Sinosaurus

Last updated

Sinosaurus
Temporal range: Early Jurassic, 201–196  Ma
O
S
D
C
P
T
J
K
Pg
N
Dilophosaurus sinensis - MUSE.jpg
Reconstructed skeleton at Museo delle Scienze of Trento, Italy
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Clade: Neotheropoda
Genus: Sinosaurus
Young, 1940
Type species
Sinosaurus triassicus
Young, 1940
Other species
  • ?S. sinensis
    (Hu, 1993)
Synonyms [1] [2]

Sinosaurus (meaning "Chinese lizard") is an extinct genus of theropod dinosaur which lived during the Early Jurassic Period. It was a bipedal carnivore similar to Dilophosaurus , with proportionally large limbs to its slender body. Fossils of the animal were found at the Lufeng Formation, in the Yunnan Province of China.

Contents

Discovery and naming

The composite term Sinosaurus comes from Sinae, the Latin word for the Chinese, and the Greek word sauros (σαυρος) meaning "lizard"; thus "Chinese lizard". The specific name, triassicus, refers to the Triassic, the period that the fossils were originally thought to date from. Sinosaurus was described and named by Chung Chien Young, who is known as the 'Father of Chinese Vertebrate Paleontology', in 1940. [3]

Maxilla of specimen ZLJT01 Sinosaurus maxilla.jpg
Maxilla of specimen ZLJT01

The holotype, IVPP V34, was found in the Lower Lufeng Formation, and consists of two maxillary (upper jaw) fragments, four maxillary teeth, and a lower jaw fragment with three teeth. The teeth are laterally compressed, and feature fine serrations both at their anterior and posterior edges. The teeth are also variable in size and are curved backwards. This material is too fragmentary to determine the length and weight of this dinosaur. Over the years, other fossils were referred to Sinosaurus, some of which were material that was shown to belong to two sauropodomorphs. [4] [5] The fossils include postcrania, [6] with a sacrum with three preserved sacral vertebrae. The material assigned to "Sinosaurus postcrania" includes a mix of plateosaurid and melanorosaurid elements. All the material from the Red Beds block has now been reassigned to Jingshanosaurus . [7]

Frontal view of mounted skeleton cast. Sinosaurus triassicus 2.JPG
Frontal view of mounted skeleton cast.

KMV 8701 was originally discovered in 1987. The specimen was identified as a new species, and was named Dilophosaurus sinensis. [8] Then in 1994, during a field expedition, a more complete specimen was found, and was assigned to the same species. In 2003, Dong Zhiming studied the material of Sinosaurus triassicus, finding it to be quite similar to Dilophosaurus sinensis. [1] As Sinosaurus was named earlier, "Dilophosaurus" sinensis became its junior synonym. In 2013, a study by Currie et al., confirmed that D. sinensis was the same animal as S. triassicus [9] On the other hand, Wang et al. (2017) stated that it needs to be further investigated whether D. sinensis is indeed a junior synonym of S. triassicus, and noted that the two species are different at least in the anatomy of the premaxilla. The authors tentatively assigned D. sinensis to the genus Sinosaurus, but retained it as a species distinct from Sinosaurus triassicus. [10] Specimen KMV 8701 consists of a skull (measuring 525 mm), and is nearly complete. Dong claimed that animal was about 5.6 m (18 ft) long. [1] It has been assigned now to Sinosaurus, but the specimen still lacks sufficient description and preparation. [11]

Over the years, paleontologists referred additional specimens to D. sinensis which are now assigned to Sinosaurus. Dong (2003) referred specimen LDM-LCA10 which consists of a skull and an incomplete skeleton. [1] In 2012, Xing referred two individuals, ZLJ0003 which consists of a partial skull and an incomplete skeleton, and ZLJT01 which is a juvenile individual that consists of a premaxillary fragment, an incomplete maxilla, a maxillary fragment, a lacrimal, both frontals, both parietals, an incomplete braincase, an incomplete dentary, an atlantal intercentrum, two dorsal rib fragments, and a partial proximal caudal neural arch, to Sinosaurus. [11]

