Spinomesencephalic pathway

Last updated
Spinomesencephalic pathway
Gray669.png
Diagram showing a few of the connections of afferent (sensory) fibers of the posterior root with the efferent fibers from the ventral column and with the various long ascending fasciculi. (Spinotectal fasciculus labeled at bottom right.)
Gray672.png
Diagram of the principal fasciculi of the spinal cord. (Spinotectal fasciculus labeled at bottom left.)
Anatomical terminology

The spinomesencephalic pathway, spinomesencephalic tract or spino-quadrigeminal system of Mott, includes a number of ascending tracts in the spinal cord, including the spinotectal tract. [1] [2] [3] The spinomesencephalic tract is one of the ascending tracts in the anterolateral system of the spinal cord that projects to various parts of the midbrain. [1] It is involved in the processing of pain and visceral sensations. [4]

Contents

In the ALS

The anterolateral system (ALS) is a bundle of afferent somatosensory fibers from different ascending tracts in the spinal cord. These fibers include those of the spinomesencephalic tract, spinothalamic tract, and spinoreticular tract amongst others. [5] Spinomesencephalic fibres project to the periaqueductal gray, and to the tectum. Other fibers project to and terminate in the parabrachial nucleus, the pretectum, and the nucleus of Darkschewitsch. [1] The fibers that project to the tectum are known as the spinotectal fibers. [5] The spinotectal tract fibers project to the superior colliculus. Where they synapse onto cells of the deeper superior colliculus they are activated by noxious stimuli. [1]

Anatomy

The spinomesencephalic tract consists mostly of myelinated fibers. The neurons are either low-threshold of a wide dynamic range, or high threshold, [1] with many of the cells being nociceptive. [1]

Origin

Cells of the spinomesencephalic tract arise mostly in Rexed lamina I, and to a lesser extent in Rexed laminae IV and VI-VIII) of the spinal cord. They are mostly concentrated in lamina V. [1] The tract is in the same region as the spinothalamic tract. [1]

Course

Most of the spinomesencephalic fibers decussate to ascend contralaterally, but there is a noted group of uncrossed fibers in the upper cervical levels. [1]

See also

Related Research Articles

In physiology, nociception, also nocioception; from Latin nocere 'to harm/hurt') is the sensory nervous system's process of encoding noxious stimuli. It deals with a series of events and processes required for an organism to receive a painful stimulus, convert it to a molecular signal, and recognize and characterize the signal to trigger an appropriate defensive response.

Articles related to anatomy include:

<span class="mw-page-title-main">Brainstem</span> Posterior part of the brain, adjoining and structurally continuous

The brainstem is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch, and sometimes the diencephalon is included in the brainstem.

<span class="mw-page-title-main">Trigeminal nerve</span> Cranial nerve responsible for the faces senses and motor functions

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three' and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

<span class="mw-page-title-main">Spinothalamic tract</span> Sensory pathway from the skin to the thalamus

The spinothalamic tract is a nerve tract in the anterolateral system in the spinal cord. This tract is an ascending sensory pathway to the thalamus. From the ventral posterolateral nucleus in the thalamus, sensory information is relayed upward to the somatosensory cortex of the postcentral gyrus.

<span class="mw-page-title-main">Dorsal column–medial lemniscus pathway</span> Sensory spinal pathway

The dorsal column–medial lemniscus pathway (DCML) (also known as the posterior column-medial lemniscus pathway is the major sensory pathway of the central nervous system that conveys sensations of fine touch, vibration, two-point discrimination, and proprioception from the skin and joints. It transmits this information to the somatosensory cortex of the postcentral gyrus in the parietal lobe of the brain. The pathway receives information from sensory receptors throughout the body, and carries this in the gracile fasciculus and the cuneate fasciculus, tracts that make up the white matter dorsal columns of the spinal cord. At the level of the medulla oblongata, the fibers of the tracts decussate and are continued in the medial lemniscus, on to the thalamus and relayed from there through the internal capsule and transmitted to the somatosensory cortex. The name dorsal-column medial lemniscus comes from the two structures that carry the sensory information: the dorsal columns of the spinal cord, and the medial lemniscus in the brainstem.

<span class="mw-page-title-main">Medial longitudinal fasciculus</span> Nerve tracts in the brainstem

The medial longitudinal fasciculus (MLF) is a prominent bundle of nerve fibres which pass within the ventral/anterior portion of periaqueductal gray of the mesencephalon (midbrain). It contains the interstitial nucleus of Cajal, responsible for oculomotor control, head posture, and vertical eye movement.

<span class="mw-page-title-main">Rubrospinal tract</span> Part of the nervous system

The rubrospinal tract is one of the descending tracts of the spinal cord. It is a motor control pathway that originates in the red nucleus. It is a part of the lateral indirect extrapyramidal tract.

