribed

Undescribed [71]

Trace fossils
Coleophorid hole feeding and larval cases
Not described to genus/species

Erebidae

Undescribed

Undescribed [85]

An arctiine tiger moth
Not described

Arctiinae
undescribed Arctiinae Sp. SRIC SRxx-xx-xx Img1.jpg
Arctiinae
undescribed

Heliozelidae

Undescribed

Undescribed [71] [86]

Trace fossils
heliozelid leaf mining similar to Antispila mines
Not described to genus/species

Incurvariidae

Aff. Incurvaria

Undescribed [71]

Trace fossils
incurvariid leaf mining similar to Incurvaria
Not described to genus/species

Nepticulidae

Stigmella

Undescribed [71]

Trace fossils
nepticulid leaf mining referred to Stigmella
Not described to genus/species

Mecoptera

A number of mecopteran species belonging to the families Cimbrophlebiidae, Dinopanorpidae, Eorpidae, and Panorpidae are also known. [87]

FamilyGenusSpeciesAuthorsNotesImages
Cimbrophlebiidae Cimbrophlebia

Cimbrophlebia brooksi [87]

Archibald, 2009

A Cimbrophlebiid scorpionfly

Cimbrophlebia brooksi Cimbrophlebia brooksi Holotype SR 06-20-05 A.jpg
Cimbrophlebia brooksi

Cimbrophlebia westae [87]

Archibald, 2009

A Cimbrophlebiid scorpionfly

Cimbrophlebia westae Cimbrophlebia westae holotype SR UI 09-96-00.jpg
Cimbrophlebia westae
Dinopanorpidae Dinokanaga

Dinokanaga andersoni [88]

Archibald, 2005

A scorpion fly species

Dinokanaga andersoni Dinokanaga andersoni holotype SR 01-06-01 v2.jpg
Dinokanaga andersoni

Dinokanaga dowsonae [88]

Archibald, 2005

A scorpion fly species

Dinokanaga dowsonae Dinokanaga dowsonae SRIC SR xx-xx-xx Img1.jpg
Dinokanaga dowsonae

Dinokanaga sternbergi [88]

Archibald, 2005

A scorpion fly species

Eorpidae Eorpa

Eorpa elverumi [89]

Archibald, Mathewes, & Greenwood, 2013

A mecopteran scorpionfly

Eorpa elverumi Eorpa elverumi SRUI 08-07-07 A Holotype.JPG
Eorpa elverumi

?† Eorpa ypsipeda [89]

Archibald, Mathewes, & Greenwood, 2013

A mecopteran scorpionfly, tentatively identified

Possible E. ypsipeda Eorpa sp SR 08-35-04 hypotype.jpg
Possible E. ypsipeda

Panorpidae

Undescribed

Undescribed [89]

Undescribed common scorpionflies
Not described to genus/species

Neuroptera

The neuropteran insects (lacewings and their allies) identified as of 2014 include species from the families Berothidae, Chrysopidae, Hemerobiidae, Ithonidae (including Polystoechotidae), Nymphidae, Osmylidae, and Psychopsidae. [90]

FamilyGenusSpeciesAuthorsYearNotesImages

Chrysopidae

Adamsochrysa

Adamsochrysa wilsoni [91]

Makarkin & Archibald, 2013

2013

A nothochrysine green lacewing

Adamsochrysa wilsoni Adamsochrysa wilsoni holotype SRIC SR 06-23-01 img1.jpg
Adamsochrysa wilsoni

Hemerobiidae

Archibaldia

Archibaldia wehri [92] [93] [94]

(Makarkin, Archibald, & Oswald, 2003)

2003

A hemerobiid lacewing
originally placed in † Cretomerobius
Moved to † Proneuronema (2016)
Moved to †Archibaldia (2023)

Ithonidae

Allorapisma

Allorapisma chuorum [95]

Makarkin & Archibald, 2009

2009

A moth lacewing

Allorapisma chuorum Allorapisma chuorum Holotype SR 08-14-01.jpg
Allorapisma chuorum
Palaeopsychops

Palaeopsychops marringerae [96]

Archibald & Makarkin, 2006

2006

A polystechotid group [97] moth lacewing

Palaeopsychops marringerae Palaeopsychops marringerae Holotype SR 97-08-05 v2.jpg
Palaeopsychops marringerae

Palaeopsychops timmi [96]

Archibald & Makarkin, 2006

2006

A polystechotid group [97] moth lacewing

Palaeopsychops timmi Palaeopsychops timmi SR 02-25-01 holotype.jpg
Palaeopsychops timmi
Polystoechotites

Polystoechotites barksdalae [96]

Archibald & Makarkin, 2006

2006

A polystechotid group [97] moth lacewing

Polystoechotites barksdalae Polystoechotites barksdalae holotype part SR 97-03-09 A.jpg
Polystoechotites barksdalae

Polystoechotites falcatus [96]

Archibald & Makarkin, 2006

2006

A polystechotid group [97] moth lacewing

Polystoechotites falcatus Polystoechotites falcatus Holotype SR 94-05-21.jpg
Polystoechotites falcatus

Polystoechotites lewisi [96]

Archibald & Makarkin, 2006

2006

A polystechotid group [97] moth lacewing

Polystoechotites lewisi Polystoechotites lewisi counterpart SR 01-01-06.jpg
Polystoechotites lewisi

Nymphidae

? Nymphes

Nymphes? georgei [98]

Archibald, Makarkin, & Ansorge, 2009

2009

A nymphid lacewing, possibly a species of † Epinesydrion [99]

Nymphes georgei Nymphes georgei SR 09-07-08.jpg
Nymphes georgei

Osmylidae

Osmylidia

Osmylidia glastrai [100]

Makarkin, Archibald, & Mathewes, 2021

2021

A protosmyline osmylid lacewing

Psychopsidae?

Ainigmapsychops

Ainigmapsychops inexspectatus [90]

Makarkin & Archibald, 2014

2014

A possible psychopsid lacewing

Ainigmapsychops inexspectatus Ainigmapsychops inexspectatus SRUI 99-96-76.jpg
Ainigmapsychops inexspectatus

Odonata

FamilyGenusSpeciesAuthorsYearNotesImages
Aeshnidae

Antiquiala

Antiquiala snyderae [101]

Archibald & Cannings, 2019

2019

A darner dragonfly

Antiquiala snyderae Antiquiala snyderae holotype SRIC SR 08-10-08 B (counterpart) img1.tif
Antiquiala snyderae

Idemlinea

Idemlinea versatilis [101]

Archibald & Cannings, 2019

2019

A darner dragonfly

Idemlinea versatilis Idemlinea versatilis Holotype SRIC SR 07-05-14 A (part) img1.tif
Idemlinea versatilis

Ypshna

Ypshna brownleei [101]

Archibald & Cannings, 2019

2019

A darner dragonfly

Ypshna brownleei Ypshna brownleei on display SRIC SR 01-06-13 img1.jpg
Ypshna brownleei
Dysagrionidae

Dysagrion

Dysagrion pruettae [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Dysagrion pruettae Dysagrion pruettae holotype SRIC SR 13-005-012 A.tif
Dysagrion pruettae

Dysagrionites

Dysagrionites delinei [102]

Archibald & Cannings, 2021

2021

A dysagrionine cephalozygopteran odonate

Dysagrionites delinei Dysagrionites delinei holotype SR 06-01-46 A (part) img1.tif
Dysagrionites delinei
Okanagrion

