Copper(I) selenide

Last updated
Copper(I) selenide
Names
IUPAC name
Copper(I) selenide
Other names
Cuprous selenide, dicopper selenide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.039.799 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 243-796-7
PubChem CID
UNII
  • InChI=1S/2Cu.Se
    Key: KTLOQXXVQYUCJU-UHFFFAOYSA-N
  • [Cu].[Cu].[Se]
Properties
Cu2Se
Molar mass 206.063 g·mol−1
AppearanceDark blue, black
Density 6.84 g/mL [1]
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H201, H331, H373, H410
P260, P261, P264, P270, P271, P273, P301+P310, P304+P340, P311, P314, P321, P330, P391, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Copper(I) selenide is an inorganic binary compound between copper and selenium, with the chemical formula Cu2Se. [2]

Contents

Properties

Stoichiometric copper selenide is a zero bandgap material with metal-like behavior. [3] Copper-deficient Cu2-xSe (non-stoichiometric) is an intrinsic p-type semiconductor with direct and indirect bandgap energies in the range of 2.1–2.3 eV and 1.2–1.4 eV, respectively. [4] It is frequently grown as nanoparticles or other nanostructures. [5] [6] [7]

Uses

Copper(I) selenide is produced in situ to form a protective black coating on iron or steel parts in some cold-bluing processes. [8] Bluing solutions that operate in this manner will typically be labeled as containing selenous acid or selenium dioxide. [9] [10] It has also been investigated for use in the treatment of colon cancer. [6]

Natural occurrences

Copper selenides are the most common selenium minerals. Cu2Se occurs as two polymorphs, berzelianite [11] (isometric, more common) and bellidoite (tetragonal). There are more natural Cu selenides to date, including umangite, Cu3Se2 and athabascaite, Cu5Se4. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Quantum dot</span> Nano-scale semiconductor particles

Quantum dots (QDs) or semiconductor nanocrystals are semiconductor particles a few nanometres in size with optical and electronic properties that differ from those of larger particles via quantum mechanical effects. They are a central topic in nanotechnology and materials science. When a quantum dot is illuminated by UV light, an electron in the quantum dot can be excited to a state of higher energy. In the case of a semiconducting quantum dot, this process corresponds to the transition of an electron from the valence band to the conduction band. The excited electron can drop back into the valence band releasing its energy as light. This light emission (photoluminescence) is illustrated in the figure on the right. The color of that light depends on the energy difference between the discrete energy levels of the quantum dot in the conduction band and the valence band.

A selenide is a chemical compound containing a selenium with oxidation number of −2. Similar to sulfide, selenides occur both as inorganic compounds and as organic derivatives, which are called organoselenium compound.

<span class="mw-page-title-main">Cadmium selenide</span> Chemical compound

Cadmium selenide is an inorganic compound with the formula CdSe. It is a black to red-black solid that is classified as a II-VI semiconductor of the n-type. It is a pigment, but applications are declining because of environmental concerns.

<span class="mw-page-title-main">Infrared detector</span> Detector that reacts to infrared (IR) radiation

An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors).

<span class="mw-page-title-main">Copper indium gallium selenide</span> Chemical compound

Copper indium gallium (di)selenide (CIGS) is a I-III-VI2 semiconductor material composed of copper, indium, gallium, and selenium. The material is a solid solution of copper indium selenide (often abbreviated "CIS") and copper gallium selenide. It has a chemical formula of CuIn1−xGaxSe2, where the value of x can vary from 0 (pure copper indium selenide) to 1 (pure copper gallium selenide). CIGS is a tetrahedrally bonded semiconductor, with the chalcopyrite crystal structure, and a bandgap varying continuously with x from about 1.0 eV (for copper indium selenide) to about 1.7 eV (for copper gallium selenide).

Lead selenide (PbSe), or lead(II) selenide, a selenide of lead, is a semiconductor material. It forms cubic crystals of the NaCl structure; it has a direct bandgap of 0.27 eV at room temperature. A grey solid, it is used for manufacture of infrared detectors for thermal imaging. The mineral clausthalite is a naturally occurring lead selenide.

