Desert tortoise

Last updated

Desert tortoise
Gopherus agassizii.jpg
Agassiz's desert tortoise, G. agassizii
CITES Appendix II (CITES) [2]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Testudines
Suborder: Cryptodira
Superfamily: Testudinoidea
Family: Testudinidae
Genus: Gopherus
Species:
G. agassizii
Binomial name
Gopherus agassizii
(Cooper, 1863)
Synonyms [3]
  • Xerobates agassiziiCooper, 1863
  • Testudo agassiziiCope, 1875
  • Xerobates agassizi [sic] Garman, 1884(ex errore)
  • Gopherus agassiziiStejneger, 1893
  • Testudo aggassizi [sic] Ditmars, 1907(ex errore)
  • Testudo agassizi— Ditmars, 1907
  • Gopherus agassiziV. Tanner, 1927
  • Testudo agasizzi [sic] Kallert, 1927(ex errore)
  • Gopherus polyphemus agassiziiMertens & Wermuth, 1955
  • Gopherus agassiz [sic] Malkin, 1962(ex errore)
  • Gopherus polyphemus agassizi— Frair, 1964
  • Geochelone agassizii— Honegger, 1980
  • Scaptochelys agassizii— Bramble, 1982
  • Scaptochelys agassizi— Morafka, Aguirre & Murphy, 1994

The desert tortoise (Gopherus agassizii) is a species of tortoise in the family Testudinidae. The species is native to the Mojave and Sonoran Deserts of the southwestern United States and northwestern Mexico, and to the Sinaloan thornscrub of northwestern Mexico. [4] G. agassizii is distributed in western Arizona, southeastern California, southern Nevada, and southwestern Utah. [4] The specific name agassizii is in honor of Swiss-American zoologist Jean Louis Rodolphe Agassiz. [5] The desert tortoise is the official state reptile in California and Nevada. [6]

Contents

The desert tortoise lives about 50 to 80 years; [7] it grows slowly and generally has a low reproductive rate. It spends most of its time in burrows, rock shelters, and pallets to regulate body temperature and reduce water loss. It is most active after seasonal rains and is inactive during most of the year. This inactivity helps reduce water loss during hot periods, whereas winter brumation facilitates survival during freezing temperatures and low food availability. Desert tortoises can tolerate water, salt, and energy imbalances on a daily basis, which increases their lifespans. [8]

Taxonomy

In 2011, on the basis of DNA, geographic, and behavioral differences between desert tortoises east and west of the Colorado River, it was decided that two species of desert tortoises exist: Agassiz's desert tortoise (Gopherus agassizii) and Morafka's desert tortoise (Gopherus morafkai). [9] The new species name is in honor of the late Professor David Joseph Morafka of California State University, Dominguez Hills, in recognition of his many contributions to the study and conservation of Gopherus. G. morafkai occurs east of the Colorado River in Arizona, as well as in the states of Sonora and Sinaloa, Mexico. The acceptance of G. morafkai reduced the range of G. agassizii by about 70% [10] In 2016, based on a large-scale genetic analysis, ecological and morphological data, researchers proposed a split between the Sonoran and Sinaloan populations. This southernmost member of the Gopherus genus was named G. evgoodei, Goode's thornscrub tortoise. [11]

Description

These tortoises may attain a length of 25 to 36 cm (10 to 14 in), [12] with males being slightly larger than females. A male tortoise has a longer gular horn than a female, his plastron (lower shell) is concave compared to a female tortoise. Males have larger tails than females do. Their shells are high-domed, and greenish-tan to dark brown in color. The high domes of their shells allow for space for their lungs, which helps them maintain thermoregulation, also known as maintaining internal temperature. [13] Desert tortoises can grow to 10–15 cm (4–6 in) in height. They can range in weight from 8 to 15 pounds, or 3.5 kg to 7 kg. [14] The front limbs have sharp, claw-like scales and are flattened for digging. Back legs are skinnier and very long.[ citation needed ]

Habitat

Desert tortoises can live in areas with ground temperatures exceeding 60 °C (140 °F) [15] because of their ability to dig burrows and escape the heat. At least 95% of their lives are spent in burrows. There, they are also protected from freezing winter weather while dormant, from November through February or March. Within their burrows, these tortoises create a subterranean environment that can be beneficial to other reptiles, mammals, birds, and invertebrates.

Scientists have divided the desert tortoise into three species: Agassiz's and Morafka's desert tortoises, [16] with a third species, Goode's thornscrub tortoise, in northern Sinaloan and southern Sonora, Mexico. [11] An isolated population of Agassiz's desert tortoise occurs in the Black Mountains of northwestern Arizona. [16] They live in a different type of habitat, from sandy flats to rocky foothills. They have a strong proclivity in the Mojave Desert for alluvial fans, washes, and canyons where more suitable soils for den construction might be found. [17] They range from near sea level to around 1,050 m (3,500 ft) in elevation. Tortoises show very strong site fidelity, and have well-established home ranges where they know where their food, water, and mineral resources are.

Desert tortoises inhabit elevations from below mean sea level in Death Valley to 1,600 m (5,300 ft) in Arizona, though they are most common from around 300 to 1,050 m (1,000 to 3,500 ft). Estimates of densities vary from less than 8/km2 (21/sq mi) on sites in southern California to over 500/km2 (1,300/sq mi) in the western Mojave Desert, although most estimates are less than 150/km2 (390/sq mi). The home range generally consists of 4 to 40 hectares (10 to 100 acres). In general, males have larger home ranges than females, and home range size increases with increasing resources and rainfall. [8]

Desert tortoises are sensitive to the soil type, owing to their reliance on burrows for shelter, reduction of water loss, and regulation of body temperature. The soil should crumble easily during digging and be firm enough to resist collapse. Desert tortoises prefer sandy loam soils with varying amounts of gravel and clay, and tend to avoid sands or soils with low water-holding capacity, excess salts, or low resistance to flooding. They may consume soil to maintain adequate calcium levels, and may prefer sites with higher calcium content. [8]

