Sentinel-5

Last updated
Sentinel-5 Precursor
Sentinel 5P model.jpg
Sentinel-5P model
Manufacturer Astrium UK
Operator ESA
Applications Atmospheric composition, air pollution, ozone layer monitoring
Specifications
Spacecraft typeSatellite
Bus Astrobus-L 250 M [1]
Launch mass900 kilograms (2,000 lb)
Dry mass820 kilograms (1,810 lb)
Dimensions1.40 m × 0.65 m × 0.75 m (4.59 ft × 2.13 ft × 2.46 ft) – height × width × length [2]
Power1500 watts
Batteries156 Ah
EquipmentTROPOMI
Design life7 years
Production
StatusOperational
On order0
Built1
Launched1
Operational1
Maiden launch13 October 2017 [3]
Related spacecraft
Subsatellite of Sentinel constellation
  Sentinel-4 Sentinel-6

Sentinel-5 Precursor (Sentinel-5P) is an Earth observation satellite developed by ESA as part of the Copernicus Programme to close the gap in continuity of observations between Envisat and Sentinel-5. [4]

Contents

Overview

Sentinel-5 Precursor is the first mission of the Copernicus Programme dedicated to monitoring air pollution. Its instrument is an ultraviolet, visible, near and short-wavelength infrared spectrometer called Tropomi. The satellite is built on a hexagonal Astrobus L 250 satellite bus equipped with S- and X-band communication antennas, three foldable solar panels generating 1500 watts and hydrazine thrusters for station-keeping. [1] [2]

The satellite operates in an 824 km Sun-synchronous orbit with a Local Time of Ascending Node of 13:30 hours.

Instruments

Tropomi

Tropomi (TROPOspheric Monitoring Instrument) is a spectrometer sensing ultraviolet (UV), visible (VIS), near (NIR) and short-wavelength infrared (SWIR) to monitor ozone, methane, formaldehyde, aerosol, carbon monoxide, NO2 and SO2 in the atmosphere. It extends the capabilities of the OMI from the Aura satellite and the SCIAMACHY instrument from Envisat. [5]

Tropomi will be taking measurements every second covering an area of approximately 2600 km wide and 7 km long in a resolution of 7 x 7 km. Light will be separated into different wavelengths using grating spectrometers and then measured with four different detectors for respective spectral bands. The UV spectrometer has a spectral range of 270-320 nm, the visible light spectrometer has a range of 310-500 nm, NIR has a range of 675-775 nm, and SWIR has a range of 2305-2385 nm. [6]

The instrument is split into four major blocks: UV-VIS-NIR spectrometers and a calibration block, SWIR spectrometer with its optics, instrument control unit and a cooling block. The total mass of Tropomi will be 200 kg with a power consumption of 170 watts on average and a data output of 140 Gbit per orbit. [6] [1]

The instrument was built by a joint venture between the Netherlands Space Office, Royal Netherlands Meteorological Institute, Netherlands Institute for Space Research, Netherlands Organisation for Applied Scientific Research and Airbus Defence and Space Netherlands. [7] [8]

The SWIR spectrometer was designed and built by the Optical Payloads Group of Surrey Satellites (SSTL); it employs an immersed grating design in which light impinges upon an etched grating from within a high-index substrate (silicon in this case). The reduced wavelength within the refractive medium permits an efficient, space-saving design. The SWIR grating was provided by SRON (Netherlands), who also provided the Front-End Electronics (FEE). The SWIR spectrometer receives light from the main instrument via an intermediate pupil, and directs this - via a telescope - towards a slit which defines the along-track footprint of the instrument on the ground. Light from the slit is re-collimated, diffracted by the immersed-grating at high-order and finally imaged onto a two-dimensional detector by a high aperture relay lens. The SWIR detector (furnished by Sofradir, France) has 256 elements in the across-track direction and 1024 elements in the spectral direction (the element pitch is 30 microns); it is operated cold (typically 140 K). The SWIR spectrometer optics are mounted on a cooled optical bench (approximately 200K) and the instrument is insulated by a multiple-layer insulation (MLI) blanket. The SWIR instrument was aligned, focussed and characterised at the Mullard Space Science laboratory thermal vacuum facility in Surrey, UK.[ citation needed ]