<span class="mw-page-title-main">Mercury telluride</span> Topologically insulating chemical compound

Mercury telluride (HgTe) is a binary chemical compound of mercury and tellurium. It is a semi-metal related to the II-VI group of semiconductor materials. Alternative names are mercuric telluride and mercury(II) telluride.

<span class="mw-page-title-main">Tin selenide</span> Chemical compound

Tin selenide, also known as stannous selenide, is an inorganic compound with the formula SnSe. Tin(II) selenide is a typical layered metal chalcogenide as it includes a group 16 anion (Se2−) and an electropositive element (Sn2+), and is arranged in a layered structure. Tin(II) selenide is a narrow band-gap (IV-VI) semiconductor structurally analogous to black phosphorus. It has received considerable interest for applications including low-cost photovoltaics, and memory-switching devices.

<span class="mw-page-title-main">Zinc antimonide</span> Chemical compound

Zinc antimonide (ZnSb), (Zn3Sb2), (Zn4Sb3) is an inorganic chemical compound. The Zn-Sb system contains six intermetallics. Like indium antimonide, aluminium antimonide, and gallium antimonide, it is a semiconducting intermetallic compound. It is used in transistors, infrared detectors and thermal imagers, as well as magnetoresistive devices.

<span class="mw-page-title-main">Selenium compounds</span> Chemical compounds containing selenium

Selenium compounds are compounds containing the element selenium (Se). Among these compounds, selenium has various oxidation states, the most common ones being −2, +4, and +6. Selenium compounds exist in nature in the form of various minerals, such as clausthalite, guanajuatite, tiemannite, crookesite etc., and can also coexist with sulfide minerals such as pyrite and chalcopyrite. For many mammals, selenium compounds are essential. For example, selenomethionine and selenocysteine are selenium-containing amino acids present in the human body. Selenomethionine participates in the synthesis of selenoproteins. The reduction potential and pKa (5.47) of selenocysteine are lower than those of cysteine, making some proteins have antioxidant activity. Selenium compounds have important applications in semiconductors, glass and ceramic industries, medicine, metallurgy and other fields.

<span class="mw-page-title-main">Quantum dot solar cell</span> Type of solar cell based on quantum dot devices

A quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s). This property makes quantum dots attractive for multi-junction solar cells, where a variety of materials are used to improve efficiency by harvesting multiple portions of the solar spectrum.

Indium(III) selenide is a compound of indium and selenium. It has potential for use in photovoltaic devices and has been the subject of extensive research. The two most common phases, α and β, have a layered structure, while γ has a "defect wurtzite structure." In all, five polymorphs are known: α, β, γ, δ, κ. The α-β phase transition is accompanied by a change in electrical conductivity. The band gap of γ-In2Se3 is approximately 1.9 eV.

<span class="mw-page-title-main">Gallium(II) selenide</span> Chemical compound

Gallium(II) selenide (GaSe) is a chemical compound. It has a hexagonal layer structure, similar to that of GaS. It is a photoconductor, a second harmonic generation crystal in nonlinear optics, and has been used as a far-infrared conversion material at 14–31 THz and above.

<span class="mw-page-title-main">Copper indium gallium selenide solar cell</span> Type of solar cell based on the material copper indium gallium selenide

A copper indium gallium selenide solar cell is a thin-film solar cell used to convert sunlight into electric power. It is manufactured by depositing a thin layer of copper indium gallium selenide solid solution on glass or plastic backing, along with electrodes on the front and back to collect current. Because the material has a high absorption coefficient and strongly absorbs sunlight, a much thinner film is required than of other semiconductor materials.

<span class="mw-page-title-main">Athabascaite</span> Selenide mineral

Athabascaite is a member of the copper selenide minerals, and forms with other copper selenides. It was first discovered by S. Kaiman in 1949 while he was researching radioactive materials around Lake Athabasca. Kaiman was conducting research near Uranium City, Saskatchewan where mass amounts of uranium mines were present.

Bismuth selenide is a gray compound of bismuth and selenium also known as bismuth(III) selenide.

<span class="mw-page-title-main">Solar Frontier</span>

Solar Frontier Kabushiki Kaisha is a Japanese photovoltaic company that develops and manufactures thin film solar cells using CIGS technology. It is a fully owned subsidiary of Showa Shell Sekiyu and located in Minato, Tokyo, Japan. The company was founded in 2006 as Showa Shell Solar, and renamed Solar Frontier in April 2010.