<span class="mw-page-title-main">Spinocerebellar tracts</span> Nerve tract in humans

The spinocerebellar tracts are nerve tracts originating in the spinal cord and terminating in the same side (ipsilateral) of the cerebellum. The two main tracts are the dorsal spinocerebellar tract, and the ventral spinocerebellar tract. Both of these tracts are located in the peripheral region of the lateral funiculi. Other tracts are the rostral spinocerebellar tract, and the cuneocerebellar tract.

The dorsal longitudinal fasciculus (DLF) is a nerve fiber tract extending from the hypothalamus rostrally to the spinal cord caudally. It containins both descending and ascending fibers. Its fibers form a distinct bundle in the midbrain.

<span class="mw-page-title-main">Substantia gelatinosa of Rolando</span>

The apex of the posterior grey column, one of the three grey columns of the spinal cord, is capped by a V-shaped or crescentic mass of translucent, gelatinous neuroglia, termed the substantia gelatinosa of Rolando, which contains both neuroglia cells, and small neurons. The gelatinous appearance is due to an abundance of neuropil with a very low concentration of myelinated fibers. It extends the entire length of the spinal cord and into the medulla oblongata where it becomes the spinal trigeminal nucleus.

<span class="mw-page-title-main">Rexed laminae</span> Layers of grey matter in the spinal cord

The Rexed laminae comprise a system of ten layers of grey matter (I–X), identified in the early 1950s by Bror Rexed to label portions of the grey columns of the spinal cord.

<span class="mw-page-title-main">Posterolateral tract</span>

The posterolateral tract is a small strand situated in relation to the tip of the posterior column close to the entrance of the posterior nerve roots. It is present throughout the spinal cord, and is most developed in the upper cervical regions.

<span class="mw-page-title-main">Ventral posteromedial nucleus</span>

The ventral posteromedial nucleus (VPM) is a nucleus of the thalamus and serves an analogous somatosensory relay role for the ascending trigeminothalamic tracts as its lateral neighbour the ventral posterolateral nucleus serves for dorsal column–medial lemniscus pathway 2nd-order neurons.

<span class="mw-page-title-main">Intralaminar thalamic nuclei</span>

The intralaminar thalamic nuclei (ITN) are collections of neurons in the internal medullary lamina of the thalamus.

The spinoreticular tract is a partially decussating (crossed-over) four-neuron sensory pathway of the central nervous system. The tract transmits slow nociceptive/pain information from the spinal cord to reticular formation which in turn relays the information to the thalamus via reticulothalamic fibers as well as to other parts of the brain. Most (85%) second-order axons arising from sensory C first-order fibers ascend in the spinoreticular tract - it is consequently responsible for transmitting "slow", dull, poorly-localised pain. By projecting to the reticular activating system (RAS), the tract also mediates arousal/alertness in response to noxious (harmful) stimuli. The tract is phylogenetically older than the spinothalamic ("neospinothalamic") tract.

<span class="mw-page-title-main">Central tegmental tract</span>

The central tegmental tract is a structure in the midbrain and pons. It is situated in the central portion of the reticular formation. It contains:

<span class="mw-page-title-main">Spinal cord</span> Part of the vertebral column in animals

The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal cord is hollow and contains a structure called the central canal, which contains cerebrospinal fluid. The spinal cord is also covered by meninges and enclosed by the neural arches. Together, the brain and spinal cord make up the central nervous system.

The hypothalamospinal tract is an unmyelinated non-decussated descending nerve tract that arises in the hypothalamus and projects to the brainstem and spinal cord to synapse with pre-ganglionic autonomic neurons.

References

  1. 1 2 3 4 5 6 7 8 9 Standring, Susan (2016). Gray's anatomy: the anatomical basis of clinical practice . Digital version (41st. ed.). Philadelphia, Pa.: Elsevier. p. 433. ISBN   9780702052309.
  2. Patestas, Maria A.; Gartner, Leslie P. (2016). A Textbook of Neuroanatomy (2nd ed.). Hoboken, New Jersey: Wiley-Blackwell. pp. 112, 203–204, 224–225. ISBN   978-1-118-67746-9.
  3. Gray, Henry (1918). Gray's Anatomy (20th ed.). p. 762.
  4. Kiernan, John A.; Rajakumar, Nagalingam (2013). Barr's The Human Nervous System: An Anatomical Viewpoint (10th ed.). Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins. p. 74. ISBN   978-1-4511-7327-7.
  5. 1 2 Haines, Duane (2018). Fundamental neuroscience for basic and clinical applications (Fifth ed.). Philadelphia, PA: Elsevier. p. 259. ISBN   9780323396325.