The Tropospheric Monitoring Instrument provides the most detailed methane emissions monitoring available. It has a resolution of about 50 square kilometres. [9]

History

The first large contract for Sentinel-5P was signed in July 2009 for Tropomi instrument between the European Space Agency and Dutch Ministry of Economic Affairs which contributed €78 million. [7] On 8 December 2011, ESA selected Astrium UK as a prime contractor for the satellite, signing contract worth €45.5 million. [10] Construction of the satellite itself was completed in May 2014, and integration with its primary instrument has been completed successfully. [11] From design to launch Tropomi cost €220 million. [12]

The satellite was launched by Eurockot Launch Services onboard Rokot. [3] The launch was originally planned for late 2014, but had been postponed multiple times, before occurring on 13 October 2017 at 09:27 UTC from Plesetsk Cosmodrome Site 133. Sentinel-5P successfully reached its final orbit 79 minutes after lift-off from the Plesetsk cosmodrome. [13]

Usage

The Tropomi instrument on the satellite showed substantial reductions in nitrogen dioxide amounts over Chinese cities between late January and February 2020. These were linked to China's response to the coronavirus pandemic which greatly reduced industrial and other polluting activities. [14] Sentinel-5P pollution data also helped to confirm a correlation between a higher incidence of COVID-19 and chronic exposure to air pollutants. [15]

In 2022, a study using data from the satellite to monitor large methane emissions worldwide was published; 1,200 large methane plumes were detected over oil and gas extraction sites. [16]

Related Research Articles

Envisat ESA Earth observation satellite (2002–2012)

Envisat is a large inactive Earth-observing satellite which is still in orbit and now considered a space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.

XMM-Newton X-ray space observatory

XMM-Newton, also known as the High Throughput X-ray Spectroscopy Mission and the X-ray Multi-Mirror Mission, is an X-ray space observatory launched by the European Space Agency in December 1999 on an Ariane 5 rocket. It is the second cornerstone mission of ESA's Horizon 2000 programme. Named after physicist and astronomer Sir Isaac Newton, the spacecraft is tasked with investigating interstellar X-ray sources, performing narrow- and broad-range spectroscopy, and performing the first simultaneous imaging of objects in both X-ray and optical wavelengths.

Infrared Space Observatory

The Infrared Space Observatory (ISO) was a space telescope for infrared light designed and operated by the European Space Agency (ESA), in cooperation with ISAS and NASA. The ISO was designed to study infrared light at wavelengths of 2.5 to 240 micrometres and operated from 1995 to 1998.

European Remote-Sensing Satellite

European Remote Sensing satellite (ERS) was the European Space Agency's first Earth-observing satellite programme using a polar orbit. It consisted of 2 satellites, ERS-1 and ERS-2.

Solar Radiation and Climate Experiment

The Solar Radiation and Climate Experiment (SORCE) was a NASA-sponsored satellite mission that measured incoming X-ray, ultraviolet, visible, near-infrared, and total solar radiation. These measurements specifically addressed long-term climate change, natural variability, atmospheric ozone, and UV-B radiation, enhancing climate prediction. These measurements are critical to studies of the Sun, its effect on our Earth system, and its influence on humankind. SORCE was launched on 25 January 2003 on a Pegasus XL launch vehicle to provide NASA's Earth Science Enterprise (ESE) with precise measurements of solar radiation.

SCIAMACHY

SCIAMACHY was one of ten instruments aboard of ESA's ENVIronmental SATellite, ENVISAT. It was a satellite spectrometer designed to measure sunlight, transmitted, reflected and scattered by the earth's atmosphere or surface in the ultraviolet, visible and near infrared wavelength region at moderate spectral resolution. SCIAMACHY was built by Netherlands and Germany at TNO/TPD, SRON and Dutch Space.

Copernicus Programme Programme of the European Commission

Copernicus is the European Union's Earth observation programme coordinated and managed by the European Commission in partnership with the European Space Agency (ESA), the EU Member States and EU agencies.

