Skorpiovenator

Last updated

Skorpiovenator
Temporal range: Cenomanian-Turonian, 99.6–89.8  Ma
219 Arg ElChocon Museo dino.JPG
Cast of the holotype specimen
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Family: Abelisauridae
Clade: Brachyrostra
Genus: Skorpiovenator
Canale et al. 2009
Type species
Skorpiovenator bustingorryi
Canale et al. 2009

Skorpiovenator ("scorpion hunter") is a genus of abelisaurid theropod dinosaur from the Late Cretaceous (Cenomanian to Turonian) Huincul Formation of Argentina. The sole species of Skorpiovenator, S. bustinggoryi, was named in honour of Manuel Bustingorryi, the late owner of the farm on which the type specimen was discovered. Formally described in 2009, the type specimen is one of the most complete and informative abelisaurids yet known, described from a nearly complete and articulated skeleton. A tibia fragment was assigned to Skorpiovenator in 2022.

Contents

Skorpiovenator was a fairly large abelisaurid. What is preserved of the type specimen measures 4.35 m (14.3 ft) in length. Based on the anatomy of close relatives, it may have been 6–6.2 m (19.7–20.3 ft) long in life, and may have weighed a little under 900 kilograms (2,000 lb). Its skull was short and blunt, and somewhat resembled that of Carnotaurus . Its bone texture was rugose, even by the standards of other abelisaurids, which indicates the presence of large facial scales. The skull is also covered in small pits called foramina, which suggests a strong degree of facial sensitivity.

Discovery and naming

Fossil under preparation 227 Arg ElChocon Laboratorio Scorpiovenator.JPG
Fossil under preparation

The type specimen of Skorpiovenator bustingorryi (MMCH-PV 48K) was discovered on a farm owned by Manuel Bustingorry, 3 km (1.9 mi) northwest of Villa El Chocón, in the Neuquén Province. It consists of a nearly complete skeleton, missing only part of the nasals and premaxillae, parts of the pelvic girdle, sections of the tail, and most of the forelimb elements. The strata from which Skorpiovenator was recovered belong to the lower part of the Huincul Formation in Patagonia, dating to the late Cenomanian stage, about 95 million years ago. After discovery, they were relocated to the Ernesto Bachmann Paleontological Museum of Villa El Chocón, Patagonia, Argentina. In a paper physically published in 2009 (released as an advanced publication online the year before), Juan Canale, Carlos A. Scanferla, Federico L. Agnolin and Fenando E. Novas formally described the specimen, assigning to it the binomial name of Skorpiovenator bustinggoryi. The generic name derives from the Latin words skorpios ("scorpion") and venator ("hunter"), referring to its nature as a predator and the abundance of scorpions at the dig site. The specific name honours Manuel Bustingorry, who had passed away by the time the paper was released. In naming Skorpiovenator, Canale et al. erected a new abelisaurid clade, Brachyrostra, to which it was assigned. [1] In 2022, the proximal (far) end of a right tibia, MMCh-PV255, was assigned to Skorpiovenator. [2]

Description

Size of Skorpiovenator compared to a human SkorpiovenatorSize.svg
Size of Skorpiovenator compared to a human

Body size

The preserved length of the excavated Skorpiovenator skeleton, measured from the premaxilla to the 12th caudal (tail) vertebra is 4.35 m (14.3 ft). Since it lacks most of the tail, precise length measurements are currently impossible, but it has been estimated to have grown up to 6–6.2 m (19.7–20.3 ft) long and weighed up to 891 kilograms (1,964 lb). [1] [3] [4]

Skull and dentition

Skull Skorpiovenator skull.jpg
Skull

The skull of Skorpiovenator, measured from the premaxilla to the quadrate, measured 54.1 cm (21.3 in) in length. [3] It was fairly short and blunt, similar to that of Carnotaurus , though was shorter and deeper than those of Abelisaurus and Majungasaurus . The antorbital fossa is less developed than in other abelisauroids. The postorbital was large, and intersected the orbit (eye socket), to the point where it almost contacted the lacrimal on the opposite side. [1] Consequently, the orbit had a distinctive "keyhole" shape, similar to that of Carnotaurus and the giant coelurosaur Tyrannosaurus rex . [5] The dorsal border of the postorbital was inflated and well-ornamented, similar to that of Ekrixinatosaurus . The bone texture of Skorpiovenator's skull was very rugose, even when compared with other abelisaurids. [6] The rugosities of the snout are hummocky, which are osteological correlates for scales, and the overall pattern of cranial ornamentation is almost identical to that of Rugops . Much of the bone surface, especially on the top of the skull, is covered in small foramina, suggesting extensive innervation from the trigeminal nerve. This suggests the presence of sensitive facial tissues, akin to those seen in many other theropods, [7] including the related Majungasaurus. [8]

