Sustainable urbanism is both the study of cities and the practices to build them (urbanism), that focuses on promoting their long term viability by reducing consumption, waste and harmful impacts on people and place while enhancing the overall well-being of both people and place. [1] Well-being includes the physical, ecological, economic, social, health and equity factors, among others, that comprise cities and their populations. In the context of contemporary urbanism, the term cities refers to several scales of human settlements from towns to cities, metropolises and mega-city regions that includes their peripheries / suburbs / exurbs. [2] Sustainability is a key component to professional practice in urban planning and urban design along with its related disciplines landscape architecture, architecture, and civil and environmental engineering. [3] [4] Green urbanism and ecological urbanism are other common terms that are similar to sustainable urbanism, however they can be construed as focusing more on the natural environment and ecosystems and less on economic and social aspects. [5] Also related to sustainable urbanism are the practices of land development called Sustainable development, which is the process of physically constructing sustainable buildings, as well as the practices of urban planning called smart growth or growth management, which denote the processes of planning, designing, and building urban settlements that are more sustainable than if they were not planned according to sustainability criteria and principles. [6]
The origin of the term sustainable urbanism has been attributed to Professor Susan Owens of Cambridge University in the UK in the 1990s, according to her doctoral student and now professor of architecture Phillip Tabb. The first university graduate program named Sustainable Urbanism was founded by professors Michael Neuman and Phillip Tabb at Texas A&M University in 2002. [7] There are now dozens of university programs with that name worldwide. As of 2018, there are hundreds of scholarly articles, books and publications whose titles contain the exact words sustainable urbanism and thousands of articles, books and publications that contain that exact term, according to Google Scholar.
In 2007, two important events occurred in the USA that furthered the knowledge base and diffusion of sustainable urbanism. First was the International Conference on Sustainable Urbanism at Texas A&M University in April, which drew nearly 200 persons from five continents. Second, later in the year, was the publication of the book Sustainable Urbanism by Doug Farr. According to Farr, this approach aims to eliminate environmental impacts of urban development by supplying and providing all resources locally. The full life cycle of services and public goods such as electricity and food are evaluated from production to consumption with the intent of eliminating waste or environmental externalities. Since that time, significant research and practice worldwide has broadened the term considerably to include social, economic, welfare and public health factors, among others, to the environmental and physical factors in the Farr book; thus taking it beyond an urban design field into all of urban planning, policy and development. [8] Approaches that focus on the social and economic aspects use the terms fair cities and just cities. The United Nations has incorporated sustainable urbanism into its global sustainable development goals as goal 11, Sustainable Cities and Communities. [9]
There are a range of organizations promoting and researching sustainable urbanism practices, including governmental agencies, non-governmental organizations, professional associations, universities and research institutes, philanthropic foundations and professional enterprises around the world. Related to sustainable urbanism is the Ecocity or Ecological Urbanism movement which is another approach that focuses on creating urban environments based on ecological principles, and the resilient cities movement which focuses on addressing depleting resources by creating distributed local resources to replace global supply chain in case of major disruption. [10] As resilient cities thinking has evolved, it too has gone beyond climate change to incorporate resilient responses by hybrid urban-natural ecosystems such as city regions to natural disasters, war and conflict, economic shocks and crises, massive migration, and other shocks.
The architect and urban planner Doug Farr discusses making cities walkable, along with combining elements of ecological urbanism, sustainable urban infrastructure, and new urbanism, and goes beyond them to close the loop on resource use and bring everything into the city or town. This approach is centered on increasing the quality of life by affording greater accessibility to activities and places within a short distance and by increasing the quality of products that are offered.
