Upper Kotmale Dam

Last updated

Upper Kotmale Dam
UG-LK Photowalk - 2018-03-25 - Upper Kotmale Dam (2).jpg
The dam in March 2018.
Sri Lanka relief location map.jpg
Red pog.svg
Location of Upper Kotmale Dam in Sri Lanka
Official nameUpper Kotmale Hydropower Project
Country Sri Lanka
Location Talawakele, Nuwara Eliya
Coordinates 06°56′48″N80°39′29″E / 6.94667°N 80.65806°E / 6.94667; 80.65806 Coordinates: 06°56′48″N80°39′29″E / 6.94667°N 80.65806°E / 6.94667; 80.65806
Construction began2003
Opening date2012
Construction cost Rs. 44 billion
Owner(s) Ceylon Electricity Board
Dam and spillways
Type of dam Gravity dam
Impounds Kotmale River
Height (foundation)35 m (115 ft)
Length180 m (591 ft)
Width (crest)7 m (23 ft)
Spillways 5
Spillway capacity3,000 m3/s (105,944.0 cu ft/s)
CreatesUpper Kotmale Reservoir
Total capacity800,000 m3 (28,000,000 cu ft)
Surface area250,000 m2 (2,690,978 sq ft)
Upper Kotmale Power Station
Coordinates 07°02′32″N07°12′00″E / 7.04222°N 7.20000°E / 7.04222; 7.20000
Commission date14 July 2012 (2012-07-14)
Type Run-of-the-river
Turbines 2 × 75 MW Francis-type
Installed capacity 150 MW
Annual generation 409 GWh

The Upper Kotmale Dam (also known as the Upper Kotmale Hydropower Project, or UKHP) is located in Talawakele, within the Nuwara Eliya District, in the Central Province of Sri Lanka. The dam feeds the third largest hydroelectric power station in the country.



The dam under construction in 2007. UpperKotmaleDam2007.jpg
The dam under construction in 2007.

The project was initially planned in 1968 by the local authorities, before the Government of Japan funded a study between 1985 and 1987 to further examine the hydroelectric potential in the upper reaches of Kotmale River. The feasibility study included five sites and eight alternative development schemes, and concluded with two sites which were more technically and economically feasible.

The two sites were a conventional type at Caledonia, and a run-of-the-river type at Talawakele. The project at Caledonia involved the displacement of over 2,700 families and inundation of large areas of land used for tea plantations, and thus the Caledonia site was dropped. Further funding was then provided by Japan for the engineering study, which included a review of the feasibility study, selection of an optimal development plan, development of the detailed design, and the preparation of tender documents and an environmental impact assessment report.

The environmental impact assessment report was completed in September 1994, with the final design report completed in March 1995. The environmental assessment identified key issues associated with the project, which includes impact on St. Clair's Falls aesthetics due to stream flow reductions, social impacts due to resettlement of affected people, possible effects on ground water due to tunnelling, impacts on downstream water uses due to de-watering of streams, and impacts on biodiversity. These impacts led large delays in project development.

As per the National Environmental Act of 1998, the environmental clearance was then granted to the project. The project initially faced several objections, before being officially permitted by courts of law. Construction work on the project then began in 2006, and is expected to be completed by the end of 2011.

Construction and development

This project is estimated to cost a total of up to Rs.44 billion, of which Rs.5.931 billion was funded by the Ceylon Electricity Board, and ¥33.265 billion by the Japan Bank for International Cooperation. The entire project covers an area of approximately 540 km2 (208 sq mi), and is developed in five phases:

A total of 2,250 construction workers are employed at the site, of which 2,100 are locals, and 150 are foreign.

Dam and reservoir

Preparations upstream for the creation of the Upper Kotmale Reservoir. UpperKotmaleDam-Srilanka-April2011-4.jpg
Preparations upstream for the creation of the Upper Kotmale Reservoir.

The gravity dam measures 35.5 m (116.5 ft) tall, and 180 m (591 ft) wide, impounding the Kotmale River and creating the Upper Kotmale Reservoir. Once filled, the reservoir will have a surface area of 250,000 m2 (2,700,000 sq ft) with an average storage capacity of 800,000 m3 (28,000,000 cu ft). The minimum and maximum operating water levels are 1,190 m (3,904 ft) and 1,194 m (3,917 ft) AMSL respectively, while the tailwater level is 703 m (2,306 ft) AMSL. Water from the reservoir will be used for both irrigation development and hydroelectric power generation.