Skorpiovenator's maxilla bore 19 teeth, more than in any other abelisaurid. The shape of the tooth crowns is similar to other abelisaurids. They exhibit enamel wrinkles and serrations, and in those regards, resemble the teeth of carcharodontosaurids. [1]

Postcranial skeleton

Restoration Skorpiovenator bustingorryi.jpg
Restoration

With the exception of essentially all of the proximal section of the tail, parts of the pelvic girdle, and most of the forelimb elements, Skorpiovenator's postcranial skeleton is well preserved, though much of the postcranial axial skeleton (the vertebrae and ribs) remains undescribed. [1] [9] The caudal (tail) vertebrae that are preserved have outwardly-projected transverse processes, similar to Aucasaurus and Carnotaurus. The femur is stout, [1] and is almost straight from the front, though is somewhat concave from the side. As in all ceratosaurs, its head is triangular proximally, and is oriented anteromedially (inward and forwards). [2] The anterior surface of the femoral shaft has a well-developed intermuscular line that would have separated the origins of the femorotibialis internus and femorotibialis externus muscles, [2] [10] (knee extensors unique to sauropsids). [10] The cnemial crest was very large, and the ilia had deep preacetabular and postacetabular blades, suggesting that, as in other ablelisaurids, the muscles that extended and flexed the legs were very powerful. The muscles responsible for foot pronation, such as the pronator profundus, appear to have been reduced, though remained present. [10]

Classification

In 2009, Canale et al. published a phylogenetic analysis focusing on the South American carnotaurines. In their results, they found that all South American forms (including Skorpiovenator) grouped together as a sub-clade of Carnotaurinae, which they named Brachyrostra, meaning "short snouts". They defined the clade Brachyrostra as "all the abelisaurids more closely related to Carnotaurus sastrei than to Majungasaurus crenatissimus". Within their topology, Canale et al. recovered Skorpiovenator as part of a sister clade to Carnotaurini, including Ekrixinatosaurus and Ilokolesia , and was the sister taxon of the former. [1] In 2020, Hussam Zaher et al published a paper describing a basal abelisaurid, Spectrovenator ragei . In their topology, this clade was still recovered, though with Ekrixinatosaurus and Ilokolesia as each other's closest relatives. [11] In 2021, Gianechini et al. described another abelisaurid, Llukalkan . Their phylogenetic analysis recovered the same clade, though recovered it as more basal. Whereas Carnotaurini fell within another clade, Furileusauria, in their topology, the clade consisting of Ekrixinatosaurus, Ilokelesia and Skorpiovenator was just outside it. [12]

Below are the topologies recovered by Zaher et al. (2020) [11] and Gianechini et al (2021): [12]

Palaeoecology

The Huincul Formation, from which Skorpiovenator is known, is thought to represent an arid environment with ephemeral or seasonal streams. The age of this formation is estimated at 97 to 93.5 MYA. [13] The dinosaur record is considered sparse here. Skorpiovenator shared its environment with the sauropods Argentinosaurus (one of the largest sauropods, if not the largest), Choconsaurus , Chucarosaurus and Cathartesaura . Three giant carcharodontosaurids, Mapusaurus , Meraxes and Taurovenator , were found in the same formation, though likely were not all coevals. [14] [15] Another abelisaurid, Ilokelesia, also lived in the region. [16]

Fossilized pollen indicates a wide variety of plants was present in the Huincul Formation. A study of the El Zampal section of the formation found hornworts, liverworts, ferns, Selaginellales, possible Noeggerathiales, gymnosperms (including gnetophytes and conifers), and angiosperms (flowering plants), in addition to several pollen grains of unknown affinities. [17] The Huincul Formation is among the richest Patagonian vertebrate associations, preserving fish including dipnoans and gar, chelid turtles, squamates, sphenodonts, neosuchian crocodilians, and a wide variety of dinosaurs. [18] [19] Vertebrates are most commonly found in the lower, and therefore older, part of the formation. [20]