Okanagrion dorrellae [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Okanagrion dorrellae SR 93-11-02 B Okanagrion dorrellae HT 2008-02-01 img3a.jpg
Okanagrion dorrellae

Okanagrion hobani [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Okanagrion hobani Okanagrion hobani paratype-1 SR 11-21-33 A (part) img1.tif
Okanagrion hobani

Okanagrion liquetoalatum [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Okanagrion liquetoalatum Okanagrion liquetoalatum holotype SR 06-69-17 A (part) img1.tif
Okanagrion liquetoalatum

Okanagrion threadgillae [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Okanagrion threadgillae Okanagrion threadgillae holotype SRIC SR 98-12-10.tiff
Okanagrion threadgillae

Okanagrion worleyae [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Okanagrion worleyae Okanagrion worleyae holotype SR 99-14-02 img1.tif
Okanagrion worleyae

Okanopteryx

Okanopteryx jeppesenorum [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Okanopteryx jeppesenorum Okanopteryx jeppesenorum paratype-1 SR 11-43-09 img1.tif
Okanopteryx jeppesenorum

Stenodiafanus

Stenodiafanus westersidei [102]

Archibald & Cannings, 2021

2021

A Dysagrionine cephalozygopteran odonate

Stenodiafanus westersidei Stenodiafanus westersidei holotype SR 06-01-42 A (part) img1.tif
Stenodiafanus westersidei

Euphaeidae

Republica

Republica weatbrooki [103]

Archibald & Cannings, 2021

2021

A gossamerwing damselfly.
Not to be confused with the plant Republica ,
also from the formation

Republica weatbrooki Republica weatbrooki holotype SR 06-59-08 img1.tif
Republica weatbrooki

Whetwhetaksidae

Whetwhetaksa

Whetwhetaksa millerae [102]

Archibald & Cannings

2021

A cephalozygopteran odonate

Whetwhetaksa millerae Whetwhetaksa millerae holotype SR 06-01-38 img1.tif
Whetwhetaksa millerae

Orthoptera

FamilyGenusSpeciesAuthorsYearNotesImages

Palaeorehniidae

Republicopteron

Republicopteron douseae [104]

Archibald, Gu, & Mathewes

2022

A grasshopper/hump-back grig relative

Republicopteron douseae Republicopteron douseae holotype SRIC SR 21-005-001 img1.jpg
Republicopteron douseae

Phasmatodea

Fossil wings first described in 2015 were identified as being from Susumanioidea stick-insects, a group that had previously been known from the Jurassic to the Paleocene only. [105] Archibald and Bradler (2015) did not place Eoprephasma into Susumaniidae family, maintaining that known characters of the describe specimens did not match taxa in the family, they instead kept the genus as Susumanioidea incertae sedis. Phylogenetic analysis of Susumanioidea published by Yang et al. (2021) resulted in placement of Eoprephasma as the sister group to Renphasma deep within the Susumaniidae subfamily Susumaniinae. The phylogeny produced by Yang et al. indicated a sister group state with the Cretaceous genus Renphasma of China, and placed both as the most derived of the Susumaniinae taxa. [106]

FamilyGenusSpeciesAuthorsYearNotesImages

Susumaniidae

Eoprephasma

Eoprephasma hichensi [105]

Archibald & Bradler, 2015

2015

A Susumaniinae stick insect species

Raphidioptera

FamilyGenusSpeciesAuthorsYearNotesImages

Raphidiidae

Megaraphidia

Megaraphidia klondika [107]

Archibald & Makarkin, 2021

2021

A raphidiid snakefly

Trichoptera

Trichopterans are known mainly from laraval cases and occasional isolated wings. [108]

FamilyGenusspeciesAuthorsYearNotesImages

Phryganeidae

Unidentified

Unidentified [65] [108]

giant caddisflies
Not described to genus/species

Limnephilidae

Unidentified

unidentified [65]

northern caddisflies
Not described to genus/species

Vertebrates

Five species of fish have been identified from the formation, four of which are known from skeletal elements, while the fifth is only known from isolated scales. [109] Of the five species, two are unique to the formation, Hiodon woodruffi and Libotonius pearsoni were both described by paleoichthyologist Mark V. H. Wilson in 1978 and 1979 respectively. The other three species, "Amia" hesperia , Amyzon aggregatum , and Eosalmo driftwoodensis , were first described from Okanagan Highlands formations in British Columbia and subsequently also identified from Ferry County fossils. The first notation of fish fossils in the Republic area was by Joseph Umpleby in his 1910 visit to the area, who collected fish near the Tom Thumb Mine, and sent them to the National Museum of Natural History. After examining the fossils, Charles R. Eastman listed the specimens as belonging to the extinct species Amyzon brevipinne in his Fossil fishes in the collection of the United States National Museum. [110] Research tapered off until a series of fish were collected in the Toroda Creek Graben northwest of Republic by R. C. Pearson during his compilation of the Geologic map of the Bodie Mountain quadrangle, Ferry and Okanogan Counties, Washington. The fossils were tentatively identified by paleoichthyologist David Dunkle as members of the genera Amyzon , Tricophanes , Erismatopterus and an undefined salmonid. [111] Pearson sent almost all of the specimens collected to the Smithsonian, but the fossils were never accessioned into the collections there and are now considered lost. He did retain one fossil from the initial collection which was later donated to the USGS collections. The largest single work on the fish of the Okanagan Highlands was published by Mark Wilson in 1977 and covered fossils collected from the known British Columbian Okanagan Highlands fossil sites of the time. [112] While not covering the Washington State fossils, Wilson named two of the species that are currently recognized from the Klondike Mountain Formation Amyzon aggregatum and Eosalmo driftwoodensis. Additionally scales attributed to the genus Amia were discussed and the genus Libotonius was named from fossils in the Allenby Formation. [113] [114] In the late 1960s a collection of fish from near the Tom Thumb Mine in Republic was compiled by resident R. Woodward. During the summers of 1976 and 1977 the University of Alberta conducted field collecting in both the Republic and Toroda Creek areas, along with the donation of the Woodward collection, yielded a number of fossil catostomids, along with a single percopsid, a salmonid, a hiodontid, and an Amia scale. The hiodontids were subsequently described as the species Eohiodon woodruffi in 1978 based on differences between the Tom thumb Tuff fossils and those found in British Columbian sites. [111] A year later the percopsid fossils were also described as Libotonius pearsoni, extending the range of the genus south from the Allenby Formation. [113]

Bird fossils are limited to mostly isolated feathers that are preserved in the finer grained strata of the lake bed, though one partial bird skeleton has also been recovered.

FamilyGenusSpeciesAuthorsYearNotesImages

Amiidae

Amia

"Amia" hesperia

Wilson, 1977

1977

A bowfin, known from isolated scales

"Amia" hesperia scale Amia hesperia scale SRIC SR 07-43-13 A img1.jpg
"Amia" hesperia scale

Catostomidae

Amyzon

Amyzon aggregatum

Wilson, 1977

1977

A sucker

Amyzon aggregatum Amyzon aggregatum 01.jpg
Amyzon aggregatum

Catostomidae

Amyzon

Unidentified [115]

(Wilson, 1977)

1977

A sucker, originally identified as Amyzon aggregatum

Salmonidae

Eosalmo

Eosalmo driftwoodensis [116]

Wilson, 1977

1999

A Salmon

Eosalmo driftwoodensis Eosalmo driftwoodensis 02.jpg
Eosalmo driftwoodensis

Hiodontidae

Hiodon

Hiodon woodruffi [111]

Wilson, 1978

1978

A mooneye, first described as "Eohiodon" woodruffi. [111]

Hiodon woodruffi Hiodon woodruffi 2007-05-26 img2.jpg
Hiodon woodruffi

Libotoniidae

Libotonius

Libotonius pearsoni [113]

Wilson, 1979

1979

A sand roller relative.

