Qianzhousaurus

Last updated

Qianzhousaurus
Temporal range: Late Cretaceous,
~67–66  Ma
O
S
D
C
P
T
J
K
Pg
N
Qianzhousaurus holotype skull.jpg
Holotype skull
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Theropoda
Family: Tyrannosauridae
Subfamily: Tyrannosaurinae
Tribe: Alioramini
Genus: Qianzhousaurus
et al., 2014
Type species
Qianzhousaurus sinensis
et al., 2014

Qianzhousaurus (meaning "Qianzhou lizard") is a genus of tyrannosaurid dinosaur that lived in Asia during the Maastrichtian age of the Late Cretaceous period. There is currently only one species named, the type species Qianzhousaurus sinensis, which is a member of the tribe Alioramini and most closely related to Alioramus , the only other known alioramin.

Contents

History of discovery

Map showing the locality of the Ganzhou city, region where the holotype was discovered Srep35780-f1.jpg
Map showing the locality of the Ganzhou city, region where the holotype was discovered

The holotype specimen, GM F10004, was unearthed in southern China, Ganzhou, at the Nanxiong Formation in the summer of 2010 during the construction of an industrial park and it was first described by paleontologists Junchang Lü, Laiping Yi, Stephen L. Brusatte, Ling Yang, Hua Li and Liu Chen in the journal Nature Communications in 2014. The genus is known from a partial sub-adult individual consisting of a nearly complete skull with the lower jaws missing all teeth (lost during fossilization), 9 cervical vertebrae, 3 dorsal vertebrae, 18 caudal vertebrae, both scapulocoracoids, partial ilia, and the left leg compromising the femur, tibia, fibula, astragalus with calcaneum, and metatarsals III and IV. The generic name, Qianzhousaurus, is in reference to Qianzhou (the older name of Ganzhou) where the remains were discovered, and the specific name, sinensis, is derived from the Greek word Σῖναι (sin, sino, sinai) in reference to China. [1] The fossil remains were discovered by workmen at a construction site near the city of Ganzhou, who then took them to a local museum. [2]

Lead author Lü Junchang from the Institute of Geology, Chinese Academy of Geological Sciences stated that "the new discovery is very important. Along with Alioramus from Mongolia, it shows that the long-snouted tyrannosaurids were widely distributed in Asia. Although we are only starting to learn about them, the long-snouted tyrannosaurs were apparently one of the main groups of predatory dinosaurs in Asia." [3] The existence of long-snouted tyrannosaurs was previously suspected due to other inconclusive fossil finds which could be explained as the juveniles of short-snouted species, but co-author Stephen L. Brusatte from the University of Edinburgh reveals that the find "tells us pretty unequivocally that these long-snouted tyrannosaurs were a real thing. They were a different breed, living right at the end of the age of dinosaurs." [4]

Description

Life restoration Qianzhousaurus sinensis by PaleoGeek.png
Life restoration

Qianzhousaurus was a medium-sized tyrannosaurid estimated at 6.3 m (20.7 ft) in length, 2 m (6.6 ft) in hip height and 750–757 kg (1,653–1,669 lb) in body mass. [1] [5] Higher estimates suggest that it could have reached a maximum length between 7.5 and 9 metres (24.6 and 29.5 ft). [6] The taxon can be differentiated from other tyrannosaurids in having a highly narrowed premaxilla, a pneumatic opening on the upper extension of the maxilla, and the lack of a vertical ridge-like structure on the lateral surface of the ilium. [1]

Unlike more "traditional" tyrannosaurids, which had prominent deep-set jaws and thick teeth, Qianzhousaurus had a particularly elongated snout, with (when restored) narrow teeth. The holotype specimen is notably larger and more mature than the holotypes of both species of Alioramus . However, since some sutures between the cervical and dorsal vertebrae are partially fused, the holotype seems to have come from an immature animal, likely a sub-adult. Qianzhousaurus was a long-legged animal with a 70 cm (28 in) long femur and 76 cm (30 in) long tibia. [1]