In 2012, a new specimen of Sinosaurus was described, and was found to represent a new species. [11] The species Shuangbaisaurus anlongbaoensis , discovered and named in 2017, has later been considered a synonym of Sinosaurus triassicus. [12] A complete skull with a preserved mandible and 11 cervical vertebrae was described for Sinosaurus in 2023, after it was discovered near the locality where the holotype was found. The specimen also suggests three autapomorphies are unique to this theropod, all regarding crest development and the various fenestrae of the skull. [13]

Description

Sinosaurus was a relatively large theropod during the Early Jurassic. With the use of virtual skeletal mount, Liang et al. (2024) estimated that Sinosaurus was a large theropod around 5.85 metres (19.2 ft) long with a maximum body mass of 895 kilograms (1,973 lb). The authors suggested that since the phylogenetic analysis of Sinosaurus is not well understood, previous estimations based on extant scaling approaches derived from femur length and circumference are unreliable. [14]

Sinosaurus is the only "dilophosaurid" known from a complete braincase. Cryolophosaurus, Dilophosaurus, Zupaysaurus and Coelophysis kayentakatae are all known from partial braincases. Two partial braincases were found before 2012, and are probably mostly complete, except that large sections are obscured by sediments. In 2011, an exceptionally well-preserved braincase was found, only missing the frontal bones and orbitosphenoid. [11]

Classification

Originally thought to be a coelophysoid related to Dilophosaurus and Cryolophosaurus, Oliver Rauhut in 2003 showed Sinosaurus to be a more advanced theropod, related to Cryolophosaurus and "Dilophosaurus" sinensis. [15] In 2013, in an unpublished work, Carano agreed that Sinosaurus is a theropod. [16] Sinosaurus has been considered a nomen dubium in a few works, [8] [17] [18] although now that "Dilophosaurus" sinensis is referred to it, it is considered valid. [1] [2]

Dilophosaurus sinensis was shown to be a junior synonym of Sinosaurus in 2003. [1] It is possibly closer to the Antarctic theropod Cryolophosaurus, based on the fact that the anterior end of the jugal does not participate in the internal antorbital fenestra and that the maxillary tooth row is completely in front of the eye socket. D. sinensis was exhibited in 1998 at Dinofest in Philadelphia. [19] Although the skull of D. sinensis sports large nasolacrimal crests superficially like those reconstructed in D. wetherilli, features elsewhere in the skeleton suggest it is closer to tetanuran theropods. [7] Rauhut (2003) regarded D. sinensis as a basal tetanuran most closely related to Sinosaurus and Cryolophosaurus. [15] Lamanna et al. (1998b) examined the material ascribed to D. sinensis and found it to be synonymous with Sinosaurus triassicus. [20] This cladistic finding was confirmed in 2003 by Dong. [1] [2] [9]

Skull showing notch. Sinosaurus triassicus skull.JPG
Skull showing notch.

The Lufeng Dinosaurian Museum discovered a new specimen of Sinosaurus (ZLJT01) in 2007 from the Lufeng Basin. It consists of an incomplete skull and other postcranial fragments. Phylogenetic analysis of this specimen, demonstrates that Sinosaurus is a more derived theropod, and is not the most basal dilophosaurid, as held by Smith et al. [2] A cladogram was identified by Christophe Hendrickx and Octávio Mateus. It placed Sinosaurus and Cryolophosaurus in a polytomy at the base of Tetanurae. [21]

Theropoda

Recent studies placed Sinosaurus outside the Ceratosauria+Tetanurae clade, [22] [23] [24] while Wang et al. (2016) considered it the basalmost ceratosaur. [25] [26]

Paleobiology

Restoration showing dental abnormality based on ZLJT01. Sinosaurus.jpg
Restoration showing dental abnormality based on ZLJT01.