Libotonius pearsoni SR 95-26-19 Libotonius pearsoni 2020-09-19.jpg
Libotonius pearsoni

incertae sedis (Aves)

Unidentified

"Unnamed" [117]

2019

indeterminate feathers and a skeleton

Unidentified feather Feather SRIC SR 08-35-09 A img1.jpg
Unidentified feather

Related Research Articles

<i>Tilia johnsoni</i> Extinct species of flowering plant

Tilia johnsoni is an extinct species of flowering plant in the family Malvaceae that, as a member of the genus Tilia, is related to modern lindens. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States and a similar aged formation in British Columbia, Canada.

<i>Sassafras hesperia</i> Extinct species of flowering plant

Sassafras hesperia is an extinct species of flowering plant in the family Lauraceae.

Neviusia dunthornei is an extinct species of flowering plants in the family Rosaceae. The species is solely known from the early Eocene, Ypresian stage, Allenby Formation Lacustrine deposits near the town of Princeton, British Columbia.

<span class="mw-page-title-main">Klondike Mountain Formation</span>

The Klondike Mountain Formation is an Early Eocene (Ypresian) geological formation located in the northeast central area of Washington state. The formation is comprised of volcanic rocks in the upper unit and volcanic plus lacustrine (lakebed) sedimentation in the lower unit. the formation is named for the type location designated in 1962, Klondike Mountain northeast of Republic, Washington. The formation is a lagerstätte with exceptionally well-preserved plant and insect fossils has been found, along with fossil epithermal hot springs.

<span class="mw-page-title-main">McAbee Fossil Beds</span> Fossil bed in the Interior of British Columbia

The McAbee Fossil Beds is a Heritage Site that protects an Eocene Epoch fossil locality east of Cache Creek, British Columbia, Canada, just north of and visible from Provincial Highway 97 / the Trans-Canada Highway. The McAbee Fossil Beds, comprising 548.23 hectares, were officially designated a Provincial Heritage Site under British Columbia's Heritage Conservation Act on July 19, 2012. The site is part of an old lake bed which was deposited about 52 million years ago and is internationally recognised for the diversity of plant, insect, and fish fossils found there. Similar fossil beds in Eocene lake sediments, also known for their well preserved plant, insect and fish fossils, are found at Driftwood Canyon Provincial Park near Smithers in northern British Columbia, on the Horsefly River near Quesnel in central British Columbia, and at Republic in Washington, United States. The Princeton Chert fossil beds in southern British Columbia are also Eocene, but primarily preserve an aquatic plant community. A 2016 review of the early Eocene fossil sites from the interior of British Columbia discusses the history of paleobotanical research at McAbee, the Princeton Chert, Driftwood Canyon, and related Eocene fossil sites such as at Republic.

<span class="mw-page-title-main">Allenby Formation</span>

The Allenby formation is a sedimentary rock formation in British Columbia which was deposited during the Ypresian stage of the Early Eocene. It consists of conglomerates, sandstones with interbedded shales and coal. The shales contain an abundance of insect, fish and plant fossils known from 1877 and onward, while the Princeton Chert was first indented in the 1950's and is known from anatomically preserved plants.

<i>Rhus malloryi</i> Extinct species of flowering plant

Rhus malloryi is an extinct species of flowering plant in the sumac family Anacardiaceae. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States. The species was first described from a series of isolated fossil leaves in shale. R. malloryi is one of four sumac species to be described from the Klondike Mountain Formation, and forms a hybrid complex with the other three species.

The Coldwater Beds are a geologic formation of the Okanagan Highlands in British Columbia, Canada. They preserve fossils dating back to the Ypresian stage of the Eocene period, or Wasatchian in the NALMA classification.

<i>Nuphar carlquistii</i> Extinct species of flowering plant

Nuphar carlquistii is an extinct species of flowering plant in the family Nymphaeaceae related to the modern spatterdock, Nuphar advena. The species is known from fossil seeds and fruits found in the early Eocene Okanagan Highlands deposits of northern Washington state and British Columbia, Canada.

<i>Betula leopoldae</i> Extinct species of flowering plant

Betula leopoldae is an extinct species of birch in the family Betulaceae. The species is known from fossil leaves, catkins, and inflorescences found in the early Eocene deposits of northern Washington state, United States, and similar aged formations in British Columbia, Canada. The species is placed as basal in Betula, either as a stem group species, or an early divergent species.

<i>Comptonia columbiana</i> Extinct species of sweet fern

Comptonia columbiana is an extinct species of sweet fern in the flowering plant family Myricaceae. The species is known from fossil leaves found in the early Eocene deposits of central to southern British Columbia, Canada, plus northern Washington state, United States, and, tentatively, the late Eocene of Southern Idaho and Earliest Oligocene of Oregon, United States.

<i>Barghoornia</i> Extinct species of flowering plants

Barghoornia is an extinct genus of flowering plants in the family Burseraceae containing the solitary species Barghoornia oblongifolia. The species is known from fossil leaves found in the early Eocene deposits of northern Washington state, United States.

<i>Carpinus perryae</i> Extinct species of hornbeam

Carpinus perryae is an extinct species of hornbeam known from fossil fruits found in the Klondike Mountain Formation deposits of northern Washington state, dated to the early Eocene Ypresian stage. Based on described features, C. perryae is the oldest definite species in the genus Carpinus.

The paleoflora of the Eocene Okanagan Highlands includes all plant and fungi fossils preserved in the Eocene Okanagan Highlands Lagerstätten. The highlands are a series of Early Eocene geological formations which span an 1,000 km (620 mi) transect of British Columbia, Canada and Washington state, United States and are known for the diverse and detailed plant fossils which represent an upland temperate ecosystem immediately after the Paleocene-Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1880-90s on British Columbian sites, and 1920-30s for Washington sites. A returned focus and more detailed descriptive work on the Okanagan Highlands sites revived in the 1970's. The noted richness of agricultural plant families in Republic and Princeton floras resulted in the term "Eocene orchards" being used for the paleofloras.

<i>Pteronepelys</i> Fossil genus of plants

Pteronepelys, sometimes known as the winged stranger, is an extinct genus of flowering plant of uncertain affinities, which contains the one species, Pteronepelys wehrii. It is known from isolated fossil seeds found in middle Eocene sediments exposed in north central Oregon and Ypresian-age fossils found in Washington, US.

<i>Fagus langevinii</i> Fossil species of beech tree

Fagus langevinii is an extinct species of beech in the family Fagaceae. The species is known from fossil fruits, nuts, pollen, and leaves found in the early Eocene deposits of South central British Columbia, and northern Washington state, United States.

