Archaeornithomimus

Last updated

Contents

Archaeornithomimus
Temporal range: Late Cretaceous,
~96  Ma
O
S
D
C
P
T
J
K
Pg
N
ArchaeornithomimusAsiaticus-PaleozoologicalMuseumOfChina-May23-08.jpg
Archaeornithomimus asiaticus skeleton mounted at the Paleozoological Museum of China.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Clade: Ornithomimosauria
Family: Ornithomimidae
Genus: Archaeornithomimus
Russell, 1972
Species
  • A. asiaticus(Gilmore, 1933 [originally Ornithomimus asiaticus]) (type)
  • ?†A. bissektensisNesov, 1995

Archaeornithomimus (meaning "ancient bird mimic") is a genus of ornithomimosaurian theropod dinosaur that lived in Asia during the Late Cretaceous period, around 96 million years ago in the Iren Dabasu Formation.

Discovery and naming

Cervical vertebra (specimen AMNH FARB 21786) in multiple views Archaeornithomimus cervical vertebra.PNG
Cervical vertebra (specimen AMNH FARB 21786) in multiple views

In 1923, during the American Museum of Natural History expedition by Roy Chapman Andrews to Inner Mongolia, Peter Kaisen discovered numerous theropod remains in three quarries. They consist of the largely disarticulated remains of several individuals and material of the skull and the lower jaws is lacking. These were named and shortly described by Charles Whitney Gilmore in 1933 as a new species of Ornithomimus : Ornithomimus asiaticus. The specific name refers to the Asian provenance. [1] The species was placed in the new genus Archaeornithomimus by Dale Russell in 1972, making Archaeornithomimus asiaticus the type species of the genus. The generic name combines that of Ornithomimus with a Greek ἀρχαῖος (archaios), "ancient", because Russell believed that the layers in which Archaeornithomimus was found dated to the Cenomanian-Turonian ages, about 95 million years ago, making it one of the oldest ornithomimids known at the time. [2] Gilmore had not assigned a holotype specimen; in 1990 David Smith and Peter Galton in the first comprehensive description of the fossils, choose specimen AMNH 6565, a foot, as the lectotype. [3] The fossils were found in the Iren Dabasu Formation, which has been dated to the Cenomanian age, around 95.8 ± 6.2 million years ago. [4]

Foot bones found in the Early Cretaceous Arundel Formation of Maryland were referred by Othniel Charles Marsh to Allosaurus medius in 1888. [5] In 1911 Richard Swann Lull named these as a new species of Dryptosaurus : Dryptosaurus grandis. [6] In 1920 Gilmore renamed them to a new species of Ornithomimus. However, because Ornithomimus grandis already existed, he renamed the species Ornithomimus affinis. [7] In 1972 Dale Russell renamed them as a second species of Archaeornithomimus: Archaeornithomimus affinis. [2] However, in 1990 Smith and Galton concluded that the remains were not ornithomimosaurian and came from some other small theropod. [3]

In 1995 a supposed third species of Archaeornithomimus was named by Lev A. Nesov: Archaeornithomimus bissektensis, based on the holotype N 479/12457, a femur and metatarsals of a juvenile, found in the Bissekty Formation of Uzbekistan, dating to the Turonian-Coniacian. [8] Nevertheless, the affinity of A. bissektensis is generally doubted or not mentioned. [9] [10] [11]

Description

Size comparison with an average human male Archaeornithomimus size.png
Size comparison with an average human male
Life restoration Archaeornithomimus.png
Life restoration

Archaeornithomimus was a medium sized ornithomimosaur, reaching 3.4 m (11 ft) long and weighing over 71.5 kilograms (158 lb). [12] [13] Solid evidence coming from other ornithomimosaurian relatives suggest that Archaeornithomimus was a feathered animal, with very ratite-like feathers [14] [15] and equipped with a keratinous beak. [16] [17]