See also

Related Research Articles

<i>Carnotaurus</i> Genus of dinosaur from the Late Cretaceous period

Carnotaurus is a genus of theropod dinosaur that lived in South America during the Late Cretaceous period, probably sometime between 72 and 69 million years ago. The only species is Carnotaurus sastrei. Known from a single well-preserved skeleton, it is one of the best-understood theropods from the Southern Hemisphere. The skeleton, found in 1984, was uncovered in the Chubut Province of Argentina from rocks of the La Colonia Formation. Carnotaurus is a derived member of the Abelisauridae, a group of large theropods that occupied the large predatorial niche in the southern landmasses of Gondwana during the late Cretaceous. Within the Abelisauridae, the genus is often considered a member of the Brachyrostra, a clade of short-snouted forms restricted to South America.

<i>Rugops</i> Genus of dinosaur

Rugops is a monospecific genus of basal abelisaurid theropod dinosaur from Niger that lived during the Late Cretaceous period in what is now the Echkar Formation. The type and only species, Rugops primus, is known only from a partial skull. It was named and described in 2004 by Paul Sereno, Jeffery Wilson and Jack Conrad. Rugops has an estimated length of 4.4–5.3 metres (14–17 ft) and weight of 410 kilograms (900 lb). The top of its skull bears several pits which correlates with overlaying scale and the front of the snout would have had an armour-like dermis.

<span class="mw-page-title-main">Abelisauridae</span> Extinct family of dinosaurs

Abelisauridae is a family of ceratosaurian theropod dinosaurs. Abelisaurids thrived during the Cretaceous period, on the ancient southern supercontinent of Gondwana, and today their fossil remains are found on the modern continents of Africa and South America, as well as on the Indian subcontinent and the island of Madagascar. Isolated teeth were found in the Late Jurassic of Portugal, and the Late Cretaceous genera Tarascosaurus, Arcovenator and Caletodraco have been described in France. Abelisaurids possibly first appeared during the Jurassic period based on fossil records, and some genera survived until the end of the Mesozoic era, around 66 million years ago.

<i>Aucasaurus</i> Extinct genus of dinosaurs

Aucasaurus is a genus of medium-sized abelisaurid theropod dinosaur from Argentina that lived during the Late Cretaceous of the Anacleto Formation. It was smaller than the related Carnotaurus, although more derived in some ways, such as its extremely reduced arms and almost total lack of fingers. The type skeleton is complete to the thirteenth caudal vertebra, and so is relatively well understood, and is the most complete abelisaurid yet described. However, the skull is damaged, causing some paleontologists to speculate that it was involved in a fight prior to death.

<i>Ilokelesia</i> Extinct genus of reptiles

Ilokelesia is an extinct genus of abelisaurid theropod, preserved in the layers of the earliest Late Cretaceous of the Huincul Formation, Neuquén Group, located near Plaza Huincul, Neuquén Province, Argentina. The specimen, consisting of very fragmentary elements of the skull and the axial and appendicular skeleton, was described by Rodolfo Coria and Leonardo Salgado in late 1998.

<i>Mapusaurus</i> Carcharodontosaurid dinosaur genus from the Late Cretaceous

Mapusaurus was a giant carcharodontosaurid carnosaurian dinosaur from Argentina during the Turonian age of the Late Cretaceous.

<i>Ekrixinatosaurus</i> Extinct genus of dinosaur

Ekrixinatosaurus is a genus of abelisaurid theropod which lived approximately 100 to 97 million years ago during the Late Cretaceous period. Its fossils have been found in Argentina. Only one species is currently recognized, Ekrixinatosaurus novasi, from which the specific name honors of Dr. Fernando Novas for his contributions to the study of abelisaurid theropods, while the genus name refers to the dynamiting of the holotype specimen. It was a large abelisaur, measuring between 6.5 and 8 m in length and weighing 800 kg (1,800 lb).

The Huincul Formation is a geologic formation of Late Cretaceous age of the Neuquén Basin that outcrops in the Mendoza, Río Negro and Neuquén Provinces of northern Patagonia, Argentina. It is the second formation in the Río Limay Subgroup, the oldest subgroup within the Neuquén Group. Formerly that subgroup was treated as a formation, and the Huincul Formation was known as the Huincul Member.