New Urbanism emerged in the 1980s and was an early touchstone for sustainable urbanism, since it is based around bringing activities and land uses closer together, increasing urban and suburban densities, being more efficient in terms of infrastructure provision and transport energy use, and having more within walking distance. There were significant critiques of New Urbanism and its more international term Compact city that found it was a limited approach. [11] Its principal conclusion was that the sustainability of a city could not be measured by form alone, and that processes were critical to measure sustainability. [12] [13] The criticism of New Urbanism is that it attempts to apply 19th century urban form to 21st century cities and that New Urbanism excludes economic diversity by creating expensive places to live that are highly privatized and controlled. Also, critics believe that, while the New Urbanism contains many attractive ideas, it may have difficulty dealing with a wide range of contemporary issues including scale, transportation, planning and codes, regionalism, and marketing. [14]
Sustainable urbanism bridges the gaps of New Urbanism by including the factors listed in the lead paragraph of this Wikipedia entry.
Smart growth is a related approach to sustainable urbanism. As conceived by urban planners, it helps achieve greater jobs–housing balance, but it is likely to leave the sense of place unaddressed. While New Urbanism may fulfill that dimension of sense of place, it is not viewed as an approach that will lead to communities that are energy self-reliant. The ecological city approach seems to complementary to the other two approaches in terms of their respective areas of strengths and weakness. [15]
Green urbanism probably contains the most similar ideas with sustainable urbanism. They both emphasize on interplay of cities with nature, as well as shaping better communities and lifestyles. However, the principles of green urbanism are based on the triple-zero framework: zero fossil-fuel energy use, zero waste, and zero emissions. Sustainable Urbanism, on the other hand, is more focused on designing communities that are walkable and transit-served so that people will prefer to meet their daily needs on foot.
Compactness, or density, plays an important yet limited role in sustainable urban development because it can support reductions in per-capita transport energy use by increasing walking, cycling, active transport and public transit use. The relatively low density of some urban and especially suburban and exurban development is too low to support efficient transit and walk-to destinations. Such low-density development is a characteristic of urban sprawl, which is the major cause of high dependence on private automobiles, inefficient infrastructure, increased obesity, loss of farmlands and natural habitats, pollution, and so on. [16] For these reasons, sustainable urbanism tends to promote more compact development with greater intensities of use and greater variety of uses and activities in a given urban area.
Research has shown that low-density development can exacerbate non-point source pollutant loadings by consuming absorbent open space and increasing impervious surface area relative to compact development. [17] While increasing densities regionally can better protect water resources at a regional level, higher-density development can create more impervious cover, which increases water quality problems in nearby or adjacent water bodies.
Increasing neighborhood population density also supports improved public transit service. Concentrating development density in and around transit stops and corridors maximizes people's willingness to walk and thus reduces car ownership and use. Sustainable urbanism seeks to integrate infrastructure design increase with density, because a concentrated mixed-use development required less per capita infrastructure usage compared to detached single-family housing. [18] [19]
The Biophilia hypothesis was introduced by E. O. Wilson. It refers to the connection between humans and other living systems. Within this concept, humans are biologically predisposed to caring for nature. [20] Biophilic cities are those that bring nature into the city by increasing parks and open spaces, green and blue corridors, and networks that link them. Increasingly, biophilia refers to habitats that support other species, sustainable food production and urban agriculture. Thus, biophilia and biophilic cities are an underlying component of sustainable urbanism. [21]
Sustainable corridors are similar to a wildlife corridor in that they connect one area to another efficiently, cheaply, and safely. They allow people to pass from their immediate proximity to another without relying on cars or other wasteful and inefficient products. It also relies on accessibility to all people in the community so that the mode of transportation is the most convenient and easiest to use for everyone. Sustainable Corridors also include biodiversity corridors to allow animals to move around communities so that they may still live in and around cities. [22]
High performance buildings are designed and constructed to maximize operational energy savings and minimize environmental impacts of the construction and operation of the buildings. Building construction and operation generates a great deal of ‘externalized costs’ such as material waste, energy inefficiencies and pollution. High performance buildings aim to minimize these and make the process much more efficient and less harmful. New York City Department of Design & Construction put out a set of guidelines in April 1999 on High performance buildings that have broad application to sustainable urbanism as a whole worldwide. [23]
By incorporating environmentally sound materials and systems, improving indoor air quality and using natural or high efficiency lighting, it minimizes a building impact on its natural surroundings; additionally, those who work or live in these buildings directly benefit from these differences. Some building owners have even reported increased worker productivity as a result of the improved conditions. However, because these other benefits are more difficult to quantify than direct energy savings, the real value of high performance buildings can easily be underestimated by traditional accounting methods that do not recognize ‘external’ municipal and regional costs and benefits. The cost evaluations of high performance building should account for the economic, social, and environmental benefits that accompany green buildings. [24]
Reduce energy use and demand through passive solar techniques and integrated building design. This process looks at optimum orientation and maximizes the thermal efficiency of the building envelope (windows, walls, roof) while also considering the interaction of the HVAC, lighting, and control systems. Integrated design uses daylight to reduce electrical demand, and incorporates energy efficient lighting, motors, and equipment. Where feasible, renewable energy sources such as photovoltaic cells, solar hot water, and geothermal exchange are used in tandem with other low emission technologies, such as fuel cells. This results in direct energy cost savings (fuel and electricity) yield a good rate of return based on the initial investment. Other external benefits include improved air quality from reduced fuel consumption (limiting nitrous oxide, sulfur dioxide, methane, and other gases that contribute to air pollution). Additionally, reducing the overall aggregate electrical load significantly reduces carbon dioxide emissions.