<span class="mw-page-title-main">Eocene Okanagan Highlands</span>

The Eocene Okanagan Highlands or Eocene Okanogan Highlands are a series of Early Eocene geological formations which span a 1,000 km (620 mi) transect of British Columbia, Canada, and Washington state, United States. Known for a highly diverse and detailed plant and animal paleobiota the paleolake beds as a whole are considered one of the great Canadian Lagerstätten. The paleobiota represented are of an upland subtropical to temperate ecosystem series immediately after the Paleocene–Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1870–1920s on British Columbian sites, and 1920–1930s for Washington sites. Focus and more detailed descriptive work on the Okanagan Highland sites started in the late 1960s.

The paleofauna of the Eocene Okanagan Highlands consists of Early Eocene arthropods, vertebrates, plus rare nematodes and molluscs found in geological formations of the northwestern North American Eocene Okanagan Highlands. The highlands lake bed series' as a whole are considered one of the great Canadian Lagerstätten. The paleofauna represents that of a late Ypresian upland temperate ecosystem immediately after the Paleocene-Eocene thermal maximum, and before the increased cooling of the middle and late Eocene to Oligocene. The fossiliferous deposits of the region were noted as early as 1873, with small amounts of systematic work happening in the 1880-90s on British Columbian sites, and 1920-30s for Washington sites. Focus and more detailed descriptive work on the Okanagan Highlands site started in the last 1970's. Most of the highlands sites are preserved as compression-impression fossils in "shales", but also includes a rare permineralized biota and an amber biota.

<i>Alnus parvifolia</i> Extinct species of flowering plant

Alnus parvifolia is an extinct species of flowering plant in the family Betulaceae related to the modern birches. The species is known from fossil leaves and possible fruits found in early Eocene sites of northern Washington state, United States, and central British Columbia, Canada.

<i>Republicopteron</i> Genus of cricket-like animals

Republicopteron is an extinct orthopteran genus in the katydid-like family Palaeorehniidae with a single described species, Republicopteron douseae.