<span class="mw-page-title-main">Brachyrostra</span> Extinct subfamily of reptiles

Brachyrostra is a clade within the theropod dinosaur family Abelisauridae. It includes the famous genera Carnotaurus, Abelisaurus, Aucasaurus as well as their close relatives from the Cretaceous Period of Argentina and Brazil plus Caletodraco from France. The group was first proposed in an analysis conducted by Juan Canale and colleagues in 2008. They found that all South American abelisaurids described up to that point grouped together as a sub-clade of Abelisauridae, which they named based on the relatively unusual shape of their skulls. They defined the clade Brachyrostra as "all the abelisaurids more closely related to Carnotaurus sastrei than to Majungasaurus crenatissimus."

<span class="mw-page-title-main">Majungasaurinae</span> Extinct subfamily of reptiles

Majungasaurinae is a subfamily of large carnivorous theropods from the Upper Cretaceous, found in Madagascar, India, Spain, and France. It is a subgroup within the theropod family Abelisauridae, a Gondwanan clade known for their thick and often horned skulls and vestigial arms. The two subfamilies of Abelisauridae are Carnotaurinae, best known from the South American Carnotaurus, and Majungasaurinae, consisting of Madagascar’s Majungasaurus and its closest relatives. Their ancestors emerged in the Middle Jurassic, and the clade lasted until the Upper Cretaceous.

<span class="mw-page-title-main">Timeline of ceratosaur research</span>

This timeline of ceratosaur research is a chronological listing of events in the history of paleontology focused on the ceratosaurs, a group of relatively primitive, often horned, predatory theropod dinosaurs that became the apex predators of the southern hemisphere during the Late Cretaceous. The nature and taxonomic composition of the Ceratosauria has been controversial since the group was first distinguished in the late 19th century. In 1884 Othniel Charles Marsh described the new genus and species Ceratosaurus nasicornis from the Late Jurassic Morrison Formation of the western United States. He felt that it belonged in a new family that he called the Ceratosauridae. He created the new taxon Ceratosauria to include both the Ceratosauridae and the ostrich-like ornithomimids. The idea of the Ceratosauria was soon contested, however. Later that same decade both Lydekker and Marsh's hated rival Edward Drinker Cope argued that the taxon was invalid.

<i>Taurovenator</i> Extinct genus of reptiles

Taurovenator is a large carcharodontosaurid theropod from the late Cretaceous Huincul Formation of Argentina that lived during the Cenomanian age of the Late Cretaceous. It is monotypic, containing only one species, T. violantei.

Tralkasaurus is a genus of abelisaurid dinosaur from the Huincul Formation from Río Negro Province in Argentina. The type and only species is Tralkasaurus cuyi, named in 2020 by Mauricio Cerroni and colleagues based on an incomplete skeleton. A medium-sized abelisaurid, Tralkasaurus exhibits a conflicting blend of characteristics found among the early-diverging abelisauroids with others that characterize the highly specialized clade Brachyrostra, and thus its position within the clade is poorly-resolved.

Kaikaifilusaurus is an extinct genus of rhynchocephalians in the family Sphenodontidae from the Late Cretaceous of South America. Fossils of the genus were found in Cenomanian sediments of the Candeleros Formation and Turonian layers of the Huincul Formation, both of the Neuquén Basin and the Albian strata of the Cerro Barcino Formation in the Cañadón Asfalto Basin, all in Patagonia, Argentina. The genus contains two species, K. minimus and the type species K. calvoi.

<i>Overoraptor</i> Extinct genus of theropod dinosaurs

Overoraptor is an extinct genus of paravian theropod of uncertain affinities from the Late Cretaceous Huincul Formation of Argentinian Patagonia. The genus contains a single species, O. chimentoi, known from several bones of the hands, feet, and hips alongside some vertebrae.

<i>Niebla antiqua</i> Extinct species of dinosaur

Niebla is a genus of abelisaurid theropod dinosaur from the Late Cretaceous Period (Campanian-Maastrichtian) of Río Negro province, Argentina. The genus contains a single species, Niebla antiqua, and is known from a partial, non-articulated skeleton. The holotype, found in the Allen Formation, represents an adult individual about nine years old in minimum age.

<i>Meraxes</i> Genus of carcharodontosaurid dinosaurs

Meraxes is a genus of large carcharodontosaurid theropod dinosaur from the Late Cretaceous Huincul Formation of Patagonia, Argentina. The genus contains a single species, Meraxes gigas.