The hindlimbs were robustly built. The third metatarsal was not pinched at the upper end, so the foot was not arctometatarsalian. [3] The cervical vertebrae are highly pneumatized with very complex internal chambers across the neural arches and the centrum (body of the vertebra), indicating the presence of cervical air sacs. The anterior dorsal and some caudal vertebrae features some degree of pneumacity, however, the sacral vertebrae are apneumatic. [10] In a 2001 study conducted by Bruce Rothschild and other paleontologists, 229 foot bones referred to Archaeornithomimus were examined for signs of stress fracture, but none were found. [18]

Classification

Skeletal mount in the Inner Mongolia Museum Archaeornithomimus skeletal mount.jpg
Skeletal mount in the Inner Mongolia Museum

Russell assigned Archaeornithomimus to the Ornithomimidae. [2] Recent cladistic analyses either confirm this or recover the species outside of the Ornithomimidae, basal in the Ornithomimosauria. During the description of Hesperornithoides , an extensive Coelurosauria phylogenetic analysis (also known as the Lori matrix) was conducted in order to determine the position of this paravian. Here, Archaeornithomimus was recovered within the Garudimimidae being a relative of Arkansaurus : [11]

Ornithomimosauria

Paleoecology

Restoration of two Gigantoraptors protecting their nest from two Archaeornithomimus and an Alectrosaurus Gigantoraptor and Alectrosaurus.jpg
Restoration of two Gigantoraptors protecting their nest from two Archaeornithomimus and an Alectrosaurus

The remains of Archaeornithomimus were found in the Iren Dabasu Formation, which dates back to the Cenomanian stage about 96 million years ago during the Late Cretaceous period. [4] The environments present on the formation were mainly large floodplain terrains with braided rivers and meanders [19] [20] that were connected to the ocean, [21] supporting extensive vegetation as seen on the palaeosol development and the numerous remains from herbivorous dinosaurs such as hadrosauroids. [19]

Like other members of the Ornithomimosauria, Archaeornithomimus was likely an omnivore equipped with a horny beak, eating everything from small mammals, to plants and fruit, to eggs, and even hatchlings of other Asian dinosaurs. [16] [17]

Other dinosaurs that co-existed with Archaeornithomimus in the formation included other theropods, such as Alectrosaurus , Erliansaurus , Gigantoraptor and Neimongosaurus . Herbivorous dinosaurs were represented by Bactrosaurus , Gilmoreosaurus and Sonidosaurus . [22]

See also

Related Research Articles

<span class="mw-page-title-main">Ornithomimosauria</span> Extinct clade of theropod dinosaurs

Ornithomimosauria are theropod dinosaurs which bore a superficial resemblance to the modern-day ostrich. They were fast, omnivorous or herbivorous dinosaurs from the Cretaceous Period of Laurasia, as well as Africa and possibly Australia. The group first appeared in the Early Cretaceous and persisted until the Late Cretaceous. Primitive members of the group include Nqwebasaurus, Pelecanimimus, Shenzhousaurus, Hexing and Deinocheirus, the arms of which reached 2.4 m (8 feet) in length. More advanced species, members of the family Ornithomimidae, include Gallimimus, Struthiomimus, and Ornithomimus. Some paleontologists, like Paul Sereno, consider the enigmatic alvarezsaurids to be close relatives of the ornithomimosaurs and place them together in the superfamily Ornithomimoidea.

<i>Struthiomimus</i> Extinct genus of reptile

Struthiomimus, meaning "ostrich-mimic", is a genus of ornithomimid dinosaurs from the late Cretaceous of North America. Ornithomimids were long-legged, bipedal, ostrich-like dinosaurs with toothless beaks. The type species, Struthiomimus altus, is one of the more common, smaller dinosaurs found in Dinosaur Provincial Park; their overall abundance—in addition to their toothless beak—suggests that these animals were mainly herbivorous or omnivorous, rather than purely carnivorous. Similar to the modern extant ostriches, emus, and rheas, ornithomimid dinosaurs likely lived as opportunistic omnivores, supplementing a largely plant-based diet with a variety of small mammals, reptiles, amphibians, insects, invertebrates, and anything else they could fit into their mouth, as they foraged.

