Butonitazene

Last updated
Butonitazene
Butonitazine.svg
Legal status
Legal status
Identifiers
  • 2-[(4-Butoxyphenyl)methyl]-5-nitro-1-(2-pyrrolidin-1-ylethyl)benzimidazole
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C24H32N4O3
Molar mass 424.545 g·mol−1
3D model (JSmol)
  • CCCCOC1=CC=C(C=C1)CC2=NC3=C(N2CCN(CC)CC)C=CC(=C3)[N+](=O)[O-]
  • InChI=1S/C24H32N4O3/c1-4-7-16-31-21-11-8-19(9-12-21)17-24-25-22-18-20(28(29)30)10-13-23(22)27(24)15-14-26(5-2)6-3/h8-13,18H,4-7,14-17H2,1-3H3
  • Key:UZZPOLCDCVWLAZ-UHFFFAOYSA-N

Butonitazene is a benzimidazole derivative with opioid effects, which has been sold over the internet as a designer drug. It has relatively low potency compared to many related compounds, and has generally been encountered as a component of mixtures with other substances rather than in its pure form. However, it is still several times the potency of morphine and has been implicated in several cases of drug overdose. [2] [3] [4] Butonitazene is a Schedule I drug in the US, along with several related compounds. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Etonitazene</span> Chemical compound

Etonitazene, also known as EA-4941 or CS-4640, is a benzimidazole opioid, first reported in 1957, that has been shown to have approximately 1,000 to 1,500 times the potency of morphine in animals.

<span class="mw-page-title-main">Furanylfentanyl</span> Opioid analgesic

Furanylfentanyl (Fu-F) is an opioid analgesic that is an analog of fentanyl and has been sold as a designer drug. It has an ED50 value of 0.02 mg/kg in mice. This makes it approximately one fifth as potent as fentanyl.

<span class="mw-page-title-main">Metonitazene</span> Chemical compound (analgesic drug)

Metonitazene is an analgesic compound related to etonitazene, which was first reported in 1957, and has been shown to have approximately 1000 times the potency of morphine by central routes of administration, but if used orally it has been shown to have approximately 10 times the potency of morphine.

<span class="mw-page-title-main">Isotonitazene</span> Chemical compound

Isotonitazene is a benzimidazole-derived opioid analgesic drug related to etonitazene, which has been sold as a designer drug. It has only around half the potency of etonitazene in animal studies, but it is likely even less potent in humans as was seen with etonitazene. Isotonitazene was fully characterized in November 2019 in a paper where the authors performed a full analytical structure elucidation in addition to determination of the potency at the μ-opioid receptor using a biological functional assay in vitro. While isotonitazene was not compared directly to morphine in this assay, it was found to be around 2.5 times more potent than hydromorphone and slightly more potent than fentanyl.

<span class="mw-page-title-main">Brorphine</span> Chemical compound

Brorphine is a piperidine-based opioid analgesic compound. Brorphine was originally discovered in a 2018 paper investigating functionally biased opioid compounds, with the intention of finding safer analgesics that produce less respiratory depression than typical opioids. Brorphine was originally reported to be highly biased, with an EC50 of 4.8nM for GTPγS binding and 182nM for β-arrestin recruitment, however a more recent study found no significant bias for any of the compounds tested, including brorphine. Its safety profile in any animal model has never been established. Despite the lack of safety information on the compound, brorphine has been sold as a designer drug since mid-2019, initially being identified in the US Midwest, though it has since been found in 2020 in Belgium. It is related in chemical structure to compounds such as benzylfentanyl and bezitramide, though it is sufficiently structurally distinct to fall outside the formal definition of a "fentanyl analogue" in jurisdictions such as the US and New Zealand which have Markush structure controls over this family of drugs.

<span class="mw-page-title-main">Etodesnitazene</span> Chemical compound

Etodesnitazene is a benzimidazole derived opioid analgesic drug, which was originally developed in the late 1950s alongside etonitazene and a range of related derivatives. It is many times less potent than etonitazene itself, but still 70x more potent than morphine in animal studies. Corresponding analogues where the N,N-diethyl group is replaced by piperidine or pyrrolidine rings also retain significant activity. Etodesnitazene has been sold as a designer drug, first being identified in both Poland and Finland in March 2020.

<span class="mw-page-title-main">Etonitazepyne</span> Chemical compound

Etonitazepyne is a benzimidazole derivative with potent opioid effects which has been sold over the internet as a designer drug and linked to numerous cases of overdose.

<span class="mw-page-title-main">Etonitazepipne</span> Benzimidazole derivative

Etonitazepipne is a benzimidazole derivative with opioid effects around 100 times more potent than morphine, which has been sold over the internet as a designer drug.

<span class="mw-page-title-main">Metodesnitazene</span> Chemical compound

Metodesnitazene is a benzimidazole derivative with opioid effects, though unlike related compounds such as metonitazene and etodesnitazene which are quite potent, metodesnitazene is only around the same potency as morphine in animal studies. It is illegal in both the US and UK.

<span class="mw-page-title-main">Protonitazene</span> Chemical compound

Protonitazene is a benzimidazole derivative with potent opioid effects which has been sold over the internet as a designer drug since 2019, and has been identified in various European countries, as well as Canada, the US and Australia. It has been linked to numerous cases of drug overdose, and is a Schedule I drug in the US.

<span class="mw-page-title-main">N-Desethylisotonitazene</span> Chemical compound

N-Desethylisotonitazene (norisotonitazene) is a benzimidazole opioid with potent analgesic effects which has been sold as a designer drug. It was first identified in 2023 as an active metabolite of the closely related compound isotonitazene, and was found to have similar potency. It is one of the strongest benzimidazole opioids discovered, with an analgesic strength 20 times stronger than fentanyl.