<i>Chucarosaurus</i> Genus of titanosaurian dinosaurs

Chucarosaurus is an extinct genus of titanosaurian dinosaur from the Late Cretaceous Huincul Formation of Argentina. The genus contains a single species, C. diripienda, known from various limb and pelvic bones.

Sidersaura is an extinct genus of rebbachisaurid sauropod dinosaur from the Late Cretaceous Huincul Formation of Argentina. The genus contains a single species, S. marae, known from the remains of four individuals. Sidersaura represents one of the largest known rebbachisaurids.

<i>Chakisaurus</i> Extinct genus of ornithopod dinosaurs

Chakisaurus is an extinct genus of elasmarian ornithopod dinosaur from the Late Cretaceous Huincul Formation of Argentina. The genus contains a single species, C. nekul, known from multiple partial skeletons belonging to individuals of different ages. Chakisaurus represents the first ornithischian species to be named from the Huincul Formation.

References

  1. 1 2 3 4 5 6 7 Canale, J.I.; Scanferla, C.A.; Agnolin, F.; and Novas, F.E. (2009). "New carnivorous dinosaur from the Late Cretaceous of NW Patagonia and the evolution of abelisaurid theropods". Naturwissenschaften. 96 (3): 409–414. Bibcode:2009NW.....96..409C. doi:10.1007/s00114-008-0487-4. hdl: 11336/52024 . PMID   19057888. S2CID   23619863.
  2. 1 2 3 Cerroni, Mauricio A.; Baiano, Mattia A.; Canale, Juan I.; Agnolín, Federico L.; Otero, Alejandro; Novas, Fernando E. (2022-12-31). "Appendicular osteology of Skorpiovenator bustingorryi (Theropoda, Abelisauridae) with comments on phylogenetic features of abelisaurids". Journal of Systematic Palaeontology. 20 (1): 1–32. doi:10.1080/14772019.2022.2093661. ISSN   1477-2019.
  3. 1 2 Grillo, O. N.; Delcourt, R. (2016). "Allometry and body length of abelisauroid theropods: Pycnonemosaurus nevesi is the new king". Cretaceous Research. 69: 71–89. Bibcode:2017CrRes..69...71G. doi:10.1016/j.cretres.2016.09.001.
  4. Pintore, R.; Hutchinson, J. R.; Bishop, P. J.; Tsai, H. P.; Houssaye, A. (2024). "The evolution of femoral morphology in giant non-avian theropod dinosaurs". Paleobiology. 50 (2): 308–329. Bibcode:2024Pbio...50..308P. doi: 10.1017/pab.2024.6 . PMC   7616063 . PMID   38846629.
  5. Lautenschlager, Stephan (2022-08-11). "Functional and ecomorphological evolution of orbit shape in mesozoic archosaurs is driven by body size and diet". Communications Biology. 5 (1). doi:10.1038/s42003-022-03706-0. ISSN   2399-3642. PMC   9372157 . PMID   35953708.
  6. Delcourt, Rafael (2018-06-27). "Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers". Scientific Reports. 8 (1): 9730. doi:10.1038/s41598-018-28154-x. ISSN   2045-2322. PMC   6021374 .
  7. Cerroni, Mauricio A.; Canale, Juan I.; Novas, Fernando E.; Paulina-Carabajal, Ariana (2022). "An exceptional neurovascular system in abelisaurid theropod skull: New evidence from Skorpiovenator bustingorryi". Journal of Anatomy. 240 (4): 612–626. doi:10.1111/joa.13258. ISSN   1469-7580. PMC   8930818 . PMID   32569442.
  8. Sampson, Scott D.; Witmer, Lawrence M. (2007-06-12). "Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar". Journal of Vertebrate Paleontology. 27. doi:10.1671/0272-4634(2007)27[32:caomct]2.0.co;2. ISSN   0272-4634.
  9. Méndez, Ariel (2012). "The cervical vertebrae of the Late Cretaceous abelisaurid dinosaur Carnotaurus sastrei". Acta Palaeontologica Polonica. doi:10.4202/app.2011.0129. hdl: 11336/32909 .