Classification

Holotype skull diagram of A. remotus, which together with A. altai, form the closest relatives of Qianzhousaurus Alioramus skull steveoc.png
Holotype skull diagram of A. remotus, which together with A. altai, form the closest relatives of Qianzhousaurus

The discovery of Qianzhousaurus led to a new branch of the tyrannosaur family being named, consisting of the long-snouted Q. sinensis and the two known species of Alioramus. This clade, named the tribe Alioramini, had an uncertain placement relative to other members of the tyrannosaur branch in the initial analysis that discovered it. The primary phylogenetic analysis found Alioramini to be closer to Tyrannosaurus than to Albertosaurus, and therefore a member of the group Tyrannosaurinae. However, a second analysis in the same paper found it to be located outside of the clade including Albertosaurinae and Tyrannosaurinae, and therefore the sister group of Tyrannosauridae. Below is the first analysis found by the authors: [1]

Tyrannosauridae

Thomas D. Carr with colleagues in 2017 regarded Qianzhousaurus as a junior synonym of Alioramus based on the reasoning that they were recovered as sister species in their phylogenetic analysis. Despite their argument, they indicated that this synonymy does not necessarily constitute a taxonomic reevaluation of the Alioramini. [7] However, Foster and his colleagues conducted a detailed redescription of the holotype skull of Qianzhousaurus in 2022, finding several traits unique to this genus, hence supporting the separation of Alioramus and Qianzhousaurus. [8]

Paleobiology

Ontogeny

Qianzhousaurus (in blue) compared to other members of the Alioramini Alioramini Scale.svg
Qianzhousaurus (in blue) compared to other members of the Alioramini

A 2022 study of the three known species of the two known alioramin genera, Qianzhousaurus and Alioramus (A. altai and A. remotus), respectively, suggests that the variation seen between the various species is consistent with the growth trends seen in other tyrannosaurid genera, though specimens that could constitute a full growth series from infant to adult for each species have not been recovered for any of these theropods. Of these, Qianzhousaurus represents the largest and most mature animal found within Alioramini thus far and represents the adult level of maturity. One part of the growth series across all specimens in this study was discovered to remain unique to alioramin tyrannosaurs, this being the rugose process of the jugal starts out small and conical, but becomes massive and indistinct as the animals grow. This same study also suggests Alioramins did not undergo a secondary metamorphosis from slender juveniles to robust adults like other tyrannosaurs, but maintained a unique physiology better suited to pursuit of fast prey. [8]

Feeding

In 2022, Foster and his colleagues indicated that Qianzhousaurus and other alioramins, due to their slim and gracile build, may have been hunters of small, particularly fast and nimble prey, which would have allowed these tyrannosaurids to avoid competition with larger, robust relatives that specialized in killing larger animals. The long and delicate snouts of alioramins like Alioramus and Qianzhousaurus may have prevented them from killing the same prey that juvenile and adult tyrannosaurids like Tarbosaurus hunted, though these larger tyrannosaurs themselves may have hunted alioramins as prey on occasion. Alioramins may also have had a different feeding strategy than other tyrannosaurids, as their jaws seem to have been weaker than those of the larger genera and even juveniles of larger species have proportionately higher bite forces than alioramins of equivalent size. Furthermore, Alioramini seemingly remained confined to Asia, suggesting that some factor prevented them from colonizing the better-sampled fossil deposits from North America. What this may be remains a mystery at the present moment. [8]

Studies of the skulls of various tyrannosauroids in 2024 suggest that Qianzhousaurus and other alioramin tyrannosaurs experienced lower stresses when biting and feeding. Additional evidence in the same study suggests that Qianzhousaurus did not utilize the "puncture-and-pull" feeding method utilized by other, larger genera of tyrannosaurids. [9]