Crest function

Sinosaurus and Dilophosaurus both possess dual crests. However, it was found that the crests could not be used in combat. [11]

Feeding

The skull of Sinosaurus has a deep notch between the premaxilla and maxilla. Dong (2003) proposed that the notch was used to house jaw muscles, giving Sinosaurus a powerful bite. Based on the estimated power of its jaws, Sinosaurus might have either been a carnivore or a scavenger. Dong suspected that the premaxilla was covered in a narrow, hooked beak, that was used to rip open skin and abdominal flesh. He also thought that the crest would have been used to hold open the abdominal cavity while feeding. Dong studied the feet of Sinosaurus as well, finding a resemblance with the feet of modern vultures. The feet of Sinosaurus were probably adapted to help it feed on large-bodied animals, such as prosauropods. [1] The body shape of Sinosaurus combined with its skull/body length ratio further suggests that Sinosaurus was a fast runner, and relied heavily on both its long front limbs and its jaws to take down its prey. [14]

Paleopathology

A study by Xing et al. (2013) examined the effect of the traumatic loss of teeth on the dental alveolus (the socket in the jaw where the roots of teeth are held) in dinosaurs. Sinosaurus is the first dinosaur where remodeling of the alveolus in the jaw was observed. [2] The authors concluded that this finding "contributes to mounting evidence suggesting theropods were highly resilient to a broad spectrum of traumas and diseases." [2] The dental alveolus found on Sinosaurus is the first documented dental pathology found on a dinosaur. [11]

Paleoecology

Provenance and occurrence

Drawing of a Sinosaurus feeding on a Yunnanosaurus Diloph sin DB1.jpg
Drawing of a Sinosaurus feeding on a Yunnanosaurus

The type specimen of Sinosaurus triassicus IVPP V34 was recovered in the Zhangjiawa Member of the Lufeng Formation, in Yunnan, China. These remains were discovered at the Dark Red Beds that were deposited during the Sinemurian stage of the Jurassic period, approximately 196-183 million years ago. Several other discoveries referred to Sinosaurus were made in the Zhangjiawa Member: specimens IVPP V97 (postcrania), IVPP V36 (teeth), IVPP 37 (teeth), IVPP V88 (ilium), IVPP V35 (teeth and postcranial bones), IVPP V100 and IVPP V48 (teeth and postcranial bones) discovered in 1938 by M. Bien & C.C. Young, [27] FMNH CUP 2001–2003 discovered by E. Oehler and Hu. [28] Specimens FMNH CUP 2097, FMNH CUP 2098, FMNH CUP 2004, FMNH CUP 2005 were discovered in 1948 by M. Bien & C.C. Young at Zhangjiawa Member, as well. [29] Sinosaurus sp. fossils have been found in the Zhenzhuchong Formation, and were previously thought to be a poposaur, although they might have only been from the equivalent Lufeng Formation. [30]

Specimen IVPP V504, referred to Sinosaurus, a maxilla with four teeth, was collected by Lee in the 1940s, in the Dull Purplish Beds of Shawan Member of the Lufeng Formation, that were deposited during the Hettangian stage of the Jurassic period, approximately 201-199 million years ago. Several other discoveries were made in the Shawan Member: parts of two skeletons attributed to Sinosaurus were discovered by Sou in 1956, [31] specimen IVPP V279 (tooth) was discovered by C.C. Young in 1938, in dark red clayish sandstone, and specimen IVPP V381 (several teeth) was discovered by C.C. Young, in blue mudstone. [27] The D. sinensis remains, KMV 8701, a nearly complete skeleton, now referred to Sinosaurus, were recovered in the Shawan Member of Lufeng Formation. This material was discovered in 1987 in the Dull Purplish Beds that were deposited during the Hettangian stage of the Early Jurassic, approximately 201-199 million years ago.