<i>Ornithomimus</i> Ornithomimid dinosaur genus from the Late Cretaceous Period

Ornithomimus is a genus of ornithomimid theropod dinosaurs from the Campanian and Maastrichtian ages of Late Cretaceous Western North America. Ornithomimus was a swift, bipedal dinosaur which fossil evidence indicates was covered in feathers and equipped with a small toothless beak that may indicate an omnivorous diet. It is usually classified into two species: the type species, Ornithomimus velox, and a referred species, Ornithomimus edmontonicus. O. velox was named in 1890 by Othniel Charles Marsh on the basis of a foot and partial hand from the Denver Formation of Colorado. Another seventeen species have been named since then, though almost all of them have been subsequently assigned to new genera or shown to be not directly related to Ornithomimus velox. The best material of species still considered part of the genus has been found in Alberta, representing the species O. edmontonicus, known from several skeletons from the Horseshoe Canyon Formation. Additional species and specimens from other formations are sometimes classified as Ornithomimus, such as Ornithomimus samueli from the earlier Dinosaur Park Formation.

<i>Dromiceiomimus</i> Extinct genus of reptiles

Dromiceiomimus is a genus of ornithomimid theropod from the Late Cretaceous of Alberta, Canada. The type species, D. brevitertius, is considered a synonym of Ornithomimus edmontonicus by some authors, while others consider it a distinct and valid taxon. It was a small ornithomimid that weighed about 135 kilograms (298 lb).

<i>Deinocheirus</i> Genus of theropod dinosaurs

Deinocheirus is a genus of large ornithomimosaur that lived during the Late Cretaceous around 70 million years ago. In 1965, a pair of large arms, shoulder girdles, and a few other bones of a new dinosaur were first discovered in the Nemegt Formation of Mongolia. In 1970, this specimen became the holotype of the only species within the genus, Deinocheirus mirificus; the genus name is Greek for "horrible hand". No further remains were discovered for almost fifty years, and its nature remained a mystery. Two more complete specimens were described in 2014, which shed light on many aspects of the animal. Parts of these new specimens had been looted from Mongolia some years before, but were repatriated in 2014.

<i>Garudimimus</i> Ornithomimosaur genus from the Late Cretaceous

Garudimimus is a genus of ornithomimosaur that lived in Asia during the Late Cretaceous. The genus is known from a single specimen found in 1981 by a Soviet-Mongolian paleontological expedition in the Bayan Shireh Formation and formally described in the same year by Rinchen Barsbold; the only species is Garudimimus brevipes. Several interpretations about the anatomical traits of Garudimimus were made in posterior examinations of the specimen, but most of them were criticized during its comprehensive redescription in 2005. Extensive undescribed ornithomimosaur remains at the type locality of Garudimimus may represent additional specimens of the genus.

<i>Alectrosaurus</i> Extinct genus of dinosaurs

Alectrosaurus is a genus of tyrannosauroid theropod dinosaur that lived in Asia during the Late Cretaceous period, about some 96 million years ago in what is now the Iren Dabasu Formation.

<span class="mw-page-title-main">Philip J. Currie</span> Canadian paleontologist and curator

Philip John Currie is a Canadian palaeontologist and museum curator who helped found the Royal Tyrrell Museum of Palaeontology in Drumheller, Alberta and is now a professor at the University of Alberta in Edmonton. In the 1980s, he became the director of the Canada-China Dinosaur Project, the first cooperative palaeontological partnering between China and the West since the Central Asiatic Expeditions in the 1920s, and helped describe some of the first feathered dinosaurs. He is one of the primary editors of the influential Encyclopedia of Dinosaurs, and his areas of expertise include theropods, the origin of birds, and dinosaurian migration patterns and herding behavior. He was one of the models for palaeontologist Alan Grant in the film Jurassic Park.

<span class="mw-page-title-main">Bayan Shireh Formation</span> Geological formation in Mongolia

The Bayan Shireh Formation is a geological formation in Mongolia, that dates to the Cretaceous period. It was first described and established by Vasiliev et al. 1959.

<span class="mw-page-title-main">Ornithomimidae</span> Group of theropod dinosaurs

Ornithomimidae is an extinct family of theropod dinosaurs which bore a superficial resemblance to modern ostriches. Ornithomimids were fast, omnivorous or herbivorous dinosaurs known mainly from the Late Cretaceous Period of Laurasia, though they have also been reported from the Lower Cretaceous Wonthaggi Formation of Australia.