Improve indoor air quality by eliminating unhealthy emissions – such as volatile organic compounds (VOCs) – from building materials, products, and furnishings, and through outside filtering and distribution techniques that control pollutants. Maximize the use of controlled daylighting, which can then be augmented by high quality artificial lighting. Provide good acoustic control. Results in high performance facilities can help address a wide range of human resource concerns by improving the total quality of the interior environment. In addition, attention to building wellness today helps avoid future costs of corrections. Such ‘well building’ design emphasis can improve occupant comfort, health, and well-being, in turn reducing employee absenteeism and turnover.
Renewable resources, and are themselves recyclable, and that have been manufactured in a manner less damaging to the environment. Implement construction and demolition (C&D) waste prevention/management strategies and selective site sorting of materials for salvage, recycling, or disposal. These actions will prevent unnecessary depletion of natural resources and will reduce air, water, and soil pollution. They will also strengthen the market for recycled materials, and the manufacture of products with post-consumer content. Long-term, better C&D waste management can reduce waste disposal costs, ease stress on landfills, and minimize the cost of transporting waste to disposal facilities outside the city.
High-performance infrastructure refers to core best management practices (BMPs) applicable to the typical section of the public right-of-way, encompassing street sidewalk, underground utilities, stormwater infrastructure, landscapes, and streetscape elements. In addition to many public health and environmental benefits, financial benefits include decreased first costs, decreased operation and maintenance costs, decreased energy costs and increased real estate values. [25] [26]
At the single-component level, standard details may be improved to optimize performance, minimize environmental impact, use materials more efficiently or extended lifecycle. Examples include using reclaimed supplementary cement materials to increase pavement strength or designing water-efficient landscapes to reduce irrigation needs and water consumption.
Improving single components does not consider the whole system in place, so multifunctional optimization guidelines seek to minimize conflicts among parts and promote synergies. This could lead to long-term savings, improved performance and lifecycle, and increased returns on municipal investments. One example is using permeable pavement to reduce stormwater runoff and peak demand on stormwater management infrastructure while providing an adequate driving surface for vehicles.
Systems-oriented design focuses on improving the performance of the entire roadway system. It requires cross-disciplinary teamwork at the planning, scoping, design and construction phases. It promotes comprehensive performance improvements, compounds environmental benefits and potentially offers substantial cost savings. An example of integrated design would be designing a roadway with a diversely planted center median that functions as both a traffic-calming device and a stormwater bioretention area to improve pedestrian safety, minimize stormwater runoff, dampen street noise and improve air quality.
Current leading examples as of 2018, which need to be described and explained here in greater detail, include the Hammarby Sjöstad district in Stockholm, Sweden, Freiburg, Germany, BedZED in Hackbridge, Sutton England, a suburb of London, [27] and Serenbe near Atlanta, Georgia in the US.