Paleoenvironment

Qianzhousaurus is known from the Nanxiong Formation, which has been dated to the latest Maastrichtian age of the Late Cretaceous period, about 66.7 ± 0.3 million years ago based on argon–argon dating. [10] The main lithology of this formation is composed by purplish mudstones and siltstones, deposited in a floodplain environment under a relatively warm, humid subtropical climate. [11] Oviraptorid eggs are particularly common across the formation with numerous well-preserved egg clutches or nests, [12] as well as nesting individuals. [13] [14] [15] The Nanxiong Formation has been noted for its abundant oviraptorosaur genera. It is most likely that, given the poor stratigraphic analysis of the formation, the extremely large oviraptorosaur diversity of this formation was temporally separated. [16] The presence of the smaller and more robustly built tyrannosaurine Asiatyrannus also suggests that Qianzhousaurus was filling the role of apex predator in the formation's ecosystem, with Asiatyrannus occupying a different niche and hunting different prey than its larger relative. [17]

Other vertebrates in the Nanxiong Formation include numerous oviraptorosaurs, such as Banji , Ganzhousaurus , Corythoraptor , Nankangia , Huanansaurus , Shixinggia , or Tongtianlong ; [16] [18] the hadrosaurid Microhadrosaurus (may be nomen dubium ); [19] the sauropod Gannansaurus ; [20] the therizinosaurid Nanshiungosaurus ; [21] the crocodilian Jiangxisuchus ; [22] the squamates Chianghsia and Tianyusaurus ; [23] and the turtles Jiangxichelys and Nanhsiungchelys . [11]

See also

Related Research Articles

<i>Tarbosaurus</i> Tyrannosaurid dinosaur genus from Late Cretaceous of Mongolia

Tarbosaurus is a genus of large tyrannosaurid dinosaur that lived in Asia during the Late Cretaceous epoch, about 70 million years ago. It contains the single type species: Tarbosaurus bataar, which is known from the Nemegt Formation of Mongolia, with more fragmentary remains found further afield in the Subashi Formation of China. Tarbosaurus is represented by dozens of fossil specimens, including several complete skulls and skeletons. These remains have allowed studies focusing on its phylogeny, skull mechanics, and brain structure. Further fossil remains have been reported from other geologic formations of Asia, however, these remains are fragmentary and can not be confidently assigned to Tarbosaurus or the type species.

<i>Alioramus</i> Tyrannosaurid theropod dinosaur genus from the Late Cretaceous period

Alioramus is a genus of tyrannosaurid theropod dinosaurs from the Late Cretaceous period of Asia. It currently contains two species. The type species, A. remotus is known from a partial skull and three foot bones recovered from the Mongolian Nemegt Formation, which was deposited in a humid floodplain about 70 million years ago. These remains were named and described by Soviet paleontologist Sergei Kurzanov in 1976. A second species, A. altai, known from a much more complete skeleton also from the Nemegt Formation, was named and described by Stephen L. Brusatte and colleagues in 2009. Its relationships to other tyrannosaurid genera were at first unclear, with some evidence supporting a hypothesis that Alioramus was closely related to the contemporary species Tarbosaurus bataar. However, the discovery of Qianzhousaurus indicates that it belongs to a distinct branch of tyrannosaurs, namely the tribe Alioramini.

<i>Nanshiungosaurus</i> Extinct genus of reptiles

Nanshiungosaurus is a genus of therizinosaurid that lived in what is now Asia during the Late Cretaceous of South China. The type species, Nanshiungosaurus brevispinus, was first discovered in 1974 and described in 1979 by Dong Zhiming. It is represented by a single specimen preserving most of the cervical and dorsal vertebrae with the pelvis. A supposed and unlikely second species, "Nanshiungosaurus" bohlini, was found in 1992 and described in 1997. It is also represented by vertebrae but this species however, differs in geological age and lacks authentic characteristics compared to the type, making its affinity to the genus unsupported.

<span class="mw-page-title-main">Tyrannosaurinae</span> Extinct subfamily of dinosaurs

Tyrannosaurinae is one of the two extinct subfamilies of Tyrannosauridae, a family of coelurosaurian theropods that consists of at least three tribes and several genera. All fossils of these genera have been found in the Late Cretaceous deposits of western North America and east Asia. Compared to the related subfamily Albertosaurinae, tyrannosaurines overall are more robust and larger though the alioramins were gracile by comparison. This subfamily also includes Lythronax, one of the oldest known tyrannosaurid genera, as well as the youngest and most famous member of the group, Tyrannosaurus rex.