References

  1. 1 2 Dillhoff, R.M.; Dillhoff, T.A.; Greenwood, D.R.; DeVore, M.L.; Pigg, K.B. (2013). "The Eocene Thomas Ranch flora, Allenby Formation, Princeton, British Columbia, Canada". Botany. 91 (8): 514–529. doi:10.1139/cjb-2012-0313.
  2. 1 2 3 4 5 6 7 8 9 10 Wehr, W. "Middle Eocene insects and plants of the Okanogan Highlands". In Martin, J. (ed.). Contributions to the Paleontology and Geology of the West Coast. Seattle, Washington: University of Washington Press. pp. 99–109.
  3. 1 2 Pigg, K. B.; DeVore, M. L.; Greenwood, D. R.; Sundue, M. A.; Schwartsburd, P.; Basinger, J. F. (2021). "Fossil Dennstaedtiaceae and Hymenophyllaceae from the Early Eocene of the Pacific Northwest". International Journal of Plant Sciences. 182 (9): 793–807. doi:10.1086/715633. S2CID   239036762.
  4. Joseph, N. L. (1988). "Important Eocene Flora and Fauna Unearthed at Republic, Washington". Rocks & Minerals. 63 (2): 146–151. Bibcode:1988RoMin..63..146J. doi:10.1080/00357529.1988.11761830.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Greenwood, D.R.; Archibald, S.B.; Mathewes, R.W; Moss, P.T. (2005). "Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape". Canadian Journal of Earth Sciences. 42 (2): 167–185. Bibcode:2005CaJES..42..167G. doi:10.1139/e04-100.
  6. Arnold, C. A. (1955). "A Tertiary Azolla from British Columbia" (PDF). Contributions from the Museum of Paleontology, University of Michigan. 12 (4): 37–45.
  7. 1 2 Greenwood, D.R.; Pigg, K.B.; Basinger, J.F.; DeVore, M.L. (2016). "A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada, and Washington, U.S.A." Canadian Journal of Earth Sciences. 53 (6): 548–564. Bibcode:2016CaJES..53..548G. doi: 10.1139/cjes-2015-0177 . hdl: 1807/71961 .
  8. Hopkins, D.; Johnson, K. (1997). "First Record of cycad leaves from the Eocene Republic flora" (PDF). Washington Geology. 25 (4): 37. Retrieved 29 September 2021.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Dillhoff, R.M.; Leopold, E.B.; Manchester, S.R. (2005). "The McAbee flora of British Columbia and its relations to the Early-Middle Eocene Okanagan Highlands flora of the Pacific Northwest" (PDF). Canadian Journal of Earth Sciences. 42 (2): 151–166. Bibcode:2005CaJES..42..151D. doi:10.1139/e04-084.
  10. 1 2 Mustoe, G.E. (2002). "Eocene Ginkgo leaf fossils from the Pacific Northwest". Canadian Journal of Botany . 80 (10): 1078–1087. doi:10.1139/b02-097.
  11. Mathewes, R. W.; Greenwood, D. R.; Archibald, S. B. (2016). "Paleoenvironment of the Quilchena flora, British Columbia, during the Early Eocene Climatic Optimum" (PDF). Canadian Journal of Earth Sciences. 53 (6): 574–590. Bibcode:2016CaJES..53..574M. doi:10.1139/cjes-2015-0163. hdl: 1807/71979 .
  12. 1 2 3 4 5 6 7 8 9 10 Schorn, H. E.; Wehr, W. C. (1996). "The conifer flora from the Eocene uplands at Republic, Washington". Washington Geology. 24 (2): 22–24.
  13. 1 2 3 4 5 "Conifers and Ginkgos". Burke Museum Paleobotany Project. Retrieved 28 May 2023.
  14. Terry, R.; Pyne, M.; Bartel, J.; Adams, R. (2016). "A molecular biogeography of the New World cypresses (Callitropsis, Hesperocyparis; Cupressaceae)". Plant Systematics and Evolution. 302 (7): 921–942. doi:10.1007/s00606-016-1308-4. JSTOR   44853291. S2CID   4236846.
  15. 1 2 3 Chaney, R.W. (1951). "A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia". Transactions of the American Philosophical Society. 40 (3): 231.
  16. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Wolfe, J.A.; Wehr, W.C. (1987). Middle Eocene dicotyledonous plants from Republic, northeastern Washington (Report). Bulletin. Vol. 1597. United States Geological Survey. pp. 1–25. doi: 10.3133/b1597 .
  17. 1 2 3 4 5 6 7 Berry, E.W. (1929). A revision of the flora of the Latah Formation (Report). Professional Paper. United States Geological Survey. pp. 225–265. doi: 10.3133/pp154h . 154-H.
  18. Schorn, H.; Wehr, W. (1986). "Abies milleri, sp. nov., from the Middle Eocene Klondike Mountain Formation, Republic, Ferry County, Washington". Burke Museum Contributions in Anthropology and Natural History (1): 1–7.
  19. 1 2 Gooch, N. L. (1992). "Two new species of Pseudolarix Gordon (Pinaceae) from the middle Eocene of the Pacific Northwest". PaleoBios. 14: 13–19.
  20. LaMotte, R.S. (1944). "Supplement to catalogue of Mesozoic and Cenozoic plants of North America, 1919–37". United States Geological Survey Bulletin. 924: 307.
  21. Jiao, Y; et al. (2011). "Ancestral polyploidy in seed plants and angiosperms". Nature. 473 (7345): 97–100. Bibcode:2011Natur.473...97J. doi:10.1038/nature09916. PMID   21478875. S2CID   4313258.
  22. 1 2 3 DeVore, ML; Taylor, W; Pigg, KB (2015). "Nuphar carlquistii sp. nov. (Nymphaeaceae): A Water Lily from the Latest Early Eocene, Republic, Washington". International Journal of Plant Sciences. 176 (4): 365–377. doi:10.1086/680482. S2CID   84149074.
  23. Cevallos-Ferriz, S. R.; Stockey, R. A. (1989). "Permineralized fruits and seeds from the Princeton chert (Middle Eocene) of British Columbia: Nymphaeaceae". Botanical Gazette. 150 (2): 207–217. doi:10.1086/337765. S2CID   86651676.
  24. 1 2 3 4 5 6 Wehr, W.C. (1995). "Paleobotanical Significance of Eocene Flowers, Fruits, and Seeds from Republic, Washington". Washington Geology. 24 (2): 25–2.
  25. Cevallos-Ferriz, S. R.; Stockey, R. A. (1990). "Vegetative remains of the Magnoliaceae from the Princeton chert (middle Eocene) of British Columbia". Canadian Journal of Botany. 68 (6): 1327–1339. doi:10.1139/b90-169.
  26. Smith, S. Y.; Stockey, R. A. (2007). "Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov.(Saururaceae) from the Middle Eocene Princeton Chert". American Journal of Botany. 94 (10): 1642–1657. doi: 10.3732/ajb.94.10.1642 . PMID   21636361.
  27. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Wehr, W. C.; Hopkins, D. Q. (1994). "The Eocene orchards and gardens of Republic, Washington". Washington Geology. 22 (3): 27–34.
  28. Manchester, S.; Pigg, K. (2008). "The Eocene mystery flower of McAbee, British Columbia". Botany. 86 (9): 1034–1038. doi:10.1139/B08-044.
  29. Erwin, D.M.; Stockey, R.A. (1994). "Permineralized monocotyledons from the middle Eocene Princeton chert (Allenby Formation) of British Columbia: Arecaceae". Palaeontographica Abteilung B. 234: 19–40.
  30. Erwin, D. M.; Stockey, R. A. (1991). "Silicified monocotyledons from the Middle Eocene Princeton chert (Allenby Formation) of British Columbia, Canada". Review of Palaeobotany and Palynology. 70 ((1-2)): 147–162. Bibcode:1991RPaPa..70..147E. doi:10.1016/0034-6667(91)90083-F.
  31. Cevallos-Ferriz, S. R.; Stockey, R. A. (1988). "Permineralized fruits and seeds from the Princeton chert (Middle Eocene) of British Columbia: Araceae". American Journal of Botany. 75 (8): 1099–1113. doi:10.1002/j.1537-2197.1988.tb08822.x.
  32. Hesse, M.; Zetter, R. (2005). "Ultrastructure and diversity of recent and fossil zona-aperturate pollen grains". Plant Systematics and Evolution. 255 (3): 145–176. doi:10.1007/s00606-005-0358-9. S2CID   1964359.