A suburb in western Sydney, Australia, Newington, was the home to the athletes of the 2000 Summer Olympics and 2000 Summer Paralympics. It was built on a brownfield site, and it was developed by Mirvac Lend Lease Village Consortium from 1997. Redevelopment of the village was completed in 1999, but further development is still occurring. After the Games, Newington stimulated the Australian market for green products, and it became a solar village housing approximately 5,000 people. Unfortunately, the development failed to build neighborhood centers with walk-to services, which perpetuates automobile dependence. Furthermore, Newington does not provide any affordable housing.
Key Sustainable Urbanism Thresholds:
Dongtan is a development in Eastern Chongming Island, which is roughly a one-hour trip from downtown Shanghai. It was once planned as “the world’s first eco-city,” attempting to become an energy self-sufficient, carbon-neutral, and mostly car-free eco-city housing 500,000 residents. The first phase of the development is supposed to complete by 2010, and entire development by 2050, but the Dongtan project has been delayed indefinitely due to financial issues, among other things. [29]
Key sustainable urbanism thresholds:
Upton is part of the southwest district of Northampton, England, lying between the existing town edge and the motorway. Originally farming land, Upton was developed by English Partnerships, the national regeneration agency for England, with high standards of building and design codes. The planning outline started in 1997, and the sites were planned to be completed by 2011. [30]
Key sustainable urbanism thresholds:
Transition Town movement works to promote citizen based resilience to transition to a low carbon future. [31]
Eco-City Builders holds a bi-annual conference on sustainable urbanism and promotes high performance planning and urban design practices. [32]
The IGLUS Project at EPFL is a global action research network which is aimed at improving performance of cities in the areas of efficiency, resilience and sustainability by promoting more innovative governance approaches in urban infrastructure systems. [33]
The Eco Cities Project at the University of Manchester (UK) is a research organization developing and validating sustainable urbanism practices. [34]
Biophilic Cities Network. [35]
The Institute for Sustainable Cities (New York City) works with the City of New York and residents to promote sustainable urbanism practices and policies. [36]
International Council for Local Environmental Initiatives (ICLEI) supports policy, good governance, and local governmental practices to improve sustainability and resilience. They are working on four specific sustainable urbanism initiatives: (a) Resilient Communities and Cities, (b) Just and Peaceful Communities, (c) Viable Local Economies, and (d) Eco-efficient Cities. [37]
The United Nations Habitat promotes sustainable urbanism practices around the globe to localize Agenda 21 with the UNEP. The Sustainable Cities Programme was established in 1990 as a joint UN-HABITAT/UNEP agency. [38]
The Stockholm Resilience Center promotes practices to allow cities and places to adapt to climate change and resource depletion through sustainability practices. [39]
There are professionals who are concerned that the use "Sustainable urbanism" as a label risks debasing the term "sustainable", with developments being labeled as examples of "Sustainable Urbanism", which, while substantially better than much modern development, are not truly sustainable according to the Brundtland definition of sustainability, taken from the landmark 1987 United Nations Report on Environment and Development titled Our Common Future: Report of the World Commission on Environment and Development. [43]
Transport:
Infrastructure is the set of facilities and systems that serve a country, city, or other area, and encompasses the services and facilities necessary for its economy, households and firms to function. Infrastructure is composed of public and private physical structures such as roads, railways, bridges, airports, public transit systems, tunnels, water supply, sewers, electrical grids, and telecommunications. In general, infrastructure has been defined as "the physical components of interrelated systems providing commodities and services essential to enable, sustain, or enhance societal living conditions" and maintain the surrounding environment.
Green building refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planning to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the contractor, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort. Green building also refers to saving resources to the maximum extent, including energy saving, land saving, water saving, material saving, etc., during the whole life cycle of the building, protecting the environment and reducing pollution, providing people with healthy, comfortable and efficient use of space, and being in harmony with nature. Buildings that live in harmony; green building technology focuses on low consumption, high efficiency, economy, environmental protection, integration and optimization.’
Sustainable urban infrastructure expands on the concept of urban infrastructure by adding the sustainability element with the expectation of improved and more resilient urban development. In the construction and physical and organizational structures that enable cities to function, sustainability also aims to meet the needs of the present generation without compromising the capabilities of the future generations.