The Nanxiong Formation is a Late Cretaceous geologic formation in Guangdong Province. Dinosaur remains are among the fossils that have been recovered from the formation.

<i>Macroolithus</i> Oogenus of dinosaur egg

Macroolithus is an oogenus of dinosaur egg belonging to the oofamily Elongatoolithidae. The type oospecies, M. rugustus, was originally described under the now-defunct oogenus name Oolithes. Three other oospecies are known: M. yaotunensis, M. mutabilis, and M. lashuyuanensis. They are relatively large, elongated eggs with a two-layered eggshell. Their nests consist of large, concentric rings of paired eggs. There is evidence of blue-green pigmentation in its shell, which may have helped camouflage the nests.

<i>Ganzhousaurus</i> Extinct genus of dinosaurs

Ganzhousaurus is an extinct genus of oviraptorid dinosaur known from the Late Cretaceous Nanxiong Formation of Nankang County, Ganzhou City of Jiangxi Province, southern China. It was found in a Maastrichtian deposit and contains a single species, Ganzhousaurus nankangensis. It is distinguished by a combination of primitive and derived features.

<i>Gannansaurus</i> Extinct genus of dinosaurs

Gannansaurus is an extinct genus of somphospondylan sauropod dinosaur known from the latest Cretaceous Nanxiong Formation of Ganzhou Basin, Jiangxi Province of southern China. It is known from specimen GMNH F10001 which consists of a single, nearly complete dorsal vertebra and a mid-caudal vertebra. Gannansaurus was first named by Lü Junchang, Yi Laiping, Zhong Hui and Wei Xuefang in 2013 and the type species is Gannansaurus sinensis. Gannansaurus shares some characters with Euhelopus, indicating that it is more closely related to it rather than to other titanosauriforms.

<i>Jiangxisaurus</i> Extinct genus of dinosaurs

Jiangxisaurus is an extinct genus of oviraptorid theropod dinosaur from the Late Cretaceous Nanxiong Formation of southern China. It was similar to Heyuannia, but with more strongly curved anterior claws and a thinner, frailer mandible. This find is paleontologically significant because it contributes to current knowledge about the paleogeographical distribution of oviraptorids in southern China. It was most likely an omnivorous animal along with its close relatives Nankangia and Ganzhousaurus.

<i>Lythronax</i> Genus of tyrannosaurid dinosaur from the Late Cretaceous period

Lythronax is a genus of tyrannosaurid dinosaur that lived in North America around 81.9-81.5 million years ago during the Late Cretaceous period. The only known specimen was discovered in Utah in the Wahweap Formation of the Grand Staircase–Escalante National Monument in 2009, and it consists of a partial skull and skeleton. In 2013, it became the basis of the new genus and species Lythronax argestes; the generic name Lythronax means "gore king", and the specific name argestes originates from the Greek poet Homer's name for the wind from the southwest, in reference to the specimen's geographic provenance in North America.

<i>Nankangia</i> Extinct genus of dinosaurs

Nankangia is an extinct genus of caenagnathoid oviraptorosaurian dinosaur known from the Upper Cretaceous Nanxiong Formation of Nankang County, Ganzhou City of Jiangxi Province, southeastern China. It contains a single species, Nankangia jiangxiensis. N. jiangxiensis coexisted with at least four other caenagnathoids, including but not limited to Corythoraptor, Banji, Ganzhousaurus and Jiangxisaurus. The relatively short dentary and non-downturned mandibular symphysis of Nankangia suggest that it may have been more herbivorous than carnivorous. Its diet consisted of leaves and seeds.

<span class="mw-page-title-main">Alioramini</span> Extinct clade of tyrannosaurid dinosaurs

Alioramini is a clade (tribe) of long-snouted tyrannosaurine tyrannosaurids from the Late Cretaceous epoch. It includes the tyrannosaurid genera Alioramus and Qianzhousaurus. Although tyrannosaurids are known from a variety of places around the globe, alioramins are currently restricted to Asia in mostly Maastrichtian strata. Many of the fossils attributed to Alioramini are not from fully developed individuals.