With the creation of off-road vehicles more humans are making their way in and out of the desert tortoises' home environment. [18]

Shelters

Desert tortoises spend most of their lives in burrows, rock shelters, and pallets to regulate body temperature and reduce water loss. Burrows are tunnels dug into soil by desert tortoises or other animals, rock shelters are spaces protected by rocks and/or boulders, and pallets are depressions in the soil. The use of the various shelter types is related to their availability and climate. The number of burrows used, the extent of repetitive use, and the occurrence of burrow sharing are variable. Males tend to occupy deeper burrows than females. Seasonal trends in burrow use are influenced by desert tortoise sex and regional variation. Desert tortoise shelter sites are often associated with plant or rock cover. Desert tortoises often lay their eggs in nests dug in sufficiently deep soil at the entrance of burrows or under shrubs. Nests are typically 8 to 25 centimetres (3 to 10 inches) deep. [8]

Shelters are important for controlling body temperature and water regulation, as they allow desert tortoises to slow their rate of heating in summer and provide protection from cold during the winter. The humidity within burrows prevents dehydration. Burrows also provide protection from predators. The availability of adequate burrow sites influences desert tortoise densities. [8]

Each desert tortoise uses about 5 to 25 burrows per year. Some burrows are used repeatedly, sometimes for several consecutive years. Desert tortoises share burrows with various mammals, reptiles, birds, and invertebrates, such as white-tailed antelope squirrels (Ammospermophilus leucurus), woodrats (Neotoma), collared peccaries (Dicolytes tajacu), burrowing owls (Athene cunicularia), Gambel's quail (Callipepla gambelii ), rattlesnakes (Crotalus spp.), Gila monsters (Heloderma suspectum), beetles, spiders, and scorpions. One burrow can host up to 23 desert tortoises – such sharing is more common for desert tortoises of opposite sexes than for desert tortoises of the same sex. [8]

Lifecycle

Reproduction

Tortoises mate in the spring and autumn. Male desert tortoises grow two large white glands around the chin area, called chin glands, that signify mating season. A male circles around female, biting her shell in the process. He then climbs upon the female and insert his penis (a white organ, usually only seen upon careful inspection during mating, as it is hidden inside the male and can only be coaxed out with sexual implication) into the cloaca of a female, which is located around the tail. The male may make grunting noises once atop a female, and may move his front legs up and down in a constant motion, as if playing a drum.[ failed verification ] [19]

Hatching baby desert tortoise Baby Desert Tortoise (16490346262).jpg
Hatching baby desert tortoise

Months later, the female lays a clutch of four to eight hard-shelled eggs, [20] which have the size and shape of ping-pong balls, usually in June or July. The eggs hatch in August or September. Wild female tortoises produce up to three clutches a year depending on the climate. Their eggs incubate from 90 to 135 days; [4] some eggs may overwinter and hatch the following spring. In a laboratory experiment, temperature influenced hatching rates and hatchling sex. Incubation temperatures from 27 to 31 °C (81 to 88 °F) resulted in hatching rates exceeding 83%, while incubation at 25 °C (77 °F) resulted in a 53% hatching rate. Incubation temperatures less than 31 °C (88 °F) resulted in all-male clutches. Average incubation time decreased from 124.7 days at 25 °C (77 °F) to 78.2 days at 31 °C (88 °F). [21]

The desert tortoise is one of the few known tortoises in existence that has been observed engaging in homosexual intercourse [22] Same-sex intercourse happens in many species, There is no one answer as to why this occurs. One possible explanation for this could be the social component of gaining and establishing dominance. [23]

Maturation

The desert tortoise grows slowly, often taking 16 years or longer to reach about 20 cm (8 in) in length. The growth rate varies with age, location, gender and precipitation. It can slow down from 12 mm/year for ages 4–8 years to about 6.0 mm/year for ages 16 to 20 years. Males and females grow at similar rates; females can grow slightly faster when young, but males grow larger than females. [8]

Desert tortoises reach their reproductive maturity at ages 15 to 20, when they become longer than 18 cm (7 in). However, it is possible for them to mature faster as 10-year-old females that are able to reproduce have been observed. [8]

Activity

Their activity depends on location, peaking in late spring for the Mojave Desert and in late summer to fall in Sonoran Desert; some populations exhibit two activity peaks during one year. Desert tortoises brumate during winters, roughly from November to February–April. Females begin brumating later and emerge earlier than males; juveniles emerge from brumation earlier than adults. [8] [24]

Temperature strongly influences desert tortoise activity level. Although desert tortoises can survive body temperatures from below freezing to over 40 °C (104 °F), most activity occurs at temperatures from 26 to 34 °C (79 to 93 °F). The influence of temperature is reflected in daily activity patterns, with desert tortoises often active late in the morning during spring and fall, early in the morning and late in the evening during the summer, and occasionally becoming active during relatively warm winter afternoons. The activity generally increases after rainfall. [8]

Although desert tortoises spend the majority of their time in shelter, movements of up to 200 m (660 ft) per day are common. The common, comparatively short-distance movements presumably represent foraging activity, traveling between burrows, and possibly mate-seeking or other social behaviors. Long-distance movements could potentially represent dispersal into new areas and/or use of peripheral portions of the home range. [8]

Lifespan

The lifespan of a desert tortoise can vary from 50 to 80 years. [7] The main causes of mortality in desert tortoises include predators, human-related causes, diseases, and environmental factors such as drought, flooding, and fire. [8]

Desert tortoise with an estimated age of 63 years. Red Rock Canyon National Conservation Area, NV Desert Tortoise at Red Rock Canyon National Conservation Area, NV.jpg
Desert tortoise with an estimated age of 63 years. Red Rock Canyon National Conservation Area, NV