"Coelosaurus" antiquus is a dubious species of theropod dinosaurs. It was named by Joseph Leidy in 1865 for two tibiae found in the Navesink Formation of New Jersey.

<i>Kinnareemimus</i> Extinct genus of dinosaurs

Kinnareemimus is a genus of ornithomimosaurian theropod dinosaur from Thailand. It is known only from incomplete remains discovered no later than the early 1990s that includes vertebrae, partial pubic bones, metatarsals, and an incomplete fibula. The third metatarsal exhibits a distinctive lateral "pinching", known as the "arctometarsalian" condition, variations of which are found in ornithomimosaurs, tyrannosauroids, troodontids, and caenagnathids. Its remains were collected from the Early Cretaceous Sao Khua Formation, dating to the Barremian stage, at Phu Wiang, Khon Kaen Province. Its early occurrence makes it among the earliest ornithomimosaur known, depending on the age of the formation. Buffetaut et al. suggest the fossils of Kinnareemimus may indicate an Asian origin for advanced ornithomimosaurs.

<span class="mw-page-title-main">Deinocheiridae</span> Extinct family of dinosaurs

Deinocheiridae is an extinct family of ornithomimosaurian dinosaurs, living in Asia and the Americas from the Albian until the Maastrichtian. The family was originally named by Halszka Osmólska and Roniewicz in 1970, including only the type genus Deinocheirus. In a 2014 study by Yuong-Nam Lee and colleagues and published in the journal Nature, it was found that Deinocheiridae was a valid family. Lee et al. found that based on a new phylogenetic analysis including the recently discovered complete skeletons of Deinocheirus, the type genus, as well as Garudimimus and Beishanlong, could be placed as a successive group, with Beishanlong as the most primitive and Deinocheirus as most derived. The family Garudimimidae, named in 1981 by Rinchen Barsbold, is now a junior synonym of Deinocheiridae as the latter family includes the type genus of the former. The group existed from 115 to 69 million years ago, with Beishanlong living from 115 to 100 mya, Garudimimus living from 98 to 83 mya, and Deinocheirus living from 71 to 69 mya. Other genera included are Paraxenisaurus, and possibly Harpymimus and Hexing.

<i>Gigantoraptor</i> Extinct genus of dinosaurs

Gigantoraptor is a genus of large oviraptorosaur dinosaur that lived in Asia during the Late Cretaceous period. It is known from the Iren Dabasu Formation of Inner Mongolia, where the first remains were found in 2005.

The Iren Dabasu Formation is a Late Cretaceous geologic formation in the Iren Nor region of Inner Mongolia. Dinosaur remains diagnostic to the genus level are among the fossils that have been recovered from the formation. The formation was first described and defined by Henry Fairfield Osborn in 1922 and it is located in the Iren Nor region of China.

"Dryosaurus" grandis is a dubious species of ornithomimosaur dinosaur known from remains found in the Arundel Formation of Maryland.

<span class="mw-page-title-main">Timeline of ornithomimosaur research</span>

This timeline of ornithomimosaur research is a chronological listing of events in the history of paleontology focused on the ornithomimosaurs, a group of bird-like theropods popularly known as the ostrich dinosaurs. Although fragmentary, probable, ornithomimosaur fossils had been described as far back as the 1860s, the first ornithomimosaur to be recognized as belonging to a new family distinct from other theropods was Ornithomimus velox, described by Othniel Charles Marsh in 1890. Thus the ornithomimid ornithomimosaurs were one of the first major Mesozoic theropod groups to be recognized in the fossil record. The description of a second ornithomimosaur genus did not happen until nearly 30 years later, when Henry Fairfield Osborn described Struthiomimus in 1917. Later in the 20th century, significant ornithomimosaur discoveries began occurring in Asia. The first was a bonebed of "Ornithomimus" asiaticus found at Iren Debasu. More Asian discoveries took place even later in the 20th century, including the disembodied arms of Deinocheirus mirificus and the new genus Gallimimus bullatus. The formal naming of the Ornithomimosauria itself was performed by Rinchen Barsbold in 1976.