<span class="mw-page-title-main">Timeline of oviraptorosaur research</span>

This timeline of oviraptorosaur research is a chronological listing of events in the history of paleontology focused on the oviraptorosaurs, a group of beaked, bird-like theropod dinosaurs. The early history of oviraptorosaur paleontology is characterized by taxonomic confusion due to the unusual characteristics of these dinosaurs. When initially described in 1924 Oviraptor itself was thought to be a member of the Ornithomimidae, popularly known as the "ostrich" dinosaurs, because both taxa share toothless beaks. Early caenagnathid oviraptorosaur discoveries like Caenagnathus itself were also incorrectly classified at the time, having been misidentified as birds.

<i>Huanansaurus</i> Extinct genus of dinosaurs

Huanansaurus is an extinct genus of oviraptorid dinosaur that lived approximately 72 million years ago, between the Campanian and Maastrichtian, during the latter part of the Cretaceous period in what is now China, in the Nanxiong Formation.

<i>Timurlengia</i> Extinct genus of dinosaurs

Timurlengia is an extinct genus of tyrannosauroid theropod dinosaur found in Uzbekistan, in the Bissekty Formation in the Kyzylkum Desert, hailing from the Turonian age of the early Late Cretaceous. The type species is Timurlengia euotica.

<i>Tongtianlong</i> Extinct genus of dinosaurs

Tongtianlong is a genus of oviraptorid theropod dinosaurs that lived in the late Maastrichtian epoch of the late Cretaceous period. It contains one species, T. limosus.

<i>Corythoraptor</i> Extinct genus of dinosaurs

Corythoraptor is a genus of oviraptorid dinosaur from the late Maastrichtian Nanxiong Formation of South China. It contains one species, C. jacobsi, known from a single well-preserved skeleton, and named after paleontologist Louis L. Jacobs. It bears a tall crest similar to that of the modern cassowary, and possibly had a similar functionality of display and resonance to detect lower-frequency sounds.

Lü Junchang was a Chinese palaeontologist and professor at the Institute of Geology, Chinese Academy of Geological Sciences. An expert on Mesozoic reptiles, he described and named dozens of dinosaur and pterosaur taxa including Tongtianlong, Qianzhousaurus, Heyuannia, Gannansaurus, Yunnanosaurus youngi, and Darwinopterus.

<i>Jiangxisuchus</i> Extinct species of reptile

Jiangxisuchus is an extinct genus of crocodylian that lived during the Late Cretaceous, likely Maastrichtian, in what is now China. At the time of its description in 2019 it was proposed to be a basal member of Crocodyloidea. However, another concurrent 2019 study recovered Jiangxisuchus instead placed it in the clade Orientalosuchina, which were proposed to be early alligatoroids. The classification of Jiangxisuchus has since then remained in flux. Like other orientalosuchins, Jiangxisuchus was a small to medium-sized animal with a short, blunt snout. The genus is monotypic, containing only the species Jiangxisuchus nankangensis.

<i>Asiatyrannus</i> Genus of tyrannosaurid dinosaurs

Asiatyrannus is an extinct genus of tyrannosaurine theropod dinosaurs from the Late Cretaceous Nanxiong Formation of China. The genus contains a single species, A. xui, known from a single specimen consisting of a skull and partial postcranial skeleton. Asiatyrannus is notable for its deep-snouted skull and small body size, in contrast to the gracile snout and larger size of the contemporary Qianzhousaurus. It represents the southernmost record of an Asian tyrannosaurid.