The annual death rate of adults is typically a few percent, but is much higher for young desert tortoises. Only 2–5% of hatchlings are estimated to reach maturity. Estimates of survival from hatching to 1 year of age for Mojave Desert tortoises range from 47 to 51%. Survival of Mojave Desert tortoises from 1 to 4 years of age is 71–89%. [8]

Diet

Desert tortoise tds.jpg
Desert tortoise.jpg
A young desert tortoise Young desert tortoise.JPG
A young desert tortoise

The desert tortoise is an herbivore. Grasses form the bulk of its diet, but it also eats herbs, annual wildflowers, and new growth of cacti, as well as their fruit and flowers. Rocks and soil are also ingested, perhaps as a means of maintaining intestinal digestive bacteria as a source of supplementary calcium or other minerals. As with birds, stones may also function as gastroliths, enabling more efficient digestion of plant material in the stomach. [8]

Much of the tortoise's water intake comes from moisture in the grasses and wildflowers they consume in the spring. A large urinary bladder can store over 40% of the tortoise's body weight in water, urea, uric acid, and nitrogenous wastes. During very dry times, they may give off waste as a white paste rather than a watery urine. During periods of adequate rainfall, they drink copiously from any pools they find, and eliminate solid urates. The tortoises can increase their body weight by up to 40% after copious drinking. [25] Adult tortoises can survive a year or more without access to water. [8] During the summer and dry seasons, they rely on the water contained within cactus fruits and mesquite grass. To maintain sufficient water, they reabsorb water in their bladders, and move to humid burrows in the morning to prevent water loss by evaporation. [25]

A desert tortoise can empty its bladder as one of its defense mechanisms. [26] This can leave the tortoise in a very vulnerable condition in dry areas, since the tortoise will no longer have a backup water supply. If a tortoise is seen in the wild, you should not handle, or pick them up unless they are in imminent danger. Handling of tortoises may have consequences for the animal, such as the development of upper respiratory tract infections. [26]

Predation and conservation status

Ravens, Gila monsters, kit foxes, badgers, roadrunners, coyotes, and fire ants are all natural predators of the desert tortoise. They prey on eggs, juveniles, which are 50–75 mm (2–3 in) long with a thin, delicate shell, or, in some cases, adults. Ravens are thought to cause significant levels of juvenile tortoise predation in some areas of the Mojave Desert – frequently near urbanized areas. [27] The most significant threats to tortoises include urbanization, disease, habitat destruction and fragmentation, illegal collection and vandalism by humans, and habitat conversion from invasive plant species ( Brassica tournefortii , Bromus rubens and Erodium spp.).

Desert tortoise populations in some areas have declined by as much as 90% since the 1980s, and the Mojave population is listed as threatened. It is unlawful to touch, harm, harass, or collect wild desert tortoises. It is, however, possible to adopt captive tortoises through the Tortoise Adoption Program in Arizona, Utah Division of Wildlife Resources Desert Tortoise Adoption Program in Utah, Joshua Tree Tortoise Rescue Project in California, or through Bureau of Land Management in Nevada. When adopted in Nevada, they will have a computer chip embedded on their backs for reference. According to Arizona Game and Fish Commission Rule R12-4-407 A.1, they may be possessed if the tortoises are obtained from a captive source which is properly documented. Commission Order 43: Reptile Notes 3: one tortoise per family member.

The Fort Irwin National Training Center of the US Army expanded into an area that was habitat for about 2,000 desert tortoises, and contained critical desert tortoise habitat (a designation by the US Fish and Wildlife Service). In March 2008, about 650 tortoises were moved by helicopter and vehicle, up to 35 km away. [28] The Desert Tortoise Preserve Committee protects roughly 2,000 hectares (5,000 acres) of desert tortoise habitat from human activity. This area includes 1,760 hectares (4,340 acres) in Kern County, 290 hectares (710 acres) in San Bernardino County, and 32 hectares (80 acres) in Riverside County. [29]

Another potential threat to the desert tortoise's habitat is a series of proposed wind and solar farms. [30] As a result of legislation, solar energy companies have been making plans for huge projects in the desert regions of Arizona, California, Colorado, New Mexico, Nevada, and Utah. The requests submitted to the Bureau of Land Management total nearly 7,300 km2 (1,800,000 acres). [31]

While tortoises are made to withstand tough conditions and high temperatures, they are unable to cope with the dangers of human development, such as the use of off-roading vehicles. These vehicles that come along at high speeds have the potential to crush and kill tortoises, running over their eggs and burrows and significantly impacting their population. [32]

Human development

Ivanpah solar power project

Concerns about the impacts of the Ivanpah Solar thermal project led the developers to hire some 100 biologists and spend US$22 million caring for the tortoises on or near the site during construction. [33] [34] Despite this, in a 2011 Revised Biological Assessment for the Ivanpah Solar Electric Generating System, the Bureau of Land Management anticipated the loss or significant degradation of 1,420 hectares (3,520 acres) of tortoise habitat and the harm of 57–274 adult tortoises, 608 juveniles, and 236 eggs inside the work area, and 203 adult tortoises and 1,541 juvenile tortoises outside the work area. The Bureau of Land Management (BLM) expects that most of the juvenile tortoises on the project will be killed. [35] [36]

Lawsuits

In the summer of 2010, Public Employees for Environmental Responsibility filed a lawsuit against the National Park Service for not having taken measures to manage tortoise shooting in the Mojave National Preserve of California. Biologists discovered numerous gunshot wounds (holes) on dead tortoise shells which could likely have been caused long after natural death as these shells can take five years to disintegrate and make useful targets for well intentioned target shooters. These shells left behind by nature, droughts, roadkill, or vandals may have attracted ravens and threatened the healthy tortoises as any predator bird need only feed once on a small tortoise to remember it as a viable food source. [37] The National Park Service did not take the measures they were urged to. They responded with "We simply do not believe that such regulations are warranted at this time." and no further action has been taken. [38]