  33. Erwin, D. M.; Stockey, R. A. (1991). "Soleredera rhizomorpha gen. et sp. nov., a permineralized monocotyledon from the Middle Eocene Princeton chert of British Columbia, Canada". Botanical Gazette. 152 (2): 231–247. doi:10.1086/337885. S2CID   85180086.
  34. Erwin, D. M.; Stockey, R. A. (1992). "Vegetative body of a permineralized monocotyledon from the Middle Eocene Princeton chert of British Columbia". Courier Forschungsinstitut Senckenberg. 147: 309–327.
  35. Pigg, K. B.; Bryan, F. A.; DeVore, M. L. (2018). "Paleoallium billgenseli gen. et sp. nov.: fossil monocot remains from the latest Early Eocene Republic Flora, northeastern Washington State, USA". International Journal of Plant Sciences. 179 (6): 477–486. doi:10.1086/697898. S2CID   91055581.
  36. Bogner, J.; Johnson, K. R.; Kvacek, Z.; Upchurch, G. R. (2007). "New fossil leaves of Araceae from the Late Cretaceous and Paleogene of western North America" (PDF). Zitteliana. A (47): 133–147. ISSN   1612-412X.
  37. 1 2 3 Benedict, JC; DeVore, ML; Pigg, KB (2011). "Prunus and Oemleria (Rosaceae) Flowers from the Late Early Eocene Republic Flora of Northeastern Washington State, U.S.A.". International Journal of Plant Sciences. 172 (7): 948–958. doi:10.1086/660880. S2CID   39391439.
  38. 1 2 3 4 5 6 7 DeVore, M. L.; Pigg, K. B. (2007). "A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada". Plant Systematics and Evolution. 266 (1–2): 45–57. doi:10.1007/s00606-007-0540-3. S2CID   10169419.
  39. 1 2 Oh, S.-H.; Potter, D. (2005). "Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY". American Journal of Botany. 92 (1): 179–192. doi:10.3732/ajb.92.1.179. PMID   21652396.
  40. 1 2 3 4 5 Flynn, S.; DeVore, M. L.; Pigg, K. B. (2019). "Morphological Features of Sumac Leaves (Rhus, Anacardiaceae), from the Latest Early Eocene Flora of Republic, Washington". International Journal of Plant Sciences. 180 (6): 464–478. doi:10.1086/703526. S2CID   198244783.
  41. 1 2 3 4 5 Manchester, S.; Pigg, K. B.; Kvaček, Z; DeVore, M. L.; Dillhoff, R. M. (2018). "Newly recognized diversity in Trochodendraceae from the Eocene of western North America". International Journal of Plant Sciences. 179 (8): 663–676. doi:10.1086/699282. S2CID   92201595.
  42. 1 2 3 4 Manchester, S. R.; Kvaček, Z.; Judd, W. S. (2020). "Morphology, anatomy, phylogenetics and distribution of fossil and extant Trochodendraceae in the Northern Hemisphere". Botanical Journal of the Linnean Society. 195 (3): 467–484. doi: 10.1093/botlinnean/boaa046 .
  43. 1 2 3 4 5 6 7 8 9 10 11 12 13 Wehr, W.C. (1995). "Early Tertiary flowers, fruits and seeds of Washington State and adjacent areas". Washington Geology. 23 (3): 3–16.
  44. 1 2 3 4 5 Pigg, K.B.; Manchester S.R.; Wehr W.C. (2003). "Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the Middle Eocene Klondike Mountain and Allenby Formations of Northwestern North America". International Journal of Plant Sciences. 164 (5): 807–822. doi:10.1086/376816. S2CID   19802370.
  45. Forest, F.; Savolainen, V.; Chase, M. W.; Lupia, R.; Bruneau, A.; Crane, P. R. (2005). "Teasing apart molecular-versus fossil-based error estimates when dating phylogenetic trees: a case study in the birch family (Betulaceae)". Systematic Botany. 30 (1): 118–133. doi:10.1600/0363644053661850. S2CID   86080433.
  46. Nie, Z. L.; Sun, H.; Beardsley, P. M.; Olmstead, R. G.; Wen, J. (2006). "Evolution of biogeographic disjunction between eastern Asia and eastern North America in Phryma (Phrymaceae)". American Journal of Botany. 93 (9): 1343–1356. doi:10.3732/ajb.93.9.1343. PMID   21642199.
  47. Crane, P.; Stockey, R. (1987). "Betula leaves and reproductive structures from the Middle Eocene of British Columbia, Canada". Canadian Journal of Botany. 65 (12): 2490–2500. doi:10.1139/b87-338.
  48. 1 2 3 4 Pigg, K.; Wehr, W.C. (2002). "Early Tertiary flowers, fruits and seeds of Washington State and adjacent areas Part-III". Washington Geology. 30 (3–4): 3–16.
  49. Call, V.B.; Dilcher, D.L. (1997). "The fossil record of Eucommia (Eucommiaceae) in North America". American Journal of Botany. 84 (6): 798–814. doi:10.2307/2445816. JSTOR   2445816. PMID   21708632. S2CID   20464075.
  50. Manchester, S. R.; Dillhoff, R. M. (2004). "Fagus (Fagaceae) fruits, foliage, and pollen from the Middle Eocene of Pacific Northwestern North America". Canadian Journal of Botany. 82 (10): 1509–1517. doi:10.1139/b04-112.
  51. 1 2 Radtke, M.G.; Pigg, K.B.; Wehr, W.C. (2005). "Fossil Corylopsis and Fothergilla Leaves (Hamamelidaceae) from the Lower Eocene Flora of Republic, Washington, U.S.A., and Their Evolutionary and Biogeographic Significance". International Journal of Plant Sciences. 166 (2): 347–356. doi:10.1086/427483. S2CID   20215269.
  52. Manchester, S. R. (1991). "Cruciptera, a new Juglandaceous winged fruit from the Eocene and Oligocene of western North America". Systematic Botany. 16 (4): 715–725. doi:10.2307/2418873. JSTOR   2418873.
  53. Manchester, S.R. (1992). "Flowers, fruits and pollen of Florissantia, an extinct malvalean genus from the Eocene and Oligocene of western North America". American Journal of Botany. 79 (9): 996–1008. doi:10.2307/2444909. JSTOR   2444909.
  54. Malécot, V.; Lobreau‐Callen, D. (2005). "A survey of species assigned to the fossil pollen genus Anacolosidites". Grana. 44 (4): 314–336. doi:10.1080/00173130500477688.
  55. Renner, S.S.; Clausing, G.; Meyer, K. (2001). "Historical biogeography of Melastomataceae: the roles of Tertiary migration and long‐distance dispersal". American Journal of Botany. 88 (7): 1290–1300. doi:10.3732/ajb.90.11.1638. hdl: 2027.42/83311 .
  56. Huegele, I. B.; Manchester, S. R. (2022). "Newly Recognized Reproductive Structures Linked with Langeria from the Eocene of Washington, USA, and their Affinities with Platanaceae". International Journal of Plant Sciences. In press.
  57. 1 2 3 4 5 6 7 8 Wolfe, J.A.; Tanai, T. (1987). "Systematics, Phylogeny, and Distribution of Acer (maples) in the Cenozoic of Western North America". Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy. 22 (1): 1–246.
  58. Harris, A. J.; Papes, M.; Gao, Y. D.; Watson, L. (2014). "Estimating paleoenvironments using ecological niche models of nearest living relatives: A case study of Eocene Aesculus L.". Journal of Systematics and Evolution. 52 (1): 16–34. doi:10.1111/jse.12053. S2CID   83926177.
  59. 1 2 Wang, Q.; Manchester, S. R.; Gregor, H. J.; Shen, S.; Li, Z. Y. (2013). "Fruits of Koelreuteria (Sapindaceae) from the Cenozoic throughout the northern hemisphere: their ecological, evolutionary, and biogeographic implications". American Journal of Botany. 100 (2): 422–449. doi:10.3732/ajb.1200415. PMID   23360930.
  60. McClain, A. M.; Manchester, S. R. (2001). "Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of the Aceroideae". American Journal of Botany. 88 (7): 1316–25. doi: 10.2307/3558343 . JSTOR   3558343. PMID   11454632.
  61. Pigg, K.B.; Wehr, W.C.; Ickert-Bond, S.M. (2001). "Trochodendron and Nordenskioldia (Trochodendraceae) from the Middle Eocene of Washington State, U.S.A.". International Journal of Plant Sciences. 162 (5): 1187–1198. doi:10.1086/321927. S2CID   45399415.