During the construction work of Headrace tunnel UKHP Construction of Headrace tunnel.JPG
During the construction work of Headrace tunnel

The 4.5–5.2 m (14.8–17.1 ft) diameter, 12.89 km (8.0 mi) long Upper Kotmale Tunnel, the longest excavated tunnel in Sri Lanka, will be used to deliver the water to the powerhouse. The tunnel begins at the dam site, and stretches north at a distance of approximately 7.4 km (4.6 mi) towards Pundaluoya, before stretching a further 5.5 km (3.4 mi) north-west towards Kumbaloluwa and ending up at its powerhouse at the Kotmale River near Niyamgamdora, at approximately 07°02′33″N80°39′23″E / 7.04250°N 80.65639°E / 7.04250; 80.65639 , 2 km (1.2 mi) downstream of the confluence of Pundal River and the Kotmale River. Excavation on the tunnel was completed and ceremonially opened by President Mahinda Rajapaksa on 4 November 2010. [1]


Underground Powerhouse during construction Underground Powerhouse.JPG
Underground Powerhouse during construction

The powerhouse measures 66.3 m (217.5 ft) long, 18.8 m (61.7 ft) wide, and 36.5 m (119.8 ft) tall, and is located underground at Niyamgamdora. It has installed electrical capacity of 150 MW from two 75 MW turbines, capable of producing up to 409 GWh of power annually. Water arrives at the powerhouse from the dam via the 12.89 km (8.0 mi) long Upper Kotmale Tunnel, which then feeds the 793 m (2,602 ft) penstock. The initial 745 m (2,444 ft) of the penstock is single-lane, while the latter 48 m (157 ft) splits into two lanes, feeding the two 75 MW generators respectively.

The powerhouse consists of the two three-phase 77 MW , 88,000 kVA vertical-axis Francis turbine-generators, two three-phase transformers, and a 220kV Gas Insulator Switchgear (GIS) substation. An outdoor switchyard measuring 36.5 m (119.8 ft) by 130 m (426.5 ft).

Transmission line

The 220kV transmission line of the Upper Kotmale Hydro-power Project connects the power station located at Niyamgamdora, Kotmale, to the national grid via Kotmale switch yard located in Atabage, Gampola. The line consists of 45 towers and has a length of 15.5 km. The double circuit transmission line has a capacity of 220 MW per circuit.

Social and environmental impact

UG-LK Photowalk - 2018-03-25 - St Clairs Falls (3).jpg
A significant difference in volume can be observed before the dam was built (left) and after (right). Note: The variance may be exaggerated, as the pictures were taken during different seasons.

The construction of the dam, tunnel, and powerhouse, required the relocation of families from 495 houses. New homes were built away from the site with access to vital facilities such as water and power. The relocated families are provided with concessionary loans to start new self-employment ventures, while additional facilities such as the Talawakele Central College, places of worship, a cinema hall, a library, and a community centre, are being established.

Similar most other dam's impacts on rivers around the world, the Upper Kotmale Dam will periodically stop the St. Clair's Falls, located 2.2 km (1.4 mi) downstream of the dam, and a further 2.9 km (1.8 mi) of the Kotmale River downstream of St. Clairs Falls, before the river is restored by water from the Devon River, the river forming the picturesque Devon Falls. As ordered by the Government Extraordinary, the St. Clair's waterfall will maintain a continuous flow of 47,250 m3 (1,668,618 cu ft) of water for 10 hours and 30 minutes daily, between sunrise and sunset.

See also

Related Research Articles

The Temengor Dam or Temengor Hydro-Electric Project or Temengor Power Station is a dam in Gerik, Perak, Malaysia. It is located on Perak River about 200 km northeast of Ipoh. Construction of the dam impounded Temenggor Lake.

Rana Pratap Sagar Dam Dam in Rawatbhata, District, Rajasthan

The Ranapratap Sagar Dam is a gravity masonry dam of 53.8 metres (177 ft) height built on the Chambal River at Rawatbhata in Rajasthan in India. It is part of integrated scheme of a cascade development of the river involving four projects starting with the Gandhi Sagar Dam in the upstream reach in Madhya Pradesh and the Jawahar Sagar Dam on the downstream with a terminal structure of the Kota Barrage in Rajasthan for irrigation.