Diseases

Reptiles are known to become infected by a wide range of pathogens, which includes viruses, bacteria, fungi, and parasites. More specifically, the G. agassizii population has been negatively affected by upper respiratory tract disease, cutaneous dyskeratosis, herpes virus, shell necrosis, urolithiasis (bladder stones), and parasites. [39] [40] [41]

Upper respiratory tract disease

Upper respiratory tract disease (URTD) is a chronic, infectious disease responsible for population declines across the entire range of the desert tortoise. It was identified in the early 1970s in captive desert tortoise populations, and later identified in the wild population. [39] URTD is caused by the infectious agents Mycoplasma agassizii and Mycoplasma testudineum, which are bacteria in the class Mollicutes and characterized by having no cell wall and a small genome. [42] [43] [44]

Mycoplasmae appear to be highly virulent (infectious) in some populations, while chronic, or even dormant in others. [45] The mechanism (whether environmental or genetic) responsible for this diversity is not understood. Infection is characterized by both physiological and behavioral changes: nasal and ocular discharge, palpebral edema (swelling of the upper and/or lower palpebra, or eyelid, the fleshy portion that is in contact with the tortoises eye globe) and conjunctivitis, weight loss, changes in color and elasticity of the integument, and lethargic or erratic behavior. [39] [46] [47] [48] These pathogens are likely transmitted by contact with an infected individual. Epidemiological studies of wild desert tortoises in the western Mojave Desert from 1992 to 1995 showed a 37% increase in M. agassizii. [44] Tests were conducted on blood samples, and a positive test was determined by the presence of antibodies in the blood, defined as being seropositive.

Cutaneous dyskeratosis

Cutaneous dyskeratosis (CD) is a shell disease of unknown origin and has unknown implications on desert tortoise populations. Observationally, it is typified by shell lesions on the scutes. Areas infected with CD appear discolored, dry, rough and flakey, with peeling, pitting, and chipping through multiple cornified layers. [49] Lesions are usually first located on the plastron (underside) of the tortoises, although lesions on the carapace (upper side) and fore limbs are not uncommon. In advanced cases, exposed areas become infected with bacteria, fungi, and exposed tissue and bone may become necrotic. [47] [49] CD was evident as early as 1979 and was initially identified on the Chuckwalla Bench Area of Critical Environmental Concern in Riverside County, California. [50] Currently, the means of transmission are unknown, although hypotheses include autoimmune diseases, exposure to toxic chemicals (possibly from mines, or air pollution), or a deficiency disease (possibly resulting from tortoises consuming low-quality invasive plant species instead of high-nutrient native plants). [40] [45]

Impacts of disease

Two case studies outlined the spread of disease in desert tortoises. The Daggett Epidemiology of Upper Respiratory Tract Disease project, which provides supporting disease research for the Fort Irwin translocation project, lends an example of the spread of disease. In 2008, 197 health evaluations were conducted, revealing 25.0–45.2% exposure to M. agassizii and M. testudineum, respectively, in a core area adjacent to Interstate 15. The spread of disease was tracked over two years, and clinical signs of URTD spread from the core area to adjacent, outlying locations during this time. Overlaying home ranges and the social nature of these animals, suggests that disease-free individuals may be vulnerable to spread of disease, and that transmission can occur rapidly. [51] Thus, wild tortoises that are close to the urban-wildlife interface may be vulnerable to spread of disease as a direct result of human influence.

The second study indicated that captive tortoises can be a source of disease to wild Agassiz's desert tortoise populations. Johnson et al. (2006) tested blood samples for URTD (n = 179) and herpesvirus (n = 109) from captive tortoises found near Barstow, CA and Hesperia, CA. Demographic and health data were collected from the tortoises, as well from other reptiles housed in the same facility. Of these, 45.3% showed signs of mild disease, 16.2% of moderate disease, and 4.5% of severe disease, and blood tests revealed that 82.7% of tortoises had antibodies to mycoplasma, and 26.6% had antibodies to herpesvirus (which means the tortoises were seropositive for these two diseases, and indicate previous exposure to the causative agents). With an estimated 200,000 captive desert tortoises in California, their escape or release into the wild is a real threat to uninfected wild populations of tortoises. Projections from this study suggest that about 4400 tortoises could escape from captivity in a given year, and with an 82% exposure rate to URTD, the wild population may be at greater risk than previously thought. [52]

Domestic pets

Edwards et al. reported that 35% of desert tortoises in the Phoenix area are hybrids between either Gopherus agassizii and G. morafkai, or G. morafkai and the Texas tortoise, G. berlandieri. The intentional or accidental release of these tortoises could have dire consequences for wild tortoises. [53]

Before obtaining a desert tortoise as a pet, it is best to check the laws and regulations of the local area and/or state. Desert tortoises may not be captured from the wild. They may, however, be given as a gift from one private owner to another. Desert tortoises need to be kept outdoors in a large area of dry soil and with access to vegetation and water. An underground den and a balanced diet are crucial to the health of captive tortoises.

Management activities and spread of disease

Tortoise Monitoring and Research at Joshua Tree National Park Tortoise Monitoring and Research JTNP.jpg
Tortoise Monitoring and Research at Joshua Tree National Park

Research

Wild populations of tortoises must be managed effectively to minimize the spread of diseases, which includes research and education. Despite significant research being conducted on desert tortoises and disease, a considerable knowledge gap still exists in understanding how disease affects desert tortoise population dynamics. It is not known if the population would still decline if disease were completely absent from the system; are tortoises more susceptible to disease during drought conditions? How does a non-native diet impact a tortoise's ability to ward off pathogens? What are the causes of immunity exhibited by some desert tortoises? The 2008 USFWS draft recovery plan suggests that populations of tortoises that are uninfected, or only recently infected, should likely be considered research and management priorities. Tortoises are known to show resistance to disease in some areas, an effort to identify and maintain these individuals in the populations is essential. Furthermore, increasing research on the social behavior of these animals, and garnering a greater understanding of how behavior facilitates disease transmission would be advantageous in understanding rates of transmission. Finally, translocation of tortoises should be done with extreme caution; disease is typically furtive and moving individuals or populations of tortoises across a landscape can have unforeseen consequences. [45]

Education

As a corollary to research, education may help prevent captive tortoises from coming into contact with wild populations. [52] Education campaigns through veterinarians, government agencies, schools, museums, and community centers throughout the range of the desert tortoise could limit the spread of tortoise diseases into wild populations. Strategies may include encouraging people to not breed their captive tortoises, ensure that different species of turtles and tortoises are not housed in the same facility (which would help to prevent the spread of novel diseases into the desert tortoise population), ensure captive tortoises are adequately housed to prevent them from escaping into the wild, and to ensure that captive turtles and tortoises are never released into the wild.