<i>Tsagandelta</i> Extinct family of mammals

Tsagandelta is a genus of deltatheroidean therian mammal that lived in Asia during the Late Cretaceous. Distantly related to modern marsupials, it is part of Deltatheroida, a lineage of carnivorous metatherians common in the Cretaceous of Asia and among the most successful non-theropod carnivores of the region. It represents the first known mammal from the Bayan Shireh Formation.

<i>Aepyornithomimus</i> Extinct genus of dinosaurs

Aepyornithomimus is a genus of ornithomimid theropod dinosaur from the Late Cretaceous Djadokhta Formation in Mongolia. It lived in the Campanian, around 75 million years ago, when the area is thought to have been a desert. The type and only species is A. tugrikinensis.

References

  1. Gilmore, C. W. (1933). "On the dinosaurian fauna of the Iren Dabasu Formation". Bulletin of the American Museum of Natural History. 67 (2): 23–78. hdl:2246/355.
  2. 1 2 3 Russell, D. A. (1972). "Ostrich dinosaurs from the Late Cretaceous of Western Canada". Canadian Journal of Earth Sciences. 9 (4): 375–402. Bibcode:1972CaJES...9..375R. doi:10.1139/e72-031.
  3. 1 2 3 Smith, D.; Galton, P. (1990). "Osteology of Archaeornithomimus asiaticus (Upper Cretaceous, Iren Dabasu Formation, People's Republic of China)". Journal of Vertebrate Paleontology. 10 (2): 255–265. doi:10.1080/02724634.1990.10011811.
  4. 1 2 Guo, Z. X.; Shi, Y. P.; Yang, Y. T.; Jiang, S. Q.; Li, L. B.; Zhao, Z. G. (2018). "Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia" (PDF). Journal of Asian Earth Sciences. 154: 49–66. Bibcode:2018JAESc.154...49G. doi:10.1016/j.jseaes.2017.12.007. Archived from the original (PDF) on 2020-09-19. Retrieved 2020-05-01.
  5. Marsh, O. C. (1888). "Notice of a new genus of Sauropoda and other new dinosaurs from the Potomac Formation". American Journal of Science. Series 3. 35 (205): 89–94. Bibcode:1888AmJS...35...89M. doi:10.2475/ajs.s3-35.205.89. S2CID   130879860.
  6. Lull, R. S. (1911). "The Reptilia of the Arundel Formation". Maryland Geological Survey: Lower Cretaceous: 173–178.
  7. Gilmore, C. W. (1920). "Osteology of the carnivorous dinosauria in the United States National Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus". Bulletin of the United States National Museum (110): i-159. doi:10.5479/si.03629236.110.i. hdl: 10088/10107 . OCLC   1836981.
  8. Nesov, L. A. (1995). "Dinozavri severnoi Yevrazii: Novye dannye o sostave kompleksov, ekologii i paleobiogeografii". Institute for Scientific Research on the Earth's Crust. St Petersburg State University: 1–156.
  9. Lee, Y.-N.; Barsbold, R.; Currie, P. J.; Kobayashi, Y.; Lee, H.-J.; Godefroit, P.; Escuillié, F.; Chinzorig, T. (2014). "Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus". Nature. 515 (7526): 257–260. Bibcode:2014Natur.515..257L. doi:10.1038/nature13874. PMID   25337880. S2CID   2986017.
  10. 1 2 Watanabe, A.; Gold, M. E. L. G.; Brusatte, S. L.; Benson, R. B. J.; Choiniere, J.; Davidson, A.; Norell, M. A. (2015). "Vertebral Pneumaticity in the Ornithomimosaur Archaeornithomimus (Dinosauria: Theropoda) Revealed by Computed Tomography Imaging and Reappraisal of Axial Pneumaticity in Ornithomimosauria". PLOS ONE. 10 (12): e0145168. Bibcode:2015PLoSO..1045168W. doi: 10.1371/journal.pone.0145168 . PMC   4684312 . PMID   26682888.