Bakhtiari Dam Dam in Aligudarz County, Lorestan"`UNIQ--ref-00000000-QINU`"

The Bakhtiari Dam is an arch dam currently under construction on the Bakhtiari River within the Zagros Mountains on the border of Lorestan and Khuzestan Provinces, Iran. At a planned height of 325 metres (1,066 ft), it will be the world's tallest dam once completed and withhold the second largest reservoir in Iran after the Karkheh reservoir. The main purpose of the dam is hydroelectric power production and it will support a 1,500 MW power station. By trapping sediment, the dam is also expected to extend the life of the Dez Dam 50 km (31 mi) downstream.

St. Clairs Falls

St. Clair's Falls is one of the widest waterfalls in Sri Lanka and is commonly known as the "Little Niagara of Sri Lanka". It is one of six waterfalls affected by the Upper Kotmale Hydropower Project.

Victoria Dam (Sri Lanka) Dam in Teldeniya

Victoria Dam is an arch dam located 130 mi (209 km) upstream of the Mahaweli River's mouth and 4 mi (6 km) from Teldeniya. Its main purposes are irrigation and hydroelectric power production. It is the tallest dam in Sri Lanka, and supports a 210 MW power station, the largest hydroelectric power station in the country. Construction of the dam commenced in 1978, and was ceremonially completed by then-President Jayewardene in April 1985.

Daniel-Johnson dam Dam in Manicouagan Regional County Municipality, Quebec, Canada

The Daniel-Johnson dam, formerly known as Manic-5, is a multiple-arch buttress dam on the Manicouagan River that creates the annular Manicouagan Reservoir. The dam is composed of 14 buttresses and 13 arches and is 214 km (133 mi) north of Baie-Comeau in Quebec, Canada. The dam was constructed between 1959 and 1970 for the purpose of hydroelectric power production and supplies water to the Manic-5 and Manic-5-PA power houses with a combined capacity of 2,660 MW. The dam is 214 m (702 ft) tall, 1,314 m (4,311 ft) long and contains 2,200,000 m3 of concrete, making it the largest dam of its type in the world.

Deriner Dam Dam in Artvin, Artvin Province, Turkey

Deriner Dam is a concrete double-curved arch dam on the Çoruh River 5 km (3.1 mi) east of Artvin in Artvin Province, Turkey. The main purpose of the dam is hydroelectric power production and additionally flood control. Construction on the dam began in 1998, the reservoir began to fill in February 2012 and the power station was completed by February 2013. It will have a 670 MW power house and is the tallest dam in Turkey. The dam is being implemented by Turkey's State Hydraulic Works and constructed by a consortium of Turkish, Russian and Swiss companies.

Subansiri Lower Dam Dam in Assam & Arunachal Pradesh

The Subansiri Lower Dam, officially named Subansiri Lower Hydroelectric Project (SLHEP), is an under construction gravity dam on the Subansiri River in NorthEastern India. It is located 2.3 km (1.4 mi) upstream of Gerukamukh village in Dhemaji District and Lower Subansiri District on the border of Assam and Arunachal Pradesh. Described as a run-of-the-river project by NHPC Limited, the Project is expected to supply 2,000 MW of power when completed. The project has experienced several problems during construction to include landslides, re-design and opposition. It was expected to be complete in 2018. It is notable that, if completed as planned, it will be the largest hydroelectric project in India.

Kölnbrein Dam Dam in Malta, Carinthia,Austria

The Kölnbrein Dam is an arch dam in the Hohe Tauern range within Carinthia, Austria. It was constructed between 1971 and 1979 and at 200 metres (660 ft) high, it is the tallest dam in Austria. The dam's reservoir serves as the primary storage in a three-stage pumped-storage power system that consists of nine dams, four hydroelectric power plants and a series of pipeline and penstocks. The complex is owned by Verbund power company and is referred to as the Malta-Reisseck Power Plant Group. The installed capacity of the group is 1,028.5 MW and its annual generation is 1,216 gigawatt-hours (4,380 TJ).

Lam Takhong Dam Dam in Pak Chong and Sikhio, Nakhon Ratchasima

The Lam Takhong Dam is an embankment dam on the Lam Takhong River between Pak Chong District and Sikhio District in Nakhon Ratchasima Province, Thailand. The dam was originally constructed in 1974 for the purposes of irrigation and water supply but after 2002, its water storage also serves as the lower reservoir for the Lam Takhong pumped storage power plant, Thailand's first power plant of that type.