Desert tortoises have been severely affected by disease. Both upper respiratory tract disease and cutaneous dyskeratosis have caused precipitous population declines and die-offs across the entire range of this charismatic species. Both of these diseases are extremely likely to be caused by people, and URTD is easily linked with people releasing captive tortoises into the wild. The combination of scientific research and public education is imperative to curb the spread of disease and aid the tortoise in recovery.

State reptile

The desert tortoise is the state reptile of California and Nevada.

Related Research Articles

<span class="mw-page-title-main">Tortoise</span> Family of turtles

Tortoises are reptiles of the family Testudinidae of the order Testudines. Like other turtles, tortoises have a shell to protect from predation and other threats. The shell in tortoises is generally hard, and like other members of the suborder Cryptodira, they retract their necks and heads directly backward into the shell to protect them.

<span class="mw-page-title-main">Mojave Desert</span> Desert in the southwestern United States

The Mojave Desert is a desert in the rain shadow of the southern Sierra Nevada mountains and Transverse Ranges in the Southwestern United States. Named for the indigenous Mohave people, it is located primarily in southeastern California and southwestern Nevada, with small portions extending into Arizona and Utah.

<span class="mw-page-title-main">Mojave National Preserve</span> Protected wilderness area in California, United States

Mojave National Preserve is a United States National Preserve located in the Mojave Desert of San Bernardino County, California, US, between Interstate 15 and Interstate 40. The preserve was established October 31, 1994, with the enactment of the California Desert Protection Act by the United States Congress, which also established Joshua Tree National Park and Death Valley National Park as National Parks. Previously, some lands contained within the Preserve were the East Mojave National Scenic Area, under the jurisdiction of the Bureau of Land Management. At 1,542,776 acres (6,243 km2), within the contiguous United States it is the third largest unit of the National Park System and the first largest National Preserve. The preserve was created within the Pacific West Region of the National Park Service and remains within that jurisdiction today.

<span class="mw-page-title-main">Eastern indigo snake</span> Species of snake

The eastern indigo snake is a species of large, non-venomous snake in the family Colubridae. Native to the southeastern United States, it is the longest native snake species in the country.

<span class="mw-page-title-main">African spurred tortoise</span> Species of tortoise

The African spurred tortoise, also called the sulcata tortoise, is an endangered species of tortoise inhabiting the southern edge of the Sahara Desert, the Sahel, in Africa. It is the largest mainland species of tortoise in Africa, and the third-largest in the world, after the Galapagos tortoise and Aldabra giant tortoise. It is the only living species in its genus, Centrochelys, with the five other species in the family already extinct.

The Desert Tortoise Research Natural Area (DTRNA) is a 39.5-square-mile (102 km2) area in the western Mojave Desert, located in eastern Kern County, Southern California. It was created to protect the native desert tortoise , which is also the California state reptile.

<span class="mw-page-title-main">Eastern box turtle</span> Subspecies of reptile

The eastern box turtle is a subspecies within a group of hinge-shelled turtles normally called box turtles. T. c. carolina is native to the Eastern United States.

<i>Gopherus</i> Genus of tortoises

Gopherus is a genus of fossorial tortoises commonly referred to as gopher tortoises. The gopher tortoise is grouped with land tortoises that originated 60 million years ago, in North America. A genetic study has shown that their closest relatives are in the Asian genus Manouria. The gopher tortoises live in the southern United States from California's Mojave Desert across to Florida, and in parts of northern Mexico. Gopher tortoises are so named because of some species' habit of digging large, deep burrows. Most notably, Gopherus polyphemus digs burrows which can be up to 40 feet (12 m) in length and 10 feet (3.0 m) in depth. These burrows are used by a variety of other species, including mammals, other reptiles, amphibians, and birds. Gopher tortoises are 20–50 cm (7.9–19.7 in) in length, depending on the species. All six species are found in xeric habitats. Numerous extinct species are known, the oldest dating to the Priabonian stage of the Late Eocene of the United States.

<span class="mw-page-title-main">Wyoming toad</span> Species of amphibian

The Wyoming toad, also known commonly as Baxter's toad, is a species of toad in the family Bufonidae. The Wyoming toad is an extremely rare amphibian that exists only in captivity and within Mortenson Lake National Wildlife Refuge in Wyoming in the United States. The Wyoming toad was listed as an endangered species in 1984, and listed as extinct in the wild since 1991. As with black-footed ferrets at the Tom Thorne and Beth Williams Wildlife Research Center at Sybille in Wheatland, Wyoming, the effort to save the Wyoming toad has been a cooperative effort among state and federal agencies and private landowners. The Wyoming toad was common from the 1950s through the early 1970s, but its distribution was limited to the Laramie Basin in Albany County. The population crashed around 1975 and was extremely low by 1980. The Wyoming toad was federally listed as endangered in January 1984. To prevent extinction, a captive-breeding program began in 1989 at the Thorne Williams Unit that produced enough offspring in its first few years to supply seven zoos, and in 1998 the Saratoga National Fish Hatchery received captive-breeding stock. Nearly 46,000 offspring were produced at the Thorne Williams Unit from 1995 until 2006, when the remaining captive stock was moved to the Red Buttes Environmental Biology Laboratory south of Laramie, and then released back into the wild. Before the sharp declines occurred, this toad had been originally classified as Bufo hemiophrys baxteri, a subspecies of the Canadian toad, by Kenneth Raymond Porter in 1968.