References

  1. 1 2 3 4 5 Lü, J.; Yi, L.; Brusatte, S. L.; Yang, L.; Chen, L. (2014). "A new clade of Asian Late Cretaceous long-snouted tyrannosaurids". Nature Communications. 5 (3788): 3788. Bibcode:2014NatCo...5.3788L. doi: 10.1038/ncomms4788 . PMID   24807588.
  2. Dinosaurs (2014-05-07). "Long-nosed 'Pinocchio rex' dinosaur discovered by scientists". London: Telegraph. Archived from the original on 2014-05-08. Retrieved 2014-05-22.
  3. "Qianzhousaurus sinensis: Long-Snouted Tyrannosaur Discovered in China | Paleontology". Sci-News.com. 2014-05-07. Retrieved 2014-05-22.
  4. Jacqueline Howard (2014-05-07). "'Pinocchio Rex' Dinosaur Unearthed In China Confirms Theory About Tyrannosaurs". Huffingtonpost.com. Retrieved 2014-05-22.
  5. Molina-Pérez, R.; Larramendi, A. (2016). Récords y curiosidades de los dinosaurios Terópodos y otros dinosauromorfos. Barcelona, Spain: Larousse. p. 266. ISBN   9788416641154.
  6. Xing, L.; Niu, K.; Lockley, M.G.; Klein, H.; Romilio, A.; Persons, W.S.; Brusatte, S.L. (2019). "A probable tyrannosaurid track from the Upper Cretaceous of southern China". Science Bulletin. 64 (16): 1136–1139. Bibcode:2019SciBu..64.1136X. doi:10.1016/j.scib.2019.06.013. hdl: 20.500.11820/05d88bb3-8039-426c-88bf-cfb6f08608e7 . PMID   36659682. S2CID   197083656.
  7. Carr, Thomas D.; Varricchio, David J.; Sedlmayr, Jayc C.; Roberts, Eric M.; Moore, Jason R. (2017). "A new tyrannosaur with evidence for anagenesis and crocodile-like facial sensory system". Scientific Reports. 7: 44942. Bibcode:2017NatSR...744942C. doi:10.1038/srep44942. PMC   5372470 . PMID   28358353.
  8. 1 2 3 Foster, William; Brusatte, Stephen L.; Carr, Thomas D.; Williamson, Thomas E.; Yi, Laiping; Lü, Junchang (11 February 2022). "The cranial anatomy of the long-snouted tyrannosaurid dinosaur Qianzhousaurus sinensis from the Upper Cretaceous of China". Journal of Vertebrate Paleontology. 41 (4): e1999251. doi: 10.1080/02724634.2021.1999251 . hdl: 20.500.11820/85571b5c-0e63-4caa-963a-f16a42514319 . S2CID   246799243.
  9. Rowe, Andre J.; Rayfield, Emily J. (September 2024). "Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs". iScience. 27 (9): 110679. Bibcode:2024iSci...27k0679R. doi:10.1016/j.isci.2024.110679. ISSN   2589-0042. PMC   11387897 . PMID   39262785.
  10. Buck, B. J.; Hanson, A. D.; Hengst, R. A.; Shu-sheng, H. (2004). "Tertiary Dinosaurs in the Nanxiong Basin, Southern China, Are Reworked from the Cretaceous". The Journal of Geology. 112 (1): 111−118. Bibcode:2004JG....112..111B. doi:10.1086/379695. S2CID   12866840.
  11. 1 2 Tong, H.; Li, L. (2019). "A revision of the holotype of Nanhsiungchelys wuchingensis, Ye, 1966 (Testudines: Cryptodira: Trionychoidae: Nanhsiungchelyidae)". Cretaceous Research. 95: 151−163. Bibcode:2019CrRes..95..151T. doi:10.1016/j.cretres.2018.11.003. hdl:311034/9424. S2CID   133937906.
  12. Yang, T.-R.; Wiemann, J.; Xu, L.; Cheng, Y.-N.; Wu, X.-C.; Sander, P. M. (2019). "Reconstruction of oviraptorid clutches illuminates their unique nesting biology". Acta Palaeontologica Polonica. 466: 581−596. doi: 10.4202/app.00497.2018 .
