Green's theorem

Last updated

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.

Contents

Theorem

Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then

where the path of integration along C is counterclockwise. [1] [2]

Application

In physics, Green's theorem finds many applications. One is solving two-dimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area. In plane geometry, and in particular, area surveying, Green's theorem can be used to determine the area and centroid of plane figures solely by integrating over the perimeter.

Proof when D is a simple region

If D is a simple type of region with its boundary consisting of the curves C1, C2, C3, C4, half of Green's theorem can be demonstrated. Green's-theorem-simple-region.svg
If D is a simple type of region with its boundary consisting of the curves C1, C2, C3, C4, half of Green's theorem can be demonstrated.

The following is a proof of half of the theorem for the simplified area D, a type I region where C1 and C3 are curves connected by vertical lines (possibly of zero length). A similar proof exists for the other half of the theorem when D is a type II region where C2 and C4 are curves connected by horizontal lines (again, possibly of zero length). Putting these two parts together, the theorem is thus proven for regions of type III (defined as regions which are both type I and type II). The general case can then be deduced from this special case by decomposing D into a set of type III regions.

If it can be shown that

and

are true, then Green's theorem follows immediately for the region D. We can prove ( 1 ) easily for regions of type I, and ( 2 ) for regions of type II. Green's theorem then follows for regions of type III.

Assume region D is a type I region and can thus be characterized, as pictured on the right, by where g1 and g2 are continuous functions on [a, b]. Compute the double integral in ( 1 ):

Now compute the line integral in ( 1 ). C can be rewritten as the union of four curves: C1, C2, C3, C4.

With C1, use the parametric equations: x = x, y = g1(x), axb. Then

With C3, use the parametric equations: x = x, y = g2(x), axb. Then

The integral over C3 is negated because it goes in the negative direction from b to a, as C is oriented positively (anticlockwise). On C2 and C4, x remains constant, meaning

Therefore,

Combining ( 3 ) with ( 4 ), we get ( 1 ) for regions of type I. A similar treatment yields ( 2 ) for regions of type II. Putting the two together, we get the result for regions of type III.

Proof for rectifiable Jordan curves

We are going to prove the following

Theorem  Let be a rectifiable, positively oriented Jordan curve in and let denote its inner region. Suppose that are continuous functions with the property that has second partial derivative at every point of , has first partial derivative at every point of and that the functions are Riemann-integrable over . Then

We need the following lemmas whose proofs can be found in: [3]

Lemma 1 (Decomposition Lemma)  Assume is a rectifiable, positively oriented Jordan curve in the plane and let be its inner region. For every positive real , let denote the collection of squares in the plane bounded by the lines , where runs through the set of integers. Then, for this , there exists a decomposition of into a finite number of non-overlapping subregions in such a manner that

  1. Each one of the subregions contained in , say , is a square from .
  2. Each one of the remaining subregions, say , has as boundary a rectifiable Jordan curve formed by a finite number of arcs of and parts of the sides of some square from .
  3. Each one of the border regions can be enclosed in a square of edge-length .
  4. If is the positively oriented boundary curve of , then
  5. The number of border regions is no greater than , where is the length of .

Lemma 2  Let be a rectifiable curve in the plane and let be the set of points in the plane whose distance from (the range of) is at most . The outer Jordan content of this set satisfies .

Lemma 3  Let be a rectifiable curve in and let be a continuous function. Then and where is the oscillation of on the range of .

Now we are in position to prove the theorem:

Proof of Theorem. Let be an arbitrary positive real number. By continuity of , and compactness of , given , there exists such that whenever two points of are less than apart, their images under are less than apart. For this , consider the decomposition given by the previous Lemma. We have

Put .

For each , the curve is a positively oriented square, for which Green's formula holds. Hence

Every point of a border region is at a distance no greater than from . Thus, if is the union of all border regions, then ; hence , by Lemma 2. Notice that This yields

We may as well choose so that the RHS of the last inequality is

The remark in the beginning of this proof implies that the oscillations of and on every border region is at most . We have

By Lemma 1(iii),

Combining these, we finally get for some . Since this is true for every , we are done.

Validity under different hypotheses

The hypothesis of the last theorem are not the only ones under which Green's formula is true. Another common set of conditions is the following:

The functions are still assumed to be continuous. However, we now require them to be Fréchet-differentiable at every point of . This implies the existence of all directional derivatives, in particular , where, as usual, is the canonical ordered basis of . In addition, we require the function to be Riemann-integrable over .

As a corollary of this, we get the Cauchy Integral Theorem for rectifiable Jordan curves:

Theorem (Cauchy)  If is a rectifiable Jordan curve in and if is a continuous mapping holomorphic throughout the inner region of , then the integral being a complex contour integral.

Proof

We regard the complex plane as . Now, define to be such that These functions are clearly continuous. It is well known that and are Fréchet-differentiable and that they satisfy the Cauchy-Riemann equations: .

Now, analyzing the sums used to define the complex contour integral in question, it is easy to realize that the integrals on the RHS being usual line integrals. These remarks allow us to apply Green's Theorem to each one of these line integrals, finishing the proof.

Multiply-connected regions

Theorem. Let be positively oriented rectifiable Jordan curves in satisfying where is the inner region of . Let

Suppose and are continuous functions whose restriction to is Fréchet-differentiable. If the function is Riemann-integrable over , then

Relationship to Stokes' theorem

Green's theorem is a special case of the Kelvin–Stokes theorem, when applied to a region in the -plane.

We can augment the two-dimensional field into a three-dimensional field with a z component that is always 0. Write F for the vector-valued function . Start with the left side of Green's theorem:

The Kelvin–Stokes theorem:

The surface is just the region in the plane , with the unit normal defined (by convention) to have a positive z component in order to match the "positive orientation" definitions for both theorems.

The expression inside the integral becomes

Thus we get the right side of Green's theorem

Green's theorem is also a straightforward result of the general Stokes' theorem using differential forms and exterior derivatives:

Relationship to the divergence theorem

Considering only two-dimensional vector fields, Green's theorem is equivalent to the two-dimensional version of the divergence theorem:

where is the divergence on the two-dimensional vector field , and is the outward-pointing unit normal vector on the boundary.

To see this, consider the unit normal in the right side of the equation. Since in Green's theorem is a vector pointing tangential along the curve, and the curve C is the positively oriented (i.e. anticlockwise) curve along the boundary, an outward normal would be a vector which points 90° to the right of this; one choice would be . The length of this vector is So

Start with the left side of Green's theorem: Applying the two-dimensional divergence theorem with , we get the right side of Green's theorem:

Area calculation

Green's theorem can be used to compute area by line integral. [4] The area of a planar region is given by

Choose and such that , the area is given by

Possible formulas for the area of include [4]

History

It is named after George Green, who stated a similar result in an 1828 paper titled An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism . In 1846, Augustin-Louis Cauchy published a paper stating Green's theorem as the penultimate sentence. This is in fact the first printed version of Green's theorem in the form appearing in modern textbooks. George Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (Nottingham, England: T. Wheelhouse, 1828). Green did not actually derive the form of "Green's theorem" which appears in this article; rather, he derived a form of the "divergence theorem", which appears on pages 10–12 of his Essay.
In 1846, the form of "Green's theorem" which appears in this article was first published, without proof, in an article by Augustin Cauchy: A. Cauchy (1846) "Sur les intégrales qui s'étendent à tous les points d'une courbe fermée" (On integrals that extend over all of the points of a closed curve), Comptes rendus, 23: 251–255. (The equation appears at the bottom of page 254, where (S) denotes the line integral of a function k along the curve s that encloses the area S.)
A proof of the theorem was finally provided in 1851 by Bernhard Riemann in his inaugural dissertation: Bernhard Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (Basis for a general theory of functions of a variable complex quantity), (Göttingen, (Germany): Adalbert Rente, 1867); see pages 8–9. [5]

See also

Related Research Articles

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

<span class="mw-page-title-main">Cauchy's integral theorem</span> Theorem in complex analysis

In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker–Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a focus of calculus. In the most basic formulation of arc length for a parametric curve, the arc length is gotten by integrating the speed of the particle over the path. Thus the length of a continuously differentiable curve , for , in the Euclidean plane is given as the integral (because is the magnitude of the velocity vector , i.e., the particle's speed).

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically deforming materials and other fluids and biological soft tissue.

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.

The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated. The theorem relates the lift generated by an airfoil to the speed of the airfoil through the fluid, the density of the fluid and the circulation around the airfoil. The circulation is defined as the line integral around a closed loop enclosing the airfoil of the component of the velocity of the fluid tangent to the loop. It is named after Martin Kutta and Nikolai Zhukovsky who first developed its key ideas in the early 20th century. Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications.

In mathematics, the Möbius energy of a knot is a particular knot energy, i.e., a functional on the space of knots. It was discovered by Jun O'Hara, who demonstrated that the energy blows up as the knot's strands get close to one another. This is a useful property because it prevents self-intersection and ensures the result under gradient descent is of the same knot type.

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence:

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

References

  1. Riley, Kenneth F.; Hobson, Michael P.; Bence, Stephen J. (2010). Mathematical methods for physics and engineering (3rd ed.). Cambridge: Cambridge University Press. ISBN   978-0-521-86153-3.
  2. Lipschutz, Seymour; Spiegel, Murray R. (2009). Vector analysis and an introduction to tensor analysis. Schaum's outline series (2nd ed.). New York: McGraw Hill Education. ISBN   978-0-07-161545-7. OCLC   244060713.
  3. Apostol, Tom (1960). Mathematical Analysis. Reading, Massachusetts, U.S.A.: Addison-Wesley. OCLC   6699164.
  4. 1 2 Stewart, James (1999). Calculus . GWO - A Gary W. Ostedt book (4. ed.). Pacific Grove, Calif. London: Brooks/Cole. ISBN   978-0-534-35949-2.
  5. Katz, Victor J. (2009). "22.3.3: Complex Functions and Line Integrals". A history of mathematics: an introduction (PDF) (3. ed.). Boston, Mass. Munich: Addison-Wesley. pp. 801–5. ISBN   978-0-321-38700-4.

Further reading