<span class="mw-page-title-main">Santa Rosa and San Jacinto Mountains National Monument</span> Protected area in California

The Santa Rosa and San Jacinto Mountains National Monument is a National Monument in southern California. It includes portions of the Santa Rosa and San Jacinto mountain ranges, the northernmost ones of the Peninsular Ranges system. The national monument covers portions of Riverside County, west of the Coachella Valley, approximately 100 miles (160 km) southeast of downtown Los Angeles.

<span class="mw-page-title-main">Gopher tortoise</span> Species of reptile

The gopher tortoise is a species of tortoise in the family Testudinidae. The species is native to the southeastern United States. The gopher tortoise is seen as a keystone species because it digs burrows that provide shelter for at least 360 other animal species. G. polyphemus is threatened by predation and habitat destruction. Habitat degradation is the primary reason that the gopher tortoise is listed as vulnerable on the IUCN Red List, but they are considered threatened in some states while they are endangered in others.

<span class="mw-page-title-main">Ornate box turtle</span> Subspecies of turtle

The ornate box turtle is one of only two terrestrial species of turtles native to the Great Plains of the United States. It is one of the two different subspecies of Terrapene ornata. It is the state reptile of Kansas and Nebraska. It is currently listed as threatened in Illinois and is of concern and protected in six Midwestern states.

<span class="mw-page-title-main">Xerocole</span> Any animal adapted to live in the desert

A xerocole, is a general term referring to any animal that is adapted to live in a desert. The main challenges xerocoles must overcome are lack of water and excessive heat. To conserve water they avoid evaporation and concentrate excretions. Some are so adept at conserving water or obtaining it from food that they do not need to drink at all. To escape the desert heat, xerocoles tend to be either nocturnal or crepuscular.

<span class="mw-page-title-main">Ivanpah Solar Power Facility</span> Concentrated solar thermal power station in the Mojave Desert of California

The Ivanpah Solar Electric Generating System is a concentrated solar thermal plant in the Mojave Desert. It is located at the base of Clark Mountain in California, across the state line from Primm, Nevada. The plant has a gross capacity of 392 megawatts (MW). It deploys 173,500 heliostats, each with two mirrors focusing solar energy on boilers located on three 459 feet (140 m) tall solar power towers. The first unit of the system was connected to the electrical grid in September 2013 for an initial synchronisation test. The facility formally opened on February 13, 2014. In 2014, it was the world's largest solar thermal power station.

<span class="mw-page-title-main">Robert Williams (geometer)</span>

Robert Edward Williams is an American designer, mathematician, and architect. He is noted for books on the geometry of natural structure, the discovery of a new space-filling polyhedron, the development of theoretical principles of Catenatic Geometry, and the invention of the Ars-Vivant Wild-life Protector System for repopulating the Western Mojave Desert in California, USA with desert tortoises.

<span class="mw-page-title-main">Angonoka tortoise</span> Species of tortoise

The angonoka tortoise is a critically endangered species of tortoise severely threatened by poaching for the illegal pet trade. It is endemic to Madagascar. It is also known as the angonoka, ploughshare tortoise, Madagascar tortoise, or Madagascar angulated tortoise. There may be fewer than 400 of these tortoises left in the wild. It is found only in the dry forests of the Baly Bay area of northwestern Madagascar, near the town of Soalala. A captive-breeding facility was established in 1986 by the Jersey Wildlife Preservation Trust in collaboration with the Water and Forests Department. In 1996, 75 tortoises were stolen, which later appeared for sale in the Netherlands. The project was ultimately successful, achieving 224 captive-bred juveniles out of 17 adults in 2004. Project Angonoka developed conservation plans that involved local communities making firebreaks, along with the creation of a park to protect the tortoise and the forests. Monitoring of the angonoka tortoise in the global pet trade has also continued to be advocated.

Mycoplasma agassizii is a species of bacteria in the genus Mycoplasma. This genus of bacteria lacks a cell wall around their cell membrane. Without a cell wall, they are unaffected by many common antibiotics such as penicillin or other beta-lactam antibiotics that target cell wall synthesis. Mycoplasma are the smallest bacterial cells yet discovered, can survive without oxygen and are typically about 0.1 µm in diameter.

<span class="mw-page-title-main">Sonoran Desert tortoise</span> Species of tortoise

The Sonoran Desert tortoise, or Morafka's desert tortoise, is a species of tortoise native to the Sonoran Desert.

<span class="mw-page-title-main">Goode's thornscrub tortoise</span> Species of tortoise

The Goode's thornscrub tortoise, also known as the Sinaloan thornscrub tortoise, Sinaloan desert tortoise or Goode's desert tortoise, is a species of tortoise that is native to the Sinaloan desert region. First described in 2016, G. evgoodei inhabits Tropical Deciduous Forest and Sinaloan Desertscrub biomes in Mexico. Its range may overlap in the north with G. morafkai, the Morafka's or Sonoran desert tortoise.

References

PD-icon.svg This article incorporates public domain material from Gopherus agassizii . United States Forest Service.