Fauna and habitat

In the Lufeng Formation, Sinosaurus shared its paleoenvironment with therapsids like Morganucodon , Oligokyphus , and Bienotherium ; archosaurs like Pachysuchus ; diapsids like Strigosuchus ; crocodylomorphs like Platyognathus and Microchampsa ; the early mammal Hadrocodium ; and other early reptiles. [32] Contemporary dinosaurs include indeterminate sauropods; the early thyreophorans Bienosaurus lufengensis and Tatisaurus oehleri ; the supposed chimeric ornithopod "Dianchungosaurus lufengensis"; the prosauropods Gyposaurus sinensis , Lufengosaurus huenei , L. magnus , Jingshanosaurus xinwaiensis , [32] Kunmingosaurus wudingensis , Chinshakiangosaurus chunghoensis , Yunnanosaurus huangi , "Y." robustus, and an unnamed taxon; and the theropods Lukousaurus , Eshanosaurus , and Coelophysis sp.

Changpeipus footprints have been found in the Lufeng Formation. [11] In 2009, a study led by Li-Da Xing found that footprints from the Lufeng Formation were unique among ichnogenera, and named the footprints Changpeipus pareschequier. The study hypothesized that they were produced by a coelophysoid; there are many possible trackmakers, however, including both Sinosaurus and Coelophysis sp. [18]

Related Research Articles

<i>Dilophosaurus</i> Genus of theropod dinosaur from Early Jurassic

Dilophosaurus is a genus of theropod dinosaurs that lived in what is now North America during the Early Jurassic, about 186 million years ago. Three skeletons were discovered in northern Arizona in 1940, and the two best preserved were collected in 1942. The most complete specimen became the holotype of a new species in the genus Megalosaurus, named M. wetherilli by Samuel P. Welles in 1954. Welles found a larger skeleton belonging to the same species in 1964. Realizing it bore crests on its skull, he assigned the species to the new genus Dilophosaurus in 1970, as Dilophosaurus wetherilli. The genus name means "two-crested lizard", and the species name honors John Wetherill, a Navajo councilor. Further specimens have since been found, including an infant. Fossil footprints have also been attributed to the animal, including resting traces. Another species, Dilophosaurus sinensis from China, was named in 1993, but was later found to belong to the genus Sinosaurus.

Cryolophosaurus is a genus of large theropod dinosaur known from only a single species Cryolophosaurus ellioti, from the early Jurassic of Antarctica. It was one of the largest theropods of the Early Jurassic, with the subadult being estimated to have reached 6–7 metres (20–23 ft) long and weighed 350–465 kilograms (772–1,025 lb).

<span class="mw-page-title-main">Therizinosauria</span> Extinct clade of dinosaurs

Therizinosaurs are an extinct group of large herbivorous theropod dinosaurs whose fossils have been mainly discovered from Cretaceous deposits in Asia and North America. Potential fragmentary remains have also been found in Jurassic deposits of Asia and Europe. Various features of the forelimbs, skull and pelvis unite these finds as both theropods and maniraptorans, making them relatives of birds. The name of the representative genus, Therizinosaurus, is derived from the Greek θερίζω and σαῦρος. The older representative, Segnosaurus, is derived from the Latin sēgnis ('slow') and the Greek σαῦρος.

<i>Monolophosaurus</i> Extinct genus of dinosaurs

Monolophosaurus is an extinct genus of tetanuran theropod dinosaur from the Middle Jurassic Shishugou Formation in what is now Xinjiang, China. It was named for the single crest on top of its skull. Monolophosaurus was a mid-sized theropod at about 5–5.5 metres (16–18 ft) long and weighed 475 kilograms (1,047 lb).

<i>Lufengosaurus</i> Sauropodomorph massospondylid dinosaur genus from Early Jurassic period

Lufengosaurus is a genus of massospondylid dinosaur which lived during the Early Jurassic period in what is now southwestern China.

<i>Yunnanosaurus</i> Extinct genus of dinosaurs

Yunnanosaurus is an extinct genus of sauropodomorph dinosaur that lived approximately 199 to 183 million years ago in what is now the Yunnan Province, in China, for which it was named. Yunnanosaurus was a large sized, moderately-built, ground-dwelling, quadrupedal herbivore, that could also walk bipedally, and ranged in size from 7 meters (23 feet) long and 2 m (6.5 ft) high to 4 m (13 ft) high in the largest species.