Extreme Ultraviolet Explorer NASA satellite of the Explorer program

The Extreme Ultraviolet Explorer was a NASA for ultraviolet astronomy. EUVE was a part of NASA's Explorer spacecraft series. Launched on 7 June 1992. With instruments for ultraviolet (UV) radiation between wavelengths of 7 and 76 nm, the EUVE was the first satellite mission especially for the short-wave ultraviolet range. The satellite compiled an all-sky survey of 801 astronomical targets before being decommissioned on 31 January 2001.

Netherlands Institute for Space Research

SRON Netherlands Institute for Space Research is the Dutch expertise institute for space research. The Institute develops and uses innovative technology for research in space, focusing on astrophysical research, Earth science and planetary research. SRON has a line of research into new and more sensitive sensors for X-rays and infrared radiation.

Sentinel-1

Sentinel-1 is the first of the Copernicus Programme satellite constellation conducted by the European Space Agency. This mission is composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which share the same orbital plane. They carry a C-band synthetic-aperture radar instrument which provides a collection of data in all-weather, day or night. This instrument has a spatial resolution of down to 5 m and a swath of up to 400 km. The constellation is on a sun synchronous, near-polar (98.18°) orbit. The orbit has a 12-day repeat cycle and completes 175 orbits per cycle.

Sentinel-2 Earth observation mission

Sentinel-2 is an Earth observation mission from the Copernicus Programme that systematically acquires optical imagery at high spatial resolution over land and coastal waters. The mission is currently a constellation with two satellites, Sentinel-2A and Sentinel-2B; a third satellite, Sentinel-2C, is currently undergoing testing in preparation for launch in 2024.

Sentinel-3 Earth observation satellite series

Sentinel-3 is an Earth observation satellite series developed by the European Space Agency as part of the Copernicus Programme. It currently consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites— Sentinel-3C and Sentinel-3D— will follow in approximately 2024 and 2028 respectively to ensure continuity of the Sentinel-3 mission.

Mission Science Division

The Earth and Mission Science Division is a group of European Space Agency (ESA) staff mission scientists, contractors, research fellows, young graduates, trainees, and administrative staff working within the Science, Applications and Climate Department of the Directorate of Earth Observation Programmes. The Division is located at ESA's European Space Research and Technology Centre in Noordwijk, South Holland, The Netherlands.

X-ray astronomy satellite Satellite involved in X-ray astronomy

An X-ray astronomy satellite studies X-ray emissions from celestial objects, as part of a branch of space science known as X-ray astronomy. Satellites are needed because X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites.

ADEOS I Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

PRISMA is an Italian Space Agency pre-operational and technology demonstrator mission focused on the development and delivery of hyperspectral products and the qualification of the hyperspectral payload in space.

Sentinel-1A

Sentinel-1A is a European radar imaging satellite launched in 2014. It is the first Sentinel-1 satellite launched as part of the European Union's Copernicus programme. The satellite carries a C-band Synthetic Aperture Radar which will provide images in all light and weather conditions. It will track many aspects of our environment, from detecting and tracking oil spills and mapping sea ice to monitoring movement in land surfaces and mapping changes in the way land is used.

Sentinel-4 is a European Earth observation mission developed to support the European Union Copernicus Programme for monitoring the Earth. It focuses on monitoring of trace gas concentrations and aerosols in the atmosphere to support operational services covering air-quality near-real time applications, air-quality protocol monitoring and climate protocol monitoring. The specific objective of Sentinel-4 is to support this with a high revisit time over Europe.

Student Nitric Oxide Explorer NASA satellite of the Explorer program

Student Nitric Oxide Explorer, was a NASA small scientific satellite which studied the concentration of nitric oxide in the thermosphere. It was launched in 1998 as part of NASA's Explorer program. The satellite was the first of three missions developed within the Student Explorer Demonstration Initiative (STEDI) program funded by the NASA and managed by the Universities Space Research Association (USRA). STEDI was a pilot program to demonstrate that high-quality space science can be carried out with small, low-cost free-flying satellites on a time scale of two years from go-ahead to launch. The satellite was developed by the University of Colorado Boulder's Laboratory for Atmospheric and Space Physics (LASP) and had met its goals by the time its mission ended with reentry in December 2003.