  11. 1 2 Hartman, S.; Mortimer, M.; Wahl, W. R.; Lomax, D. R.; Lippincott, J.; Lovelace, D. M. (2019). "A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight". PeerJ. 7: e7247. doi: 10.7717/peerj.7247 . PMC   6626525 . PMID   31333906.
  12. Holtz, T. R.; Rey, L.V. (2007). Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages . Random House. ISBN   9780375824197.{{cite book}}: CS1 maint: date and year (link) Genus List for Holtz 2012 Weight Information
  13. Chinzorig, Tsogtbaatar; Cullen, Thomas; Phillips, George; Rolke, Richard; Zanno, Lindsay E. (2022-10-19). "Large-bodied ornithomimosaurs inhabited Appalachia during the Late Cretaceous of North America". PLOS ONE. 17 (10). e0266648. doi: 10.1371/journal.pone.0266648 . PMC   9581415 . PMID   36260601.
  14. Zelenitsky, D. K.; Therrien, F.; Erickson, G. M.; DeBuhr, C. L.; Kobayashi, Y.; Eberth, D. A.; Hadfield, F. (2012). "Feathered Non-Avian Dinosaurs from North America Provide Insight into Wing Origins". Science. 338 (6106): 510–514. Bibcode:2012Sci...338..510Z. doi:10.1126/science.1225376. PMID   23112330. S2CID   2057698.
  15. Van der Reest, A. J.; Wolfe, A. P.; Currie, P. J. (2016). "A densely feathered ornithomimid (Dinosauria: Theropoda) from the Upper Cretaceous Dinosaur Park Formation, Alberta, Canada". Cretaceous Research. 58: 108–117. doi:10.1016/j.cretres.2015.10.004.
  16. 1 2 Norell, M. A.; Makovicky, P. J.; Currie, P. J. (2001). "The beak of ostrich dinosaurs". Nature. 412 (6850): 873–874. doi:10.1038/35091139. PMID   11528466. S2CID   4313779.
  17. 1 2 Barrett, P. M. (2005). "The diet of ostrich dinosaurs (Theropoda: Ornithomimosauria)". Palaeontology. 48 (2): 347–358. doi: 10.1111/j.1475-4983.2005.00448.x .
  18. Rothschild, B.; Tanke, D. H.; Ford, T. L. (2001). "Theropod stress fractures and tendon avulsions as a clue to activity". In Tanke, D. H.; Carpenter, K.; Skrepnick, M. W. (eds.). Mesozoic Vertebrate Life. Indiana University Press. pp. 331–336. ISBN   9780253339072.
  19. 1 2 Van Itterbeeck, J.; Horne, D. J.; Bultynck, P.; Vandenberghe, N. (2005). "Stratigraphy and palaeoenvironment of the dinosaur-bearing Upper Cretaceous Iren Dabasu Formation, Inner Mongolia, People's Republic of China". Cretaceous Research. 26 (4): 699–725. doi:10.1016/j.cretres.2005.03.004.
  20. Averianov, A.; Sues, H. (2012). "Correlation of Late Cretaceous continental vertebrate assemblages in Middle and Central Asia" (PDF). Journal of Stratigraphy. 36 (2): 462–485. S2CID   54210424. Archived from the original (PDF) on 2019-03-07.
  21. Funston, G. F.; Currie, P. J.; Ryan, M. J.; Dong, Z.-M. (2019). "Birdlike growth and mixed-age flocks in avimimids (Theropoda, Oviraptorosauria)". Scientific Reports. 9 (18816): 18816. Bibcode:2019NatSR...918816F. doi: 10.1038/s41598-019-55038-5 . PMC   6906459 . PMID   31827127.
  22. Xing, H.; He, Y.; Li, L.; Xi, D. (2012). "A review on the study of the stratigraphy, sedimentology, and paleontology of the Iren Dabasu Formation, Inner Mongolia". In Wei, D. (ed.). Proceedings of the Thirteenth Annual Meeting of the Chinese Society of Vertebrate Paleontology (in Chinese). Beijing: China Ocean Press. pp. 1–44.