  1. Berry, K.H.; Allison, L.J.; McLuckie, A.M.; Vaughn, M.; Murphy, R.W. (2021). "Gopherus agassizii". IUCN Red List of Threatened Species . 2021: e.T97246272A3150871. doi: 10.2305/IUCN.UK.2021-2.RLTS.T97246272A3150871.en . Retrieved February 19, 2022.
  2. "Appendices". CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora. May 4, 2023. Retrieved May 11, 2023. Note: Protected as a member of the Testudinidae.
  3. Fritz, Uwe; Havaš, Peter (2007). "Checklist of Chelonians of the World". Vertebrate Zoology. 57 (2): 280. doi: 10.3897/vz.57.e30895 . S2CID   87809001.
  4. 1 2 3 Jones, Mike. Gopherus agassizii Cooper 1863 [sic] (California) Desert Tortoise. Encyclopedia of Life.
  5. Beolens, Bo; Watkins, Michael; Grayson, Michael (2011). The Eponym Dictionary of Reptiles. Baltimore: Johns Hopkins University Press. xiii + 296 pp. ISBN   978-1-4214-0135-5. (Gopherus agassizii, p. 2).
  6. "Gale - Product Login". galeapps.gale.com. Retrieved December 10, 2022.
  7. 1 2 "Desert Tortoise Life History".
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Gopherus agassizii. United States Forest Service. fs.fed.us Archived February 4, 2018, at the Wayback Machine
  9. Genetic Analysis Splits Desert Tortoise into Two Species Archived January 2, 2017, at the Wayback Machine . US Geological Survey (2011-06-28). Retrieved on 2019-08-22.
  10. Murphy, Robert; Berry, Kristin; Edwards, Taylor; Leviton, Alan; Lathrop, Amy; Riedle, J. Daren (June 28, 2011). "The dazed and confused identity of Agassiz's land tortoise, Gopherus agassizii (Testudines: Testudinidae) with the description of a new species and its consequences for conservation". ZooKeys (113): 39–71. Bibcode:2011ZooK..113...39M. doi: 10.3897/zookeys.113.1353 . ISSN   1313-2970. PMC   3187627 . PMID   21976992.
  11. 1 2 Edwards T, Karl AE, Vaughn M, Rosen PC, Torres CM, Murphy RW (2016). "The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the Gopherus morafkaiG. agassizii group". ZooKeys (562): 131–158. Bibcode:2016ZooK..562..131E. doi: 10.3897/zookeys.562.6124 . PMC   4768471 . PMID   27006625.
  12. Wilson, Don E.; Burnie, David (2005). Animal: The Definitive Visual Guide to the World's Wildlife. New York City: DK [Dorling Kindersley] Publishing. 624 pp. ISBN   978-0-7894-7764-4.
  13. Jirik, Kate. "LibGuides: Desert Tortoises (Gopherus agassizii) Fact Sheet: Physical Characteristics". ielc.libguides.com. Retrieved December 10, 2022.
  14. "Desert Tortoise". The Nature Conservancy. Retrieved December 10, 2022.
  15. "DROUGHT: Lack of water threatens desert tortoise". March 21, 2014.
  16. 1 2 Murphy, Robert; Berry, Kristin; Edwards, Taylor; Leviton, Alan; Lathrop, Amy; Riedle, J. Daren (2011). "The dazed and confused identity of Agassiz's land tortoise, Gopherus agassizii (Testudines: Testudinidae) with the description of a new species and its consequences for conservation". ZooKeys (113): 39–71. Bibcode:2011ZooK..113...39M. doi: 10.3897/zookeys.113.1353 . PMC   3187627 . PMID   21976992.
  17. "Federal agencies partner to conserve Mojave desert tortoises". VVNG. Victor Valley News Group. December 28, 2021. Retrieved December 29, 2021.
  18. Glass-Godwin, Lenela (April 2002). "Desert Survivor?". Ranger Rick. p. 16.
  19. Tortoise Adoption Program – Care and Husbandry. Desertmuseum.org. Retrieved on 2013-01-06.
  20. Desert Tortoise wildlife information. DesertUSA. Retrieved on 2013-01-06.
  21. Lewis-Winokur, Vanessa; Winokur, Robert M. (1995). "Incubation temperature affects sexual differentiation, incubation time, and posthatching survival in desert tortoises (Gopherus agassizii )". Canadian Journal of Zoology. 73 (11): 2091–2097. doi:10.1139/z95-246.
  22. Biol. Exuberance: Desert Tortoise - Bagemihl (1999 AD), pages 232, 664
  23. Rodrigues, João Fabrício Mota; Liu, Yuxiang (May 1, 2016). "An overview of same-sex mounting in turtles and tortoises". Journal of Ethology. 34 (2): 133–137. doi:10.1007/s10164-015-0456-2. ISSN   1439-5444. S2CID   254145807.
  24. Deane K. (2018). "The 'hibernation' process and post 'hibernation' care of tortoises". Veterinary Nursing Journal. 33 (7): 197–200. doi:10.1080/17415349.2018.1466670. S2CID   59535431.
  25. 1 2 Auffenberg, Walter (1969). Tortoise Behavior and Survival . Chicago: Rand McNally. OCLC   2583084.
  26. 1 2 "Desert Tortoise (Gopherus agassizii)". Mojave National Preserve California. National Park Service. March 21, 2022. Retrieved May 11, 2023.
  27. Sahagun, Louis (June 10, 2019). "These tortoise-killing ravens are so smart, scientists must use drones to stop them". Los Angeles Times . Retrieved June 10, 2019.
  28. Sahagun, Louis (2008-10-11) "Army suspends relocation of Ft. Irwin tortoises". Los Angeles Times
  29. Connor, Michael J., and Mark Massar, "Megadump Initiative Threat to DTNA" and "2005 Annual Report Desert Tortoise Preserve Committee Accomplishments & Activities", "Tortoise Tracks." April 2006
  30. Simon, Richard (2009-03-25) Feinstein wants desert swath off-limits to solar, wind projects, Los Angeles Times
  31. Woody, Todd (2009-07-13) A Solar Land Rush, The New York Times
  32. Glass-Godwin (April 2002). "DESERT SURVIVOR?". Science Reference Center.
  33. Dini, Jack (2010-10-31) Desert Tortoises Get Trumped by California's Solar Plants. Hawaii Reporter