<i>Zupaysaurus</i> Extinct genus of dinosaurs

Zupaysaurus is an extinct genus of early theropod dinosaur living during the Norian stage of the Late Triassic in what is now Argentina. Fossils of the dinosaur were found in the Los Colorados Formation of the Ischigualasto-Villa Unión Basin in northwestern Argentina. Although a full skeleton has not yet been discovered, Zupaysaurus can be considered a bipedal predator, up to 4 metres (13 ft) long. It may have had two parallel crests running the length of its snout.

<i>Bienosaurus</i> Extinct genus of dinosaurs

Bienosaurus is a dubious genus of thyreophoran dinosaur from the Lower Jurassic Lower Lufeng Formation in Yunnan Province in China.

<i>Gyposaurus</i> Extinct genus of reptiles

Gyposaurus is a genus of basal sauropodomorph dinosaur from the early Jurassic of South Africa. It is usually considered to represent juveniles of other prosauropods, but "G." sinensis is regarded as a possibly valid species.

Chuandongocoelurus is a genus of carnivorous tetanuran theropod dinosaur from the Jurassic of China.

<i>Szechuanosaurus</i> Extinct genus of dinosaurs

Szechuanosaurus is an extinct genus of carnivorous theropod dinosaur from the Late Jurassic. Fossils referred to the genus have been found in China, Asia in the Oxfordian-?Tithonian. Its type species is based on several undiagnostic teeth from the Kuangyuan Series. Additional possible specimens of Szechuanosaurus were also reported from the Kalaza Formation, also located in China.

Eshanosaurus is a genus of a dinosaur from the early Jurassic Period. It is known only from a fossil partial lower jawbone, found in China. It may be a therizinosaurian, and if so the earliest known coelurosaur.

<i>Kelmayisaurus</i> Extinct genus of dinosaurs

Kelmayisaurus is an extinct genus of carcharodontosaurid theropod dinosaur from the Early Cretaceous. It was roughly 10–12 meters long and its name refers to the petroleum-producing city of Karamay in the Xinjiang province of western China near where it was found.

<i>Lukousaurus</i> Extinct species of reptile

Lukousaurus is an archosauromorph based on most of a small skull's snout, displaying distinctive lachrymal horns, found in the Early Jurassic-age Lower Lufeng Formation, Yunnan, China and was described by Chung Chien Young in 1940. The generic name refers to the Lugou Bridge, lit. “crossroads”, near Beijing, where the Sino-Japanese War started. L. yini is tentatively classified as a theropod dinosaur by some allied to ceratosaurs, by others a coelurosaur. Its skull is rather robust for its size though the teeth were described by the author as typically theropodan. Whatever Lukousaurus was, it was definitely an archosauromorph.

The Lufeng Formation is a Lower Jurassic sedimentary rock formation found in Yunnan, China. It has two units: the lower Dull Purplish Beds/Shawan Member are of Hettangian age, and Dark Red Beds/Zhangjia'ao Member are of Sinemurian age. It is known for its fossils of early dinosaurs. The Dull Purplish Beds have yielded the possible therizinosaur Eshanosaurus, the possible theropod Lukousaurus, and the "prosauropods" "Gyposaurus" sinensis, Lufengosaurus, Jingshanosaurus, and Yunnanosaurus. Dinosaurs discovered in the Dark Red Beds include the theropod Sinosaurus triassicus, the "prosauropods" "Gyposaurus", Lufengosaurus, and Yunnanosaurus, indeterminate remains of sauropods, and the early armored dinosaurs Bienosaurus and Tatisaurus.