<span class="mw-page-title-main">Etomethazene</span> Chemical compound

Etomethazene (5-methyldesnitroetonitazene, 5-methyl etodesnitazene, Eto) is a benzimidazole derivative with opioid effects which has been sold as a designer drug over the internet since 2022, first being definitively identified in Sweden in January 2023. It is an analogue of etonitazene where the nitro (NO2) group has been replaced by a methyl (CH3) group. While formal studies into its pharmacology have yet to be carried out, it showed far less potency than etonitazene itself. Etomethazene has an analgesic potency around 20 times that of morphine with a relatively short duration of about 120 min.

<i>N</i>-Desethyletonitazene Chemical compound

N-Desethyletonitazene is a benzimidazole derivative with potent opioid effects which has been sold as a designer drug. It is better known as an active metabolite of the related compound etonitazene, but has similar activity to the parent compound and has sometimes appeared as a drug of abuse in its own right, first being identified in New Zealand in 2024.

<span class="mw-page-title-main">Etonitazene 5-acetyl analogue</span> Chemical compound

Etonitazene 5-acetyl analogue (Etoacetazene, 5-acetyldesnitroetonitazene) is a benzimidazole derivative with opioid effects, first developed in the 1950s as part of the research that led to better-known compounds such as etonitazene. It is an analogue of etonitazene where the 5-nitro (NO2) group has been replaced by an acetyl (COCH3) group. It is described as having "reduced but still significant" potency compared to etonitazene itself. This compound was also tested as part of a series of cannabinoid receptor 2 agonists, and was found to be active though with fairly low potency of 960 nM at CB2, and negligible activity at CB1.

<span class="mw-page-title-main">Etonitazene 5-cyano analogue</span> Chemical compound

Etonitazene 5-cyano analogue (Etocyanazene, 5-cyanodesnitroetonitazene) is a benzimidazole derivative with opioid effects, first developed in the 1950s as part of the research that led to better-known compounds such as etonitazene. It is an analogue of etonitazene where the 5-nitro (NO2) group has been replaced by a nitrile (C≡N) group. It is described as having "reduced but still significant" potency compared to etonitazene itself. It was made illegal in Germany in July 2021.

<span class="mw-page-title-main">Etoetonitazene</span> Chemical compound

Etoetonitazene is a benzimidazole derivative with opioid effects, first developed in the 1950s as part of the research that led to better-known compounds such as etonitazene. It is an analogue of etonitazene where the ethoxy sidechain has been extended to ethoxyethoxy. It is less potent than other benzimidazole class opioids, but is still a potent mu opioid receptor agonist with around 50x the potency of morphine, and has been sold as a designer drug since around 2022.

<span class="mw-page-title-main">Flunitazene</span> Designer drug with opioid effects

Flunitazene (Fluonitazene) is a benzimidazole derivative with opioid effects, first developed in the 1950s as part of the research that led to better-known compounds such as etonitazene. It is one of the least potent derivatives from this class to have appeared as a designer drug, with only around the same potency as morphine, but nevertheless has been sold since around 2020, and has been linked to numerous drug overdose cases.

<span class="mw-page-title-main">Isotonitazepyne</span> Chemical compound

Isotonitazepyne is a benzimidazole derivative with potent opioid effects, which has been sold as a designer drug over the internet. It has since been identified by the drug checking service CanTEST, in Canberra Australia, and tentatively in New Zealand. It's in vitro potency is approximately 1000 times that of morphine. It is specifically listed as an illegal drug in the US state of Virginia.

<span class="mw-page-title-main">Secbutonitazene</span> Chemical compound

Secbutonitazene is a benzimidazole derivative which has been sold as a designer drug. It is presumed to have opioid effects similar to related compounds, though its pharmacology has not yet been studied.

References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-15.
  2. Schumann JL, Syrjanen R, Alford K, Mashetty S, Castle JW, Rotella J, et al. (August 2022). "Intoxications in an Australian Emergency Department Involving 'Nitazene' Benzylbenzimidazole Synthetic Opioids (Etodesnitazene, Butonitazene and Protonitazene)". Journal of Analytical Toxicology. 47 (1): e6–e9. doi:10.1093/jat/bkac062. PMID   35983900.
  3. Montanari E, Madeo G, Pichini S, Busardò FP, Carlier J (August 2022). "Acute Intoxications and Fatalities Associated With Benzimidazole Opioid (Nitazene Analog) Use: A Systematic Review". Therapeutic Drug Monitoring. 44 (4): 494–510. doi:10.1097/FTD.0000000000000970. PMID   35149665. S2CID   246776288.
  4. Walton SE, Krotulski AJ, Logan BK (March 2022). "A Forward-Thinking Approach to Addressing the New Synthetic Opioid 2-Benzylbenzimidazole Nitazene Analogs by Liquid Chromatography-Tandem Quadrupole Mass Spectrometry (LC-QQQ-MS)". Journal of Analytical Toxicology. 46 (3): 221–231. doi:10.1093/jat/bkab117. PMC   8935987 . PMID   34792157.
  5. "21 CFR Part 1308. [Docket No. DEA–900] Schedules of Controlled Substances: Temporary Placement of Butonitazene, Etodesnitazene, Flunitazene, Metodesnitazene, Metonitazene, N-Pyrrolidino etonitazene, and Protonitazene in Schedule I." (PDF). Federal Register. 87 (70). Drug Enforcement Administration: 21556. 12 April 2022.