<span class="mw-page-title-main">I-III-VI semiconductors</span> Solid semiconducting materials

I-III-VI2 semiconductors are solid semiconducting materials that contain three or more chemical elements belonging to groups I, III and VI (IUPAC groups 1/11, 13 and 16) of the periodic table. They usually involve two metals and one chalcogen. Some of these materials have a direct bandgap, Eg, of approximately 1.5 eV, which makes them efficient absorbers of sunlight and thus potential solar cell materials. A fourth element is often added to a I-III-VI2 material to tune the bandgap for maximum solar cell efficiency. A representative example is copper indium gallium selenide (CuInxGa(1–x)Se2, Eg = 1.7–1.0 eV for x = 0–1), which is used in copper indium gallium selenide solar cells.

Indium(II) selenide (InSe) is an inorganic compound composed of indium and selenium. It is a III-VI layered semiconductor. The solid has a structure consisting of two-dimensional layers bonded together only by van der Waals forces. Each layer has the atoms in the order Se-In-In-Se.

Copper(II) selenide is an inorganic binary compound between copper and selenium, with the chemical formula CuSe.

References

  1. "Copper (I) selenide". Sigma-Aldrich. Retrieved 12 April 2016.
  2. Lanling, Zhao; Wang, Xiaolin; F. Yun, Frank (5 February 2015). "The Effects of Te2− and I− Substitutions on the Electronic Structures, Thermoelectric Performance, and Hardness in Melt-Quenched Highly Dense Cu2-xSe". Advanced Electronic Materials. 1 (3). doi:10.1002/aelm.201400015. S2CID   137099918 . Retrieved 28 June 2021.
  3. Tyagi, Kriti; Gahtori, Bhasker (June 2015). "Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide". Journal of Physics and Chemistry of Solids. 81: 100–105. Bibcode:2015JPCS...81..100T. doi:10.1016/j.jpcs.2015.01.018.
  4. C. Singh, Subhash (September 2018). "Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes". Nano Energy. 51: 774–785. Bibcode:2018NEne...51..774S. doi:10.1016/j.nanoen.2018.07.020. PMC   6100260 . PMID   30177955.
  5. Xiao, Guanjun; Ning, Jiajia; Liu, Zhaoyang; Sui, Yongming; Wang, Yingnan; Dong, Qingfeng; Tian, Wenjing; Liu, Bingbing; Zou, Guangtian (2012). "Solution synthesis of copper selenide nanocrystals and their electrical transport properties". CrystEngComm. 14 (6): 2139. doi:10.1039/c2ce06270d.
  6. 1 2 Hessel, Colin M.; Pattani, Varun P.; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A. (2011-05-10). "Copper Selenide Nanocrystals for Photothermal Therapy". Nano Letters. 11 (6): 2560–2566. Bibcode:2011NanoL..11.2560H. doi:10.1021/nl201400z. PMC   3111000 . PMID   21553924.
  7. Patidar, D.; Saxena, N. S. (2012-03-15). "Characterization of single phase copper selenide nanoparticles and their growth mechanism". Journal of Crystal Growth. 343 (1): 68–72. Bibcode:2012JCrGr.343...68P. doi:10.1016/j.jcrysgro.2012.01.026.
  8. "Room Temperature Black Oxide". Archived from the original on 28 April 2016. Retrieved 12 April 2016.
  9. "Insta-Blak 333 MSDS" (PDF). Archived from the original (PDF) on 23 April 2016. Retrieved 12 April 2016.
  10. "Oxpho-Blue MSDS" (PDF). Retrieved 12 April 2016.
  11. Harris, D. C.; Cabri, L. J.; Murray, E. J. (1970). "An occurrence of a sulphur-bearing berzelianite" (PDF). The Canadian Mineralogist: 737–740.
  12. Harris, D. C.; Cabri, L. J.; Kaiman, S. (1970). "Athabascaite: A New Copper Selenide Mineral from Martin Lake, Saskatchewan". The Canadian Mineralogist. 10 (2): 207–215.