UVS (<i>Juno</i>)

UVS, known as the Ultraviolet Spectrograph or Ultraviolet Imaging Spectrometer is the name of an instrument on the Juno orbiter for Jupiter. The instrument is an imaging spectrometer that observes the ultraviolet range of light wavelengths, which is shorter wavelengths than visible light but longer than X-rays. Specifically, it is focused on making remote observations of the aurora, detecting the emissions of gases such as hydrogen in the far-ultraviolet. UVS will observes light from as short a wavelength as 70 nm up to 200 nm, which is in the extreme and far ultraviolet range of light. The source of aurora emissions of Jupiter is one of the goals of the instrument. UVS is one of many instruments on Juno, but it is in particular designed to operate in conjunction with JADE, which observes high-energy particles. With both instruments operating together, both the UV emissions and high-energy particles at the same place and time can be synthesized. This supports the Goal of determining the source of the Jovian magnetic field. There has been a problem understanding the Jovian aurora, ever since Chandra determined X-rays were coming not from, as it was thought Io's orbit but from the polar regions. Every 45 minutes an X-ray hot-spot pulsates, corroborated by a similar previous detection in radio emissions by Galileo and Cassini spacecraft. One theory is that its related to the solar wind. The mystery is not that there are X-rays coming Jupiter, which has been known for decades, as detected by previous X-ray observatories, but rather why with the Chandra observation, that pulse was coming from the north polar region.

References

  1. 1 2 3 "Sentinel 5 Data Sheet" (PDF). ESA. August 2013. Retrieved 6 September 2014.
  2. 1 2 "Copernicus: Sentinel-5P (Precursor - Atmospheric Monitoring Mission)". eoPortal. Retrieved 6 September 2014.
  3. 1 2 "ESA books Eurockot Launch for Sentinel-5p Satellite". Eurockot Launch Services. 29 January 2014. Retrieved 6 September 2014.
  4. "Sentinels -4/-5 and -5P". ESA. Retrieved 6 September 2014.
  5. "TROPOMI" . Retrieved 6 September 2014.
  6. 1 2 "TROPOMI: Instrument". Archived from the original on 13 August 2014. Retrieved 6 September 2014.
  7. 1 2 "Agreement between the Netherlands and ESA signed for Sentinel-5 Precursor instrument". ESA. 6 July 2009. Retrieved 6 September 2014.
  8. "Sentinel 5-Precursor/TROPOMI". Netherlands Institute for Space Research. Archived from the original on 4 March 2016. Retrieved 6 September 2014.
  9. Tollefson, Jeff (2018-04-11). "US environmental group wins millions to develop methane-monitoring satellite". Nature. 556 (7701): 283. Bibcode:2018Natur.556..283T. doi: 10.1038/d41586-018-04478-6 . PMID   29666485.
  10. "ESA selects Astrium to build Sentinel-5 Precursor satellite". ESA. 8 December 2011. Retrieved 6 September 2014.
  11. "Platform brings air monitoring a step closer". ESA. 27 May 2014. Retrieved 6 September 2014.
  12. "NLR essential link in Tropomi data processing". Oct 13, 2017. Retrieved Sep 26, 2018.
  13. "Air-quality monitoring satellite in orbit - News - Sentinel-5P - ESA Missions - Earth Online - ESA".
  14. "COVID-19: nitrogen dioxide over China". March 24, 2020. Retrieved March 24, 2020.
  15. Pansini, Riccardo; Fornacca, Davide (2021). "COVID-19 Higher Mortality in Chinese Regions With Chronic Exposure to Lower Air Quality". Frontiers in Public Health. 8: 597753. doi: 10.3389/fpubh.2020.597753 . ISSN   2296-2565. PMC   7874038 . PMID   33585383.
  16. "Massive methane emissions by oil and gas industry detected from space | CNRS".