Dongtan was a planned development described as an eco-city on the island of Chongming in Shanghai, China that was never built. Design began in 2005, and by 2010 the development had stalled. Adjacent to booming Shanghai, designers claimed Dongtan would be the world's first truly sustainable new urban development. Dongtan was presented at the United Nations World Urban Forum by China as an example of a purpose-built eco-city.
Green development is a real estate development concept that considers social and environmental impacts of development. It is defined by three sub-categories: environmental responsiveness, resource efficiency, and community and cultural sensitivity. Environmental responsiveness respects the intrinsic value of nature, and minimizes damage to an ecosystem. Resource efficiency refers to the use of fewer resources to conserve energy and the environment. Community and cultural sensitivity recognizes the unique cultural values that each community hosts and considers them in real estate development, unlike more discernable signs of sustainability, like solar energy,. Green development manifests itself in various forms, however it is generally based on solution multipliers: features of a project that provide additional benefits, which ultimately reduce the projects' environmental impacts.
The Center for Neighborhood Technology (CNT) is a non-profit organization, headquartered in Chicago, Illinois, which is committed to sustainable development and urban communities.
Environmental planning is the process of facilitating decision making to carry out land development with the consideration given to the natural environment, social, political, economic and governance factors and provides a holistic framework to achieve sustainable outcomes. A major goal of environmental planning is to create sustainable communities, which aim to conserve and protect undeveloped land.
A sustainable city, eco-city, or green city is a city designed with consideration for the social, economic, and environmental impact, as well as a resilient habitat for existing populations. This is done in a way that does not compromise the ability of future generations to experience the same. The UN Sustainable Development Goal 11 defines sustainable cities as those that are dedicated to achieving green sustainability, social sustainability and economic sustainability. In accordance with the UN Sustainable Development Goal 11, a sustainable city is defined as one that is dedicated to achieving green, social, and economic sustainability. They are committed to this objective by facilitating opportunities for all through a design that prioritizes inclusivity as well as maintaining a sustainable economic growth. Furthermore, the objective is to minimize the inputs of energy, water, and food, and to drastically reduce waste, as well as the outputs of heat, air pollution. Richard Register, a visual artist, first coined the term ecocity in his 1987 book Ecocity Berkeley: Building Cities for a Healthy Future, where he offers innovative city planning solutions that would work anywhere. Other leading figures who envisioned sustainable cities are architect Paul F Downton, who later founded the company Ecopolis Pty Ltd, as well as authors Timothy Beatley and Steffen Lehmann, who have written extensively on the subject. The field of industrial ecology is sometimes used in planning these cities.
Green infrastructure or blue-green infrastructure refers to a network that provides the “ingredients” for solving urban and climatic challenges by building with nature. The main components of this approach include stormwater management, climate adaptation, the reduction of heat stress, increasing biodiversity, food production, better air quality, sustainable energy production, clean water, and healthy soils, as well as more anthropocentric functions, such as increased quality of life through recreation and the provision of shade and shelter in and around towns and cities. Green infrastructure also serves to provide an ecological framework for social, economic, and environmental health of the surroundings. More recently scholars and activists have also called for green infrastructure that promotes social inclusion and equity rather than reinforcing pre-existing structures of unequal access to nature-based services.
Masdar City is an urban community in Abu Dhabi, the capital of the United Arab Emirates. It was built by Masdar, a subsidiary of the state-owned Mubadala Investment Company, with the majority of seed capital provided by the Government of Abu Dhabi.
A zero-carbon city is a goal of city planners that can be variously defined. In a narrower sense of energy production and use, a zero-carbon city is one that generates as much or more carbon-free sustainable energy as it uses. In a broader sense of managing greenhouse gas emissions, a zero-carbon city is one that reduces its carbon footprint to a minimum by using renewable energy sources; reducing all types of carbon emissions through efficient urban design, technology use and lifestyle changes; and balancing any remaining emissions through carbon sequestration. Since the supply chains of a city stretch far beyond its borders, Princeton University's High Meadows Environmental Institute suggests using a transboundary definition of a net-zero carbon city as "one that has net-zero carbon infrastructure and food provisioning systems".