  10. 1 2 3 Cerroni, Mauricio A.; Otero, Alejandro; Novas, Fernando E. (2025). "Appendicular myology of Skorpiovenator bustingorryi : A first attempt to reconstruct pelvic and hindlimb musculature in an abelisaurid theropod". The Anatomical Record. 308 (1): 114–162. doi:10.1002/ar.25532. ISSN   1932-8486.
  11. 1 2 Zaher, H.; Pol, D.; Navarro, B.A.; Delcourt, R.; Carvalho, A.B. (October 2020). "An Early Cretaceous theropod dinosaur from Brazil sheds light on the cranial evolution of the Abelisauridae" (PDF). Comptes Rendus Palevol. 19 (6): 101–115. doi: 10.5852/cr-palevol2020v19a6 .
  12. 1 2 Gianechini, Federico A.; Méndez, Ariel H.; Filippi, Leonardo S.; Paulina-Carabajal, Ariana; Juárez-Valieri, Rubén D.; Garrido, Alberto C. (2021). "A New Furileusaurian Abelisaurid from La Invernada (Upper Cretaceous, Santonian, Bajo De La Carpa Formation), Northern Patagonia, Argentina". Journal of Vertebrate Paleontology. 40 (6): e1877151. Bibcode:2020JVPal..40E7151G. doi:10.1080/02724634.2020.1877151.
  13. Huincul Formation at Fossilworks.org
  14. Canale, J.I.; Apesteguía, S.; Gallina, P.A.; Mitchell, J.; Smith, N.D.; Cullen, T.M.; Shinya, A.; Haluza, A.; Gianechini, F.A.; Makovicky, P.J. (July 7, 2022). "New giant carnivorous dinosaur reveals convergent evolutionary trends in theropod arm reduction". Current Biology. 32 (14): 3195–3202.e5. Bibcode:2022CBio...32E3195C. doi: 10.1016/j.cub.2022.05.057 . PMID   35803271.
  15. Motta, Matías J.; Aranciaga Rolando, Alexis M.; Rozadilla, Sebastián; Agnolín, Federico E.; Chimento, Nicolás R.; Egli, Federico Brissón; Novas, Fernando E. (June 2016). "New theropod fauna from the Upper Cretaceous (Huincul Formation) of northwestern Patagonia, Argentina". New Mexico Museum of Natural History and Science Bulletin. 71: 231–253 via ResearchGate.
  16. Sánchez, Maria Lidia; Heredia, Susana; Calvo, Jorge O. (2006). "Paleoambientes sedimentarios del Cretácico Superior de la Formación Plottier (Grupo Neuquén), Departamento Confluencia, Neuquén" [Sedimentary paleoenvironments in the Upper Cretaceous Plottier Formation (Neuquen Group), Confluencia, Neuquén]. Revista de la Asociación Geológica Argentina. 61 (1): 3–18 via ResearchGate.
  17. Vallati, P. (2001). "Middle cretaceous microflora from the Huincul Formation ("Dinosaurian Beds") in the Neuquén Basin, Patagonia, Argentina". Palynology. 25 (1): 179–197. Bibcode:2001Paly...25..179V. doi:10.2113/0250179.
  18. Motta, M.J.; Aranciaga Rolando, A.M.; Rozadilla, S.; Agnolín, F.E.; Chimento, N.R.; Egli, F.B.; Novas, F.E. (2016). "New theropod fauna from the upper cretaceous (Huincul Formation) of Northwestern Patagonia, Argentina". New Mexico Museum of Natural History and Science Bulletin. 71: 231–253.
  19. Motta, M.J.; Brissón Egli, F.; Aranciaga Rolando, A.M.; Rozadilla, S.; Gentil, A. R.; Lio, G.; Cerroni, M.; Garcia Marsà, J.; Agnolín, F. L.; D'Angelo, J. S.; Álvarez-Herrera, G. P.; Alsina, C.H.; Novas, F.E. (2019). "New vertebrate remains from the Huincul Formation (Cenomanian–Turonian;Upper Cretaceous) in Río Negro, Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 19 (1): R26. doi: 10.5710/PEAPA.15.04.2019.295 . hdl: 11336/161858 . S2CID   127726069. Archived from the original on December 14, 2019. Retrieved December 14, 2019.
  20. Bellardini, F.; Filippi, L.S. (2018). "New evidence of saurischian dinosaurs from the upper member of the Huincul Formation (Cenomanian) of Neuquén Province, Patagonia, Argentina". Reunión de Comunicaciones de la Asociación Paleontológica Argentina: 10.