  34. Desert Tortoise Care at the Ivanpah Solar Project Archived 2012-06-09 at the Wayback Machine . ivanpahsolar.com (2012-03-06)
  35. Bureau of Land Management (2011-4-19) Revised Biological Assessment for the Ivanpah Solar Electric Generating System (Ivanpah SEGS) Project Archived 2013-10-21 at the Wayback Machine . U.S. Department of the Interior
  36. Ertz, Brian (2011-4-29) Ivanpah solar project would disturb thousands of desert tortoises. The Wildlife News
  37. Stade, Kristen (2010-07-28) Lawsuit to protect varmints in Mojave National Preserve Archived October 21, 2013, at the Wayback Machine , Peer
  38. Jarvis Mojave letter 2011
  39. 1 2 3 Jacobson, E. R., J. M. Gaskin, M. B. Brown, R. K. Harris, C. H. Gardiner, J. L. Lapointe, H. P. Adams, and C. Reggiardo (1991). "Chronic upper respiratory tract disease of free ranging desert tortoises (Xerobates agassizii )". Journal of Wildlife Diseases. 27 (2): 296–316. doi: 10.7589/0090-3558-27.2.296 . PMID   2067052. S2CID   42473017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. 1 2 Jacobson, E. R.; T. J. Wronski; J. Schumacher; C. Reggiardo & K. H. Berry (1994). "Cutaneous dyskeratosis in free ranging desert tortoises, Gopherus agassizii, in the Colorado Desert of Southern California". Journal of Zoo and Wildlife Medicine. 25 (1): 68–81. JSTOR   20095336.
  41. Berry, K. H., E. K. Spangenberg, B. L. Homer, and E. R. Jacobson (2002). "Deaths of desert tortoises following periods of drought and research manipulation" (PDF). Chelonian Conservation and Biology. 4: 436–448.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. Brown, M. B., I. M. Schumacher, P. A. Klein, K. Harris, T. Correll, and E. R. Jacobson (1994). "Mycoplasma agassizii causes upper respiratory tract disease in the desert tortoise". Infection and Immunity. 62 (10): 4580–4586. doi:10.1128/iai.62.10.4580-4586.1994. PMC   303146 . PMID   7927724.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. Berry, K. H. and J. Van Abbema. 1997. Demographic consequences of disease in two desert tortoise populations in California, USA. Proceedings: conservation, restoration, and management of tortoises and turtles – an international conference 11–16 July 1993, State University of New York, Purchase, New York, USA.: 91–99
  44. 1 2 Brown, M. B., K. H. Berry, I. M. Schumacher, K. A. Nagy, M. M. Christopher, and P. A. Klein (1999). "Seroepidemiology of upper respiratory tract disease in the desert tortoise in the western Mojave Desert of California". Journal of Wildlife Diseases. 35 (4): 716–727. doi:10.7589/0090-3558-35.4.716. PMID   10574531. S2CID   22509874.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. 1 2 3 Draft revised recovery plan for the Mojave population of the desert tortoise (Gopherus agassizii ). U.S. Fish and Wildlife Service, California and Nevada Region, Sacramento, California (2008).
  46. Schumacher, I. M.; M. B. Brown; E. R. Jacobson; B. R. Collins & P. A. Klein (1993). "Detection of antibodies to a pathogenic mycoplasma in desert tortoises (Gopherus agassizii ) with upper respiratory tract disease". Journal of Clinical Microbiology. 31 (6): 1454–1460. doi:10.1128/jcm.31.6.1454-1460.1993. PMC   265561 . PMID   8314986.
  47. 1 2 Homer, B. L.; K. H. Berry; M. B. Brown & G. Ellis, E. R. Jacobson (1998). "Pathology of diseases in wild desert tortoises from California". Journal of Wildlife Diseases. 34 (3): 508–523. doi: 10.7589/0090-3558-34.3.508 . PMID   9706560. S2CID   2657867.
  48. Berry, K. H.; M. M. Christopher (2001). "Guidelines for the field evaluation of desert tortoise health and disease". Journal of Wildlife Diseases. 37 (3): 427–450. doi:10.7589/0090-3558-37.3.427. PMID   11504217. S2CID   6952651.
  49. 1 2 Homer, B. L.; C. Li; K. H. Berry; N. D. Denslow; E. R. Jacobson; R. H. Sawyer & J. E. Williams (2001). "Soluble scute proteins of healthy and ill desert tortoises (Gopherus agassizii )". American Journal of Veterinary Research. 62 (1): 104–110. doi: 10.2460/ajvr.2001.62.104 . PMID   11197546.
  50. Jacobson, E. R. (1994). "Causes of mortality and diseases in tortoises – A review". Journal of Zoo and Wildlife Medicine. 25 (1): 2–17. JSTOR   20095329.
  51. Mack, J. and K. H. Berry. 2009. Development of an epidemiological model of upper respiratory tract disease (Mysoplasmosis) in desert tortoises using the Daggett study area: Year 2, 2008. Proceedings of the thirty-fourth annual meeting and symposium. The desert tortoise council
  52. 1 2 Johnson, A. J.; D. J. Morafka & E. R. Jacobson (2006). "Seroprevalence of Mycoplasma agassizii and tortoise herpesvirus in captive desert tortoises (Gopherus agassizii ) from the Greater Barstow Area, Mojave Desert, California" (PDF). Journal of Arid Environments. 67: 192–201. Bibcode:2006JArEn..67..192J. doi:10.1016/j.jaridenv.2006.09.025. Archived from the original (PDF) on May 16, 2013. Retrieved January 6, 2013.
  53. Edwards, T., C. J. Jarchow, C. A. Jones, and K. E. Bonine (2010). "Tracing Genetic Lineages of Captive Desert Tortoises in Arizona". Journal of Wildlife Management. 74 (4): 801–807. Bibcode:2010JWMan..74..801E. doi:10.2193/2009-199. S2CID   86409153.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Further reading