Land recycling is the reuse of abandoned, vacant, or underused properties for redevelopment or repurposing.
Dr Timothy Beatley is an internationally recognized sustainable city researcher and author. His writings have focused on creative strategies cities can use to reduce their ecological footprints and become more livable and equitable places in the process. Beatley coined the term green urbanism and uses it frequently in his writings to describe the planning process used to create a sustainable city.
Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfort of occupants in a building. Sustainable design seeks to reduce negative impacts on the environment, the health and well-being of building occupants, thereby improving building performance. The basic objectives of sustainability are to reduce the consumption of non-renewable resources, minimize waste, and create healthy, productive environments.
A green home is a type of house designed to be environmentally sustainable. Green homes focus on the efficient use of "energy, water, and building materials". A green home may use sustainably sourced, environmentally friendly, and/or recycled building materials. This includes materials like reclaimed wood, recycled metal, and low VOC paints. Additionally, green homes often prioritize energy efficiency by incorporating features, such as high-performance insulation, energy-efficient appliances, and smart home technologies that monitor and optimize energy usage. Water conservation is another important aspect, with green homes often featuring water-saving fixtures, rainwater harvesting systems, and grey water recycling systems to reduce water waste. It may include sustainable energy sources such as solar or geothermal, and be sited to take maximum advantage of natural features such as sunlight and tree cover to improve energy efficiency.
LEED for Neighborhood Development (LEED-ND), where "LEED" stands for Leadership in Energy and Environmental Design, is a United States–based rating system that integrates the principles of smart growth, urbanism, and green building into a national system for neighborhood design. LEED certification provides independent, third-party verification that a development's location and design meet accepted high levels of environmentally responsible, sustainable development.
Green urbanism has been defined as the practice of creating communities beneficial to humans and the environment. According to Timothy Beatley, it is an attempt to shape more sustainable places, communities and lifestyles, and consume less of the world's resources. Urban areas are able to lay the groundwork of how environmentally integrated and sustainable city planning can both provide and improve environmental benefits on the local, national, and international levels. Green urbanism is interdisciplinary, combining the collaboration of landscape architects, engineers, urban planners, ecologists, transport planners, physicists, psychologists, sociologists, economists and other specialists in addition to architects and urban designers.
Biophilic design is a concept used within the building industry to increase occupant connectivity to the natural environment through the use of direct nature, indirect nature, and space and place conditions. Used at both the building and city-scale, it is argued that Biophilic design offers health, environmental, and economic benefits for building occupants and urban environments, with few drawbacks. Although its name was coined in recent history, indicators of biophilic design have been seen in architecture from as far back as the Hanging Gardens of Babylon. While the design features that characterize Biophilic design were all traceable in preceding sustainable design guidelines, the new term sparked wider interest and lent academic credibility.
Green building certification systems are a set of rating systems and tools that are used to assess a building or a construction project's performance from a sustainability and environmental perspective. Such ratings aim to improve the overall quality of buildings and infrastructures, integrate a life cycle approach in its design and construction, and promote the fulfillment of the United Nations Sustainable Development Goals by the construction industry. Buildings that have been assessed and are deemed to meet a certain level of performance and quality, receive a certificate proving this achievement.
Sustainable architecture is a type of architecture with the goal of limiting the environmental impact of a building when compared to regular architecture. Sustainable architecture has become a crucial aspect of modern urban development, with Barcelona at the forefront of this movement. Barcelona, a city already known for its unique architecture, has numerous innovative architectural projects combining cutting-edge design with eco-friendly technologies and materials. Famous architects such as Antoni Gaudí and Enric Ruiz-Geli have used sustainable techniques in their designs, causing Barcelona to be considered sustainably advanced. Barcelona is also working to expand green spaces, public transportation, and use more sustainable energy sources. From residential buildings to public spaces and cultural institutions, Barcelona's sustainable architecture has become a model for sustainable urban development for the rest of the world.