  62. Denk, T.; Dillhoff, R.M. (2005). "Ulmus leaves and fruits from the Early-Middle Eocene of northwestern North America: systematics and implications for character evolution within Ulmaceae" (PDF). Canadian Journal of Botany. 83 (12): 1663–1681. doi:10.1139/b05-122. Archived from the original (PDF) on 2017-08-09.
  63. Smith, M. A.; Greenwalt, D. E.; Manchester, S. R. (2023). "Diverse fruits and seeds of the mid-Eocene Kishenehn Formation, northwestern Montana, USA, and their implications for biogeography" (PDF). Fossil Imprint. 79 (1): 37–88. doi:10.37520/fi.2023.004.
  64. Manchester, S.R. (1994). "Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon". Palaeontographica Americana. 58: 30–31.
  65. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Lewis, S.E. (1992). "Insects of the Klondike Mountain Formation, Republic, Washington". Washington Geology. 20 (3): 15–19.
  66. 1 2 Legalov, A. A. (2013). "New and little known weevils (Coleoptera: Curculionoidea) from the Paleogene and Neogene". Historical Biology: An International Journal of Paleobiology. 25 (1): 59–80. doi:10.1080/08912963.2012.692681. S2CID   86584002.
  67. 1 2 Legalov, A. A. (2015). "Fossil Mesozoic and Cenozoic weevils (Coleoptera, Obrienioidea, Curculionoidea)". Paleontological Journal. 49 (13): 1442–1513. doi:10.1134/S0031030115130067. S2CID   87912009.
  68. 1 2 Archibald, S.B.; Morse, G.; Greenwood, D.R.; Mathewes, R.W. (2014). "Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum". Proceedings of the National Academy of Sciences. 111 (22): 8095–8100. Bibcode:2014PNAS..111.8095A. doi: 10.1073/pnas.1323269111 . PMC   4050627 . PMID   24821798.
  69. 1 2 Douglas, S.; Stockey, R. (1996). "Insect fossils in middle Eocene deposits from British Columbia and Washington State: faunal diversity and geological range extensions". Canadian Journal of Zoology. 74 (6): 1140–1157. doi:10.1139/z96-126.
  70. 1 2 3 Lewis, S.E. (1994). "Fossil earwigs (Dermaptera) from the Klondike Mountain Formation (middle Eocene) of Republic, Washington". Washington Geology. 22 (1): 39–40.
  71. 1 2 3 4 5 6 Labandeira, C. C. (2002). "Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report". Rocky Mountain Geology. 37 (1): 31–59. Bibcode:2002RMGeo..37...31L. doi:10.2113/gsrocky.37.1.31.
  72. Archibald, SB; Kehlmaier, C; Mathewes, RW (2014). "Early Eocene big headed flies (Diptera: Pipunculidae) from the Okanagan Highlands, western North America". The Canadian Entomologist. 146 (4): 429–443. doi:10.4039/tce.2013.79. S2CID   55738600.
  73. Archibald, S.B.; Greenwood, D.R.; Mathewes, R.W. (2013). "Seasonality, montane beta diversity, and Eocene insects: Testing Janzen's dispersal hypothesis in an equable world". Palaeogeography, Palaeoclimatology, Palaeoecology. 371: 1–8. Bibcode:2013PPP...371....1A. doi:10.1016/j.palaeo.2012.10.043.
  74. Lewis, S. E.; Wehr, W. (1993). "Fossil mayflies from Republic, Washington" (PDF). Washington Geology. 21 (1): 35–37.
  75. 1 2 3 Sinitchenkova, N. D. (1999). "A new mayfly species of the extant genus Neoephemera from the Eocene of North America (Insecta: Ephemerida=Ephemeroptera)". Paleontological Journal. 33 (4): 403–405.
  76. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Archibald, S. B.; Rasnitsyn, A. P.; Brothers, D. J.; Mathewes, R. W. (2018). "Modernisation of the Hymenoptera: ants, bees, wasps, and sawflies of the early Eocene Okanagan Highlands of western North America". The Canadian Entomologist. 150 (2): 205–257. doi:10.4039/tce.2017.59. ISSN   0008-347X. S2CID   90017208.
  77. 1 2 3 Archibald, S. B.; Rasnitsyn, A. P. (2023). "Cimbicidae (Hymenoptera, "Symphyta") in the Paleogene: revision, the new subfamily Cenocimbicinae, and new taxa from the Eocene Okanagan Highlands". Zootaxa. 5278 (1): 1–38. doi:10.11646/zootaxa.5278.1.1. PMID   37518298. S2CID   258492775.
  78. Dlussky, G. M.; Rasnitsyn, A. P. (2003). "Ants (Hymenoptera: Formicidae) of Formation Green River and some other Middle Eocene deposits of North America". Russian Entomological Journal. 11 (4): 411–436.
  79. Archibald, S.B.; Cover, S. P.; Moreau, C. S. (2006). "Bulldog Ants of the Eocene Okanagan Highlands and History of the Subfamily (Hymenoptera: Formicidae: Myrmeciinae)" (PDF). Annals of the Entomological Society of America. 99 (3): 487–523. doi: 10.1603/0013-8746(2006)99[487:BAOTEO]2.0.CO;2 .
  80. 1 2 Dlussky, G. M.; Rasnitsyn, A. P. (1999). "Two new species of aculeate hymenopterans (Vespida=Hymenoptera) from the Middle Eocene of the United States". Paleontological Journal. 33: 546–549.
  81. Perfilieva, K. S.; Dubovikoff, D. A.; Dlussky, G. M. (2017). "Miocene ants (Hymenoptera, Formicidae) from Crimea". Paleontological Journal. 51 (4): 391–401. doi:10.1134/S0031030117040098. S2CID   90536477.
  82. Archibald, S. B.; Rasnitsyn, A. P.; Brothers, D. J.; Mathewes, R. W. (2018). "Modernisation of the Hymenoptera: ants, bees, wasps, and sawflies of the early Eocene Okanagan Highlands of western North America". The Canadian Entomologist. 150 (2): 205–257. doi:10.4039/tce.2017.59. S2CID   90017208.
  83. Archibald, S.B.; Rasnitsyn, A.P. (2015). "New early Eocene Siricomorpha (Hymenoptera: Symphyta: Pamphiliidae, Siricidae, Cephidae) from the Okanagan Highlands, western North America". The Canadian Entomologist. 148 (2): 209–228. doi:10.4039/tce.2015.55. S2CID   85743832.
  84. Archibald, S. B.; Rasnitsyn, A. P. (2022). "The early Eocene Eourocerus anguliterreus gen. et sp. nov (Hymenoptera, Siricidae) from Republic, Washington". Zootaxa. 5105 (2): 289–295. doi:10.11646/zootaxa.5105.2.8. PMID   35391300. S2CID   247240762.
  85. 1 2 Toussaint, E. F.; Condamine, F. L.; Kergoat, G. J.; Capdevielle-Dulac, C.; Barbut, J.; Silvain, J. F.; Le Ru, B. P. (2012). "Palaeoenvironmental shifts drove the adaptive radiation of a noctuid stemborer tribe (Lepidoptera, Noctuidae, Apameini) in the Miocene". PLOS ONE. 7 (7): e41377. Bibcode:2012PLoSO...741377T. doi: 10.1371/journal.pone.0041377 . PMC   3409182 . PMID   22859979.
  86. Grimaldi, D.; Engel, M. S. (2005). Evolution of the Insects. Cambridge University Press. ISBN   978-0-521-82149-0.
  87. 1 2 3 Archibald, S. B. (2009). "New Cimbrophlebiidae (Insecta: Mecoptera) from the Early Eocene at McAbee, British Columbia, Canada and Republic, Washington, USA" (PDF). Zootaxa . 2249: 51–62. doi:10.11646/zootaxa.2249.1.5. S2CID   16035433.
  88. 1 2 3 Archibald, S.B. (2005). "New Dinopanorpidae (Insecta: Mecoptera) from the Eocene Okanagan Highlands (British Columbia, Canada and Washington State, USA)". Canadian Journal of Earth Sciences. 42 (2): 119–136. Bibcode:2005CaJES..42..119A. doi:10.1139/e04-073.
  89. 1 2 3 4 Archibald, SB; Mathewes, RW; Greenwood, DR (2013). "The Eocene apex of panorpoid scorpionfly family diversity". Journal of Paleontology. 87 (4): 677–695. Bibcode:2013JPal...87..677A. doi:10.1666/12-129. S2CID   88292018.
  90. 1 2 Makarkin, V.; Archibald, S.B. (2014). "An unusual new fossil genus probably belonging to the Psychopsidae (Neuroptera) from the Eocene Okanagan Highlands, western North America". Zootaxa. 3838 (3): 385–391. CiteSeerX   10.1.1.692.1185 . doi:10.11646/zootaxa.3838.3.8. PMID   25081783.