  13. Sato, T.; Cheng, Y.-N.; Wu, X.-C.; Zelenitsky, D. K.; Hsiao, Y.-F. (2005). "A Pair of Shelled Eggs Inside A Female Dinosaur". Science. 308 (5720): 375. doi:10.1126/science.1110578. PMID   15831749. S2CID   19470371.
  14. Jin, X.; Varricchio, D. J.; Poust, A. W.; He, T. (2020). "An oviraptorosaur adult-egg association from the Cretaceous of Jiangxi Province, China". Science. 39 (6): e1739060. doi:10.1080/02724634.2019.1739060. S2CID   219447073.
  15. Bi, S.; Amiot, R.; Peyre de Fabrègues, C.; Pittman, M.; Lamanna, M. C.; Yu, Y.; Yu, C.; Yang, T.; Zhang, S.; Zhao, Q.; Xu, X. (2021). "An oviraptorid preserved atop an embryo-bearing egg clutch sheds light on the reproductive biology of non-avialan theropod dinosaurs" (PDF). Science Bulletin. 66 (9): 947–954. Bibcode:2021SciBu..66..947B. doi:10.1016/j.scib.2020.12.018. PMID   36654242. S2CID   230524877.
  16. 1 2 Lü, J.; Chen, R.; Brusatte, S. L.; Zhu, Y.; Shen, C. (2016). "A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture". Scientific Reports. 6 (35780): 35780. Bibcode:2016NatSR...635780L. doi: 10.1038/srep35780 . PMC   5103654 . PMID   27831542.
  17. Zheng, Wenjie; Jin, Xingsheng; Xie, Junfang; Du, Tianming (2024-07-25). "The first deep-snouted tyrannosaur from Upper Cretaceous Ganzhou City of southeastern China". Scientific Reports. 14 (1): 16276. Bibcode:2024NatSR..1416276Z. doi:10.1038/s41598-024-66278-5. ISSN   2045-2322. PMC   11272791 . PMID   39054316.
  18. Lü, J.; Li, G.; Kundrát, M.; Lee, Y.-N.; Sun, Z.; Kobayashi, Y.; Shen, C.; Teng, F.; Liu, H. (2017). "High diversity of the Ganzhou Oviraptorid Fauna increased by a new cassowary-like crested species". Scientific Reports. 7 (6393): 6393. Bibcode:2017NatSR...7.6393L. doi: 10.1038/s41598-017-05016-6 . PMC   5532250 . PMID   28751667.
  19. Xing, L.; Lockley, M. G.; Li, D.; Klein, H.; Ye, Y.; Scott Persons IV, W.; Ran, H. (2017). "Late Cretaceous ornithopod-dominated, theropod, and pterosaur track assemblages from the Nanxiong Basin, China: New discoveries, ichnotaxonomy, and paleoecology" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 466: 303−313. Bibcode:2017PPP...466..303X. doi:10.1016/j.palaeo.2016.11.035.
  20. Lü, J.; Yi, L.; Zhong, H.; Wei, X. (2013). "A New Somphospondylan Sauropod (Dinosauria, Titanosauriformes) from the Late Cretaceous of Ganzhou, Jiangxi Province of Southern China". Acta Geologica Sinica (English Edition). 87 (3): 678−685. Bibcode:2013AcGlS..87..678L. doi:10.1111/1755-6724.12079. S2CID   140623061.
  21. Zanno, L. E. (2010). "A taxonomic and phylogenetic re-evaluation of Therizinosauria (Dinosauria: Maniraptora)". Journal of Systematic Palaeontology. 8 (4): 503−543. Bibcode:2010JSPal...8..503Z. doi:10.1080/14772019.2010.488045. S2CID   53405097.
  22. Chun Li; Xiao-chun Wu; Scott Rufolo (2018). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. Bibcode:2019CrRes..94...25L. doi:10.1016/j.cretres.2018.09.015. S2CID   133661294.
  23. Mo, J. Y.; Xu, X.; Evans, S. E. (2012). "A large predatory lizard (Platynota, Squamata) from the Late Cretaceous of South China". Journal of Systematic Palaeontology. 10 (2): 333. Bibcode:2012JSPal..10..333M. doