Etodesnitazene

Last updated
Desnitroetonitazene
Etazene.svg
Legal status
Legal status
Identifiers
  • 2-[2-[(4-Ethoxyphenyl)methyl]benzimidazol-1-yl]-N,N-diethylethanamine
CAS Number
PubChem CID
UNII
KEGG
Chemical and physical data
Formula C22H29N3O
Molar mass 351.494 g·mol−1
3D model (JSmol)
  • CCN(CC)CCN1C2=CC=CC=C2N=C1CC3=CC=C(C=C3)OCC
  • InChI=1S/C22H29N3O/c1-4-24(5-2)15-16-25-21-10-8-7-9-20(21)23-22(25)17-18-11-13-19(14-12-18)26-6-3/h7-14H,4-6,15-17H2,1-3H3
  • Key:BMLPNUNXHUGDOI-UHFFFAOYSA-N

Etodesnitazene (Desnitroetonitazene, Etazen, Etazene, Etazone) is a benzimidazole derived opioid analgesic drug, which was originally developed in the late 1950s alongside etonitazene and a range of related derivatives. [1] It is many times less potent than etonitazene itself, but still 70x more potent than morphine in animal studies. Corresponding analogues where the N,N-diethyl group is replaced by piperidine or pyrrolidine rings also retain significant activity (10x and 20x morphine respectively). [2] Etodesnitazene has been sold as a designer drug, [3] first being identified in both Poland and Finland in March 2020. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Etonitazene</span> Chemical compound

Etonitazene, also known as EA-4941 or CS-4640, is a benzimidazole opioid, first reported in 1957, that has been shown to have approximately 1,000 to 1,500 times the potency of morphine in animals.

<span class="mw-page-title-main">AH-7921</span> Opioid analgesic

AH-7921 is an opioid analgesic drug selective for the μ-opioid receptor, having around 90% the potency of morphine when administered orally. It was discovered in the 1970s by a team at Allen and Hanburys located in the United Kingdom. The drug is considered a new psychoactive substance (NPS) in which it is synthetically created in laboratories to mimic that of controlled substances. The substance has also been sold on the internet since 2012 as a "research chemical". When sold online it may be called the alternative name doxylam, not to be confused with doxylamine. AH-7921 has never progressed to clinical trials. The DEA is not aware of any medical usage in the United States, and has not insisted the Health and Human Services department (HHS) to conduct any medical research of the substance's uses.

<span class="mw-page-title-main">THJ-2201</span> Synthetic cannabinoid

THJ-2201 is an indazole-based synthetic cannabinoid that presumably acts as a potent agonist of the CB1 receptor and has been sold online as a designer drug.

<span class="mw-page-title-main">FUBIMINA</span> Chemical compound

FUBIMINA is a synthetic cannabinoid that is the benzimidazole analog of AM-2201 and has been used as an active ingredient in synthetic cannabis products. It was first identified in Japan in 2013, alongside MEPIRAPIM.

<span class="mw-page-title-main">Mepirapim</span> Chemical compound

MEPIRAPIM is an indole-based cannabinoid which differs from JWH-018 by having a 4-methylpiperazine group in place of the naphthyl group and has been used as an active ingredient in synthetic cannabis products. It was first identified in Japan in 2013, alongside FUBIMINA. MEPIRAPIM acts as a T-type calcium channel inhibitor and is only minimally active at the central CB1 receptor.

<span class="mw-page-title-main">Metonitazene</span> Chemical compound (analgesic drug)

Metonitazene is an analgesic compound related to etonitazene, which was first reported in 1957, and has been shown to have approximately 1000 times the potency of morphine by central routes of administration, but if used orally it has been shown to have approximately 10 times the potency of morphine.

<span class="mw-page-title-main">Isotonitazene</span> Chemical compound

Isotonitazene is a benzimidazole derived opioid analgesic drug related to etonitazene, which has been sold as a designer drug. It has only around half the potency of etonitazene in animal studies, but it is likely even less potent in humans as was seen with etonitazene. Isotonitazene was fully characterized in November 2019 in a paper where the authors performed a full analytical structure elucidation in addition to determination of the potency at the μ-opioid receptor using a biological functional assay in vitro. While isotonitazene was not compared directly to morphine in this assay, it was found to be around 2.5 times more potent than hydromorphone and slightly more potent than fentanyl.

<span class="mw-page-title-main">TH-PVP</span> Chemical compound

TH-PVP is a substituted cathinone derivative which has been sold as a designer drug. It was first identified by a forensic laboratory in Hungary in 2015, but has subsequently been found in numerous other countries around the world including Spain, Belgium, Poland, Turkey and Brazil. Pharmacological studies in vitro showed it to inhibit reuptake and promote the release of monoamine neurotransmitters with some selectivity for serotonin, but it failed to produce stimulant effects in animals, and has a pharmacological profile more comparable to that of sedating empathogens such as MDAI and 5-Methyl-MDA.

<span class="mw-page-title-main">Etonitazepyne</span> Chemical compound

Etonitazepyne is a benzimidazole derivative with potent opioid effects which has been sold over the internet as a designer drug and linked to numerous cases of overdose.

<span class="mw-page-title-main">AP-238</span> Opioid designer drug

AP-238 is an opioid designer drug related to drugs such as azaprocin and bucinnazine, with around the same potency as morphine. It was first discovered in Italy in the 1960s but was never marketed, subsequently appearing on the illicit market around 2020 and being detected in both Slovenia and the USA.

<span class="mw-page-title-main">Etonitazepipne</span> Benzimidazole derivative

Etonitazepipne is a benzimidazole derivative with opioid effects around 100 times more potent than morphine, which has been sold over the internet as a designer drug.

<span class="mw-page-title-main">Metodesnitazene</span> Chemical compound

Metodesnitazene is a benzimidazole derivative with opioid effects, though unlike related compounds such as metonitazene and etodesnitazene which are many times more potent, metodesnitazene is only around the same potency as morphine in animal studies. It was proposed by the DEA to be placed under legal control in the US in December 2021.

<span class="mw-page-title-main">Furanyl norfentanyl</span> Synthetic opioid analgesic metabolite

Furanylnorfentanyl is an inactive synthetic opioid analgesic drug precursor. It is an analog of fentanyl.

<span class="mw-page-title-main">2-Me-PVP</span> Stimulant designer drug of the substituted cathinone class

2-Methyl-alpha-PVP (2-Me-PVP) is a substituted cathinone derivative with stimulant effects which has been sold as a designer drug. It was first identified in Sweden in 2021.

<span class="mw-page-title-main">Protonitazene</span> Chemical compound

Protonitazene is a benzimidazole derivative with potent opioid effects which has been sold over the internet as a designer drug since 2019, and has been identified in various European countries, as well as Canada, the USA and Australia. It has been linked to numerous cases of drug overdose, and is a Schedule I drug in the USA.

<span class="mw-page-title-main">Butonitazene</span> Chemical compound

Butonitazene is a benzimidazole derivative with opioid effects, which has been sold over the internet as a designer drug. It has relatively low potency compared to many related compounds, and has generally been encountered as a component of mixtures with other substances rather than in its pure form. However, it is still several times the potency of morphine and has been implicated in several cases of drug overdose. Butonitazene is a Schedule I drug in the USA, along with several related compounds.

<i>N</i>-Desethylisotonitazene Chemical compound

N-Desethylisotonitazene (Norisotonitazene) is a benzimidazole derivative with potent opioid effects which has been sold as a designer drug. It was first identified as an active metabolite of the related compound isotonitazene, but was unexpectedly found to be similar potency compared to the parent compound, and is among the most potent opioid agonists in this family, around 20 times stronger than fentanyl. It has become an increasingly widespread drug of abuse in its own right, linked to numerous cases of drug overdose,and may be considered an analog of a schedule 1 drug in the US. On October 25 an intent to temporarily schedule Etonitazepipne and N-desethyl Isotonitazene was published. So on November 24 a month after publishing intent, it will most likely be placed in schedule 1.

<span class="mw-page-title-main">Etomethazene</span> Chemical compound

Etomethazene (5-methyldesnitroetonitazene) is a benzimidazole derivative with opioid effects which has been sold as a designer drug over the internet since early 2022. It is an analogue of etonitazene where the nitro (NO2) group has been replaced by a methyl (CH3) group. While formal studies into its pharmacology have yet to be carried out, it showed far less potency than etonitazene itself. Etomethazene has a potency around 20 times than morphine with a relatively short duration about 120 min.

<span class="mw-page-title-main">Etoetonitazene</span> Chemical compound

Etoetonitazene is a benzimidazole derivative with opioid effects, first developed in the 1950s as part of the research that led to better-known compounds such as etonitazene. It is an analogue of etonitazene where the ethoxy group has been extended to ethoxyethoxy. It is less potent than etonitazene itself, but is still a potent opioid agonist with around 50x the potency of morphine, and has been sold as a designer drug since around 2022.

References

  1. Ujváry I, Christie R, Evans-Brown M, Gallegos A, Jorge R, de Morais J, Sedefov R (April 2021). "DARK Classics in Chemical Neuroscience: Etonitazene and Related Benzimidazoles". ACS Chemical Neuroscience. 12 (7): 1072–1092. doi:10.1021/acschemneuro.1c00037. PMID   33760580. S2CID   232356192.
  2. Hunger A, Kebrle J, Rossi A, Hoffmann K (1960). "Benzimidazol-Derivate und verwandte Heterocyclen. II. Synthese von 1-Aminoalkyl-2-benzyl-benzimidazolen". Helvetica Chimica Acta (in German). 43 (3): 800–809. doi:10.1002/hlca.19600430323.
  3. Siczek M, Zawadzki M, Siczek M, Chłopaś-Konowałek A, Szpot P (2020). "Etazene (N,N-diethyl-2-{[(4-ethoxyphenyl)methyl]-1H-benzimidazol-1-yl}-ethan-1-amine (dihydrochloride)): a novel benzimidazole opioid NPS identified in seized material: crystal structure and spectroscopic characterization". Forensic Toxicology. doi: 10.1007/s11419-020-00552-9 . ISSN   1860-8973.
  4. Siczek M, Zawadzki M, Siczek M, Chłopaś-Konowałek A, Szpot P (January 2021). "Etazene (N,N-diethyl-2-{[(4-ethoxyphenyl)methyl]-1H-benzimidazol-1-yl}-ethan-1-amine (dihydrochloride)): a novel benzimidazole opioid NPS identified in seized material: crystal structure and spectroscopic characterization". Forensic Toxicology. 39 (1): 146–155. doi: 10.1007/s11419-020-00552-9 . ISSN   1860-8965.
  5. "EU Early Warning System Situation Report. Situation report 1" (PDF). European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). June 2020.