<i>Shidaisaurus</i> Extinct genus of dinosaurs

Shidaisaurus is a genus of metriacanthosaurid dinosaur. Its fossil was found in early Middle Jurassic-age rocks of the Chuanjie Formation in Yunnan, China. It is known from a partial skeleton, holotype DML-LCA 9701-IV, found at the bottom of an assemblage of nine dinosaur individuals, lacking most of the tail vertebrae, ribs, pectoral girdle, and limb bones. Shidaisaurus was described in 2009 by Wu and colleagues. The type species is Shidaisaurus jinae. Generic name and specific name in combination refer to the Jin-Shidai Company that oversaw excavation and inspection of the Jurassic World Park near the site.

<i>Limusaurus</i> Genus of theropod dinosaur

Limusaurus is a genus of theropod dinosaur that lived in what is now China during the Late Jurassic, around 161 to 157 million years ago. The type and only species Limusaurus inextricabilis was described in 2009 from specimens found in the Upper Shishugou Formation in the Junggar Basin of China. The genus name consists of the Latin words for "mud" and "lizard", and the species name means "impossible to extricate", both referring to these specimens possibly dying after being mired. Limusaurus was a small, slender animal, about 1.7 m in length and 15 kg (33 lb) in weight, which had a long neck and legs but very small forelimbs. It underwent a drastic morphological transformation as it aged: while juveniles were toothed, these teeth were completely lost and replaced by a beak with age. Several of these features were convergently similar to the later ornithomimid theropods as well as the earlier non-dinosaurian shuvosaurids.

Aorun is a genus of carnivorous theropod dinosaur first discovered in 2006, with its scientific description published in 2013. It is possibly one of the oldest known coelurosaurian dinosaurs and is estimated to have lived ~161.6 million years ago during the Late Jurassic Period.

Panguraptor is a genus of coelophysid theropod dinosaur known from fossils discovered in Lower Jurassic rocks of southern China. The type and only known species is Panguraptor lufengensis. The generic name refers to the deity Pangu but also to the supercontinent Pangaea for which in a geological context the same characters are used: 盘古. Raptor means "seizer", "robber" in Latin. The specific name is a reference to the Lufeng Formation. The holotype specimen was recovered on 12 October 2007 from the Lufeng Formation of Yunnan, which is noted for sauropodomorph fossils. It was described in 2014 by You Hai-Lu and colleagues.

Shuangbaisaurus is genus of theropod dinosaur, possibly a junior synonym of Sinosaurus. It lived in the Early Jurassic of Yunnan Province, China, and is represented by a single species, S. anlongbaoensis, known from a partial skull. Like the theropods Dilophosaurus and Sinosaurus,Shuangbaisaurus bore a pair of thin, midline crests on its skull. Unusually, these crests extended backwards over the level of the eyes, which, along with the unusual orientation of the jugal bone, led the describers to name it as a new genus. However, Shuangbaisaurus also possesses a groove between its premaxilla and maxilla, a characteristic which has been used to characterize Sinosaurus as a genus. Among the two morphotypes present within the genus Sinosaurus, Shuangbaisaurus more closely resembles the morphotype that is variably treated as a distinct species, S. sinensis, in its relatively tall skull.

References

  1. 1 2 3 4 5 6 7 8 Dong, Z.M. (2003). "Contribution of New Dinosaur Materials from China to Dinosaurology" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 2: 123–131.
  2. 1 2 3 4 5 6 Xing, L.D.; Bell, P.R.; Rothschild, B.M.; Ran, H.; Zhang, J.P.; Dong, Z.M.; Zhang, W.; Currie, P.J. (2013). "Tooth loss and alveolar remodeling in Sinosaurus triassicus (Dinosauria: Theropoda) from the Lower Jurassic strata of the Lufeng Basin, China". Chinese Science Bulletin. 58 (16): 1931–1935. Bibcode:2013ChSBu..58.1931X. doi: 10.1007/s11434-013-5765-7 . ISSN   1861-9541.
  3. Chung-Chien, Young (1940). "Preliminary Notes on the Lufeng Vertebrate Fossils*: Young:-Lufeng Vertebrate Fossils". Bulletin of the Geological Society of China. 20 (3–4): 235–240. doi:10.1111/j.1755-6724.1940.mp203-4003.x.
  4. Walker, A.D. (1964). "Triassic Reptiles from the Elgin area: Ornithosuchus and the origin of Carnosaurs". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 248 (744): 53–134. Bibcode:1964RSPTB.248...53W. doi: 10.1098/rstb.1964.0009 . JSTOR   2416617.
  5. Young, C.C. (1951). "The Lufeng saurischian fauna in China". Palaeontologica Sinica (13): 1–96.
  6. Glut, D.F. (2003). Dinosaurs, The Encyclopedia: Supplement 3. McFarland & Company. p. 495. ISBN   978-0-7864-1166-5.
  7. 1 2 Weishampel, D.B.; Dodson, P.; Osmolska, H. (2004). The Dinosauria (Second ed.). Berkeley: University of California Press. pp. 244–252. ISBN   978-0-520-24209-8.
  8. 1 2 Irmis, Randall (2004-12-22). "First Report of Megapnosaurus from China" (PDF). PaleoBios. 24 (3): 11–18. Archived from the original (PDF) on 2008-12-17.
  9. 1 2 Currie, Xing, Wu and Dong, in prep. "Anatomy and relationships of Sinosaurus triassicus ("Dilophosaurus sinensis") from the Lufeng Formation (Lower Jurassic) of Yunnan, China".
  10. Guo-Fu Wang; Hai-Lu You; Shi-Gang Pan; Tao Wang (2017). "A new crested theropod dinosaur from the Early Jurassic of Yunnan Province, China". Vertebrata PalAsiatica. 55 (2): 177–186.
  11. 1 2 3 4 5 6 7 Xing, L.D. (2012). "Sinosaurus from Southwestern China". Department of Biological Sciences, University of Alberta: 1–286. doi:10.7939/R3HP8F. hdl:10402/era.28454.
  12. Murray, Alison; LeBlanc, Aaron; Holmes, Robert (2019-05-01). "Canadian Society of Vertebrate Palaeontology Abstracts 2019". Vertebrate Anatomy Morphology Palaeontology. 7. doi: 10.18435/vamp29349 . ISSN   2292-1389.
  13. Zhang, Z.-C.; Wang, T.; You, H.-L. (2023). "A New Specimen of Sinosaurus triassicus (Dinosauria: Theropoda) from the Early Jurassic of Lufeng, Yunnan, China". Historical Biology. 36 (4): 857–871. doi: 10.1080/08912963.2023.2190760 .
  14. 1 2 Liang, Qingqing; Falkingham, Peter Lewis; Xing, Lida (2024-08-15). "Virtual skeleton and body mass for revealing the life strategies of Sinosaurus". Historical Biology: 1–15. doi:10.1080/08912963.2024.2385615. ISSN   0891-2963.
  15. 1 2 Rauhut, O.W.M. (2003). "The interrelationships and evolution of basal theropod dinosaurs". Special Papers in Palaeontology. 69: 215.
  16. M. T. Carrano. 2013. Taxonomic opinions on the Dinosauria.
  17. Glut, D.F. (2006). Dinosaurs, The Encyclopedia: Supplement 4 (4 ed.). McFarland & Company. p. 139. ISBN   978-0-7864-2295-1.
  18. 1 2 Xing, L.D.; Harris, J.D.; Toru, S.; Masato, T.; Dong, Z.M. (2009). "Discovery of Dinosaur Footprints from the Lower Jurassic Lufeng Formation of Yunnan Province, and new observations on Changpeipus" (PDF). Geological Bulletin of China. 28 (1): 16–29. ISSN   1671-2552.
  19. Glut, D. F. (1999). Dinosaurs, the Encyclopedia, Supplement 1: McFarland & Company, Inc., 442pp.
  20. Lamanna, M. C., Holtz, T. R. Jr, and Dodson, P., 1998, A reassessment of the Chinese Theropod Dinosaur Dilophosaurus sinensis: Journal of Vertebrate Paleontology, Volume 18, Supplement to Number 3. Abstracts of papers. Fifty-eighth annual meeting, Society of Vertebrate Paleontology, Snowbird Ski and Summer Resort, Snowbird, Utah, September 30 – October 3, 1998, p. 57a.
  21. Hendrickx, C.; Mateus, O.V. (2014). Evans, Alistair Robert (ed.). "Torvosaurus gurneyi n. sp., the Largest Terrestrial Predator from Europe, and a Proposed Terminology of the Maxilla Anatomy in Nonavian Theropods". PLOS ONE. 9 (3): e88905. Bibcode:2014PLoSO...988905H. doi: 10.1371/journal.pone.0088905 . PMC   3943790 . PMID   24598585.
  22. Sorkin, Boris (2015). "A re-evaluation of several character states in non-coelurosaurian Tetanurae (Dinosauria: Theropoda) with implications for phylogeny of basal tetanurans". Journal of Vertebrate Paleontology.
  23. Sasso, Cristiano Dal; Maganuco, Simone; Cau, Andrea (2018-12-19). "The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds". PeerJ. 6: e5976. doi: 10.7717/peerj.5976 . ISSN   2167-8359. PMC   6304160 . PMID   30588396.
  24. Rauhut, Oliver W. M.; Pol, Diego (2019-12-11). "Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs". Scientific Reports. 9 (1): 18826. Bibcode:2019NatSR...918826R. doi:10.1038/s41598-019-53672-7. ISSN   2045-2322. PMC   6906444 . PMID   31827108.
  25. Wang, Shuo; Stiegler, Josef; Amiot, Romain; Wang, Xu; Du, Guo-hao; Clark, James M.; Xu, Xing (2017-01-09). "Extreme Ontogenetic Changes in a Ceratosaurian Theropod". Current Biology. 27 (1): 144–148. doi: 10.1016/j.cub.2016.10.043 . ISSN   0960-9822. PMID   28017609.
  26. Baiano, Mattia A.; Coria, Rodolfo A.; Cau, Andrea (2020). "A new abelisauroid (Dinosauria: Theropoda) from the Huincul Formation (lower Upper Cretaceous, Neuquén Basin) of Patagonia, Argentina". Cretaceous Research. 110: 104408. Bibcode:2020CrRes.11004408B. doi:10.1016/j.cretres.2020.104408. S2CID   214118853.
  27. 1 2 M. N. Bien. 1940. Discovery of Triassic saurischian and primitive mammalian remains at Lufeng, Yunnan. Bulletin of the Geological Society of China 20(3/4):225-234
  28. D. J. Simmons. 1965. The non-therapsid reptiles of the Lufeng Basin, Yunnan, China. Fieldiana: Geology 15(1):1–93
  29. B. Patterson and E. C. Olson. 1961. A triconodont mammal from the Triassic of Yunnan. In G. Vandebroek (ed.), International Colloquium on the Evolution of Lower and Non Specialized Mammals. Koninklijke Vlaamse Academir voor Wetenschappen, Letteren en Schone Kunsten can Belgie 129–191
  30. Xing, L.D.; Lockley, M.G.; Chen, W.; Gierlinski, G.D.; Li, J.J.; Persons IV, W.S.; Matsukawa, M.; Ye, Y.; Gingras, M.K.; Wang, C.W. (2013). "Two theropod track assemblages from the Jurassic of Chongqing, China, and the Jurassic Stratigraphy of Sichuan Basin" (PDF). Vertebrata PalAsiatica. 51 (2): 107–130. ISSN   1000-3118.
  31. C.-C. Young. 1966. On a new locality of the Lufengosaurus of Yunnan. Vertebrata PalAsiatica 10(1):64–67
  32. 1 2 Y. Zhang, and Z. Yang. (1995). A new complete osteology of Prosauropoda in Lufeng Basin, Yunnan, China. Yunnan Publishing House of Science and Technology, Kunming, China 1–100. [Chinese]