Ruskin Dam and Powerhouse Dam in Ruskin, British Columbia

Ruskin Dam is a concrete gravity dam on the Stave River in Ruskin, British Columbia, Canada. The dam was completed in 1930 for the primary purpose of hydroelectric power generation. The dam created Hayward Lake, which supplies water to a 105 MW powerhouse and flooded the Stave's former lower canyon, which ended in a small waterfall approximately where the dam is today.

Stave Falls Dam and Powerhouse Dam in Stave Falls

Stave Falls Dam is a dual-dam power complex on the Stave River in Stave Falls, British Columbia, Canada. The dam was completed in 1912 for the primary purpose of hydroelectric power production. To increase the capacity of Stave Lake, the dam was raised in 1925 and the Blind Slough Dam constructed in an adjacent watercourse 500 m (1,600 ft) to the north, which was the site of the eponymous Stave Falls. In 2000, the dam's powerhouse was replaced after a four-year upgrade. The powerhouse was once British Columbia's largest hydroelectric power source and is a National Historic Site of Canada.

Pandoh Dam Dam in Mandi district

The Pandoh Dam is an embankment dam on the Beas River in Mandi district of Himachal Pradesh, India. Under the Beas Project, the dam was completed in 1977 and its primary purpose is hydroelectric power generation. Part of a run-of-the-river power scheme, it diverts the waters of the Beas to the southwest through a 38 km (24 mi) long system of tunnels and channels. The water is used for power generation at the Dehar Power House before being discharged into the Sutlej River, connecting both rivers. The power house has an installed capacity of 990 MW. The system diverts 256 cumecs of Beas waters to the Satluj River. The project was completed in 1977.

Broadlands Dam Dam in Kitulgala

The Broadlands Dam is a 35 MW run-of-the-river hydroelectric complex currently under construction in Kitulgala, Sri Lanka. The project is expected to be completed in 2020, and will consist of two dams, and a power station further downstream.

Randenigala Dam Dam in Rantembe, Central Province

The Randenigala Dam is a large hydroelectric embankment dam at Rantembe, in the Central Province of Sri Lanka. Construction of the dam began in November 1982, and was completed in approximately 4 years. The dam and power station was ceremonially opened by then President J. R. Jayawardene in 1986.

Polgolla Barrage Dam in Polgolla, Central Province

The Polgolla Barrage, is a barrage built across the Mahaweli River at Polgolla, in the Central Province of Sri Lanka. The barrage is used to increase the volume of water, for transfer to the hydroelectric power station located 8 km (5 mi) north, via penstock.

Upper North Fork Feather River Project

The Upper North Fork Feather River Project is a hydroelectric scheme in the Sierra Nevada of California, within Lassen and Plumas Counties. The project consists of three dams, five power plants, and multiple conduits and tunnels in the headwaters of the North Fork Feather River, a major tributary of the Feather—Sacramento River systems. The total installed capacity is 362.3 megawatts (MW), producing an annual average of 1,171.9 gigawatt hours (GWh). The project is also contracted for the delivery of irrigation water between March 31 and October 31 of each year. The project is owned and operated by Pacific Gas and Electric Company.

Nenskra Hydro Power Plant is a proposed hydroelectric power station to be located on the southern slopes of the Central Caucasus mountains in Svaneti, Georgia.

Erathna Mini Hydro Power Project Dam in Ratnapura, Sabaragamuwa Province

The Erathna Mini Hydro Power Project is one of the run of river mini hydro power projects in Sri Lanka which has the install capacity of 10 MW. The project is located on the Kuru Ganga, a tributary of the Kalu Ganga.

The Moragolla Dam is a planned hydroelectric dam in Moragolla, Sri Lanka. The dam is to be 35 m (115 ft) high and is planned to create the 1,980,000 m3 (70,000,000 cu ft) Moragolla Reservoir with a maximum supply level at 548 m (1,798 ft) MSL. Upon completion, the Moragolla Power Station would have a gross installed capacity of 30 megawatts from two francis turbines, capable of generating approximately 85 GWh annually.


  1. "President opens the longest tunnel in Sri Lanka". The Island. 4 November 2010. Retrieved 21 April 2011.