  91. Makarkin, V.; Archibald, S.B. (2013). "A Diverse New Assemblage of Green Lacewings (Insecta, Neuroptera, Chrysopidae) from the Early Eocene Okanagan Highlands, Western North America". Journal of Paleontology. 87 (1): 123–146. Bibcode:2013JPal...87..123M. doi:10.1666/12-052R.1. S2CID   130797848.
  92. Makarkin, V. N.; Archibald, S. B.; Oswald, J. D. (2003). "New Early Eocene brown lacewings (Neuroptera: Hemerobiidae) from western North America". The Canadian Entomologist. 135 (5): 637–653. CiteSeerX   10.1.1.489.5852 . doi:10.4039/n02-122. S2CID   53479449.
  93. Makarkin, V. N.; Wedmann, S.; Weiterschan, T. (2016). "A new genus of Hemerobiidae (Neuroptera) from Baltic amber, with a critical review of the Cenozoic Megalomus-like taxa and remarks on the wing venation variability of the family". Zootaxa. 4179 (3): 345–370. doi:10.11646/zootaxa.4179.3.2. PMID   27811679.
  94. Makarkin, V. N. (2023). "Fossil Hemerobiidae (Neuroptera) from the Eocene Tadushi Formation, the Russian Far East, with description of a new genus". Zootaxa. 5297 (1): 115–123. doi:10.11646/zootaxa.5297.1.6. PMID   37518806. S2CID   259043744.
  95. Makarkin, V. N.; Archibald, S. B. (2009). "A new genus and first Cenozoic fossil record of moth lacewings (Neuroptera: Ithonidae) from the Early Eocene of North America" (PDF). Zootaxa . 2063: 55–63. doi:10.11646/zootaxa.2063.1.3. S2CID   13922025.
  96. 1 2 3 4 5 Archibald, S.B.; Makarkin V.N. (2006). "Tertiary Giant Lacewings (Neuroptera: Polystechotidae): Revision and Description of New Taxa From Western North America and Denmark". Journal of Systematic Palaeontology . 4 (2): 119–155. doi:10.1017/S1477201906001817. S2CID   55970660. Archived from the original on June 4, 2011. Retrieved January 27, 2010.
  97. 1 2 3 4 5 Winterton, SL; Makarkin, VN (2010). "Phylogeny of Moth Lacewings and Giant Lacewings (Neuroptera: Ithonidae, Polystoechotidae) Using DNA Sequence Data, Morphology, and Fossils". Annals of the Entomological Society of America . 103 (4): 511–522. doi: 10.1603/an10026 . S2CID   49384430.
  98. Archibald, S. B.; Makarkin, V. N.; Ansorge, J. (2009). "New fossil species of Nymphidae (Neuroptera) from the Eocene of North America and Europe" (PDF). Zootaxa . 2157: 59–68. doi:10.11646/zootaxa.2157.1.4. S2CID   9304328.
  99. Archibald, S.B.; Makarkin, V.N. (2020). "A new genus and species of split-footed lacewings (Neuroptera) from the early Eocene of western Canada and revision of the subfamily affinities of Mesozoic Nymphidae". The Canadian Entomologist. 152 (3): 269–287. doi:10.4039/tce.2020.10. S2CID   216238397.
  100. Makarkin, V.N.; Archibald, S.B.; Mathewes, R.W. (2021). "New Protosmylinae (Neuroptera: Osmylidae) from the early Eocene of western North America, with taxonomic remarks". Zootaxa. 4980 (1): 142–156. doi:10.11646/zootaxa.4980.1.9. PMID   34186986. S2CID   235685548.
  101. 1 2 3 Archibald, S. B.; Cannings, R. A. (2019). "Fossil dragonflies (Odonata: Anisoptera) from the early Eocene Okanagan Highlands, western North America". The Canadian Entomologist. 151 (6): 783–816. doi: 10.4039/tce.2019.61 .
  102. 1 2 3 4 5 6 7 8 9 10 Archibald, S. B.; Cannings, R. A.; Erickson, R. J.; Bybee, S. M.; Mathewes, R. W. (2021). "The Cephalozygoptera, a new, extinct suborder of Odonata with new taxa from the early Eocene Okanagan Highlands, western North America". Zootaxa. 4934 (1): zootaxa.4934.1.1. doi: 10.11646/zootaxa.4934.1.1 . PMID   33756770.
  103. Archibald, S. B.; Cannings, R. A. (2021). "A new genus and species of Euphaeidae (Odonata, Zygoptera) from the early Eocene Okanagan Highlands locality at Republic, Washington, U.S.A.". Zootaxa. 4966 (3): 392–400. doi:10.11646/zootaxa.4966.3.11. PMID   34186607. S2CID   235557114.
  104. Archibald, S. B.; Gu, J.-J.; Mathewes, R. W. (2022). "The Palaeorehniidae (Orthoptera, Ensifera, "Zeuneropterinae"), and new taxa from the early Eocene Okanagan Highlands, western North America". Zootaxa. 5100 (4): 559–572. doi:10.11646/zootaxa.5100.4.6. PMID   35391059. S2CID   247046978.
  105. 1 2 Archibald, SB; Bradler, S (2015). "Stem-group stick insects (Phasmatodea) in the early Eocene at McAbee, British Columbia, Canada, and Republic, Washington, United States of America". Canadian Entomologist. 147 (6): 744. doi:10.4039/tce.2015.2. S2CID   86608533.
  106. Yang, H.; Shi, C.; Engel, M. S.; Zhao, Z.; Ren, D.; Gao, T. (2021). "Early specializations for mimicry and defense in a Jurassic stick insect". National Science Review. 8 (1): nwaa056. doi:10.1093/nsr/nwaa056. ISSN   2095-5138. PMC   8288419 . PMID   34691548.
  107. Archibald, S. B.; Makarkin, V. N. (2021). "Early Eocene snakeflies (Raphidioptera) of western North America from the Okanagan Highlands and Green River Formation". Zootaxa. 4951 (1): 41–79. doi:10.11646/zootaxa.4951.1.2. PMID   33903413. S2CID   233411745.
  108. 1 2 Archibald, S.B.; Mathewes, R.W. (2000). "Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications" (PDF). Canadian Journal of Zoology. 78 (8): 1441–1462. doi:10.1139/cjz-78-8-1441. Archived from the original (PDF) on 2015-07-14. Retrieved 2023-05-15.
  109. Wilson, M. V. (1996). "The Eocene fishes of Republic, Washington". Washington Geology. 24 (2): 30–31.
  110. Eastman, C.R. (1917). "Fossil fishes in the collection of the United States National Museum" (PDF). Proceedings of the United States National Museum. 52 (2177): 235–304. doi:10.5479/si.00963801.52-2177.235.
  111. 1 2 3 4 Wilson, M. V. (1978). "Eohiodon woodruffi n. sp.(Teleostei, Hiodontidae), from the Middle Eocene Klondike Mountain Formation near Republic, Washington". Canadian Journal of Earth Sciences. 15 (5): 679–686. Bibcode:1978CaJES..15..679W. doi:10.1139/e78-075.
  112. Wilson, M.V. (1977). "Middle Eocene freshwater fishes from British Columbia". Life Sciences Contributions, Royal Ontario Museum. 113: 1–66.
  113. 1 2 3 Wilson, M.V.H. (1979). "A second species of Libotonius (Pisces: Percopsidae) from the Eocene of Washington State". Copeia. 1979 (3): 400–405. doi:10.2307/1443214. JSTOR   1443214.
  114. Wilson, M. V. (1996). "Fishes from Eocene lakes of the interior". In R. Ludvigsen (ed.). Life in stone: a natural history of British Columbia's fossils. Vancouver, BC: The University of British Columbia Press. pp. 212–224.
  115. Liu, J. (2021). "Redescription of Amyzon'brevipinne and remarks on North American Eocene catostomids (Cypriniformes: Catostomidae)". Journal of Systematic Palaeontology. 19 (9): 677–689. doi: 10.1080/14772019.2021.1968966 . S2CID   238241095.
  116. Wilson, M.V.H.; Li, Guo-Qing (1999). "Osteology and systematic position of the Eocene salmonid †Eosalmo driftwoodensis Wilson from western North America" (PDF). Zoological Journal of the Linnean Society. 99 (125): 279–311. doi: 10.1111/j.1096-3642.1999.tb00594.x . Retrieved 2010-01-01.
  117. Mayr, G.; Archibald, S.B.; Kaiser, G.W.; Mathewes, R.W. (2019). "Early Eocene (Ypresian) birds from the Okanagan Highlands, British Columbia (Canada) and Washington State (USA)". Canadian Journal of Earth Sciences. 56 (8): 803–813. Bibcode:2019CaJES..56..803M. doi:10.1139/cjes-2018-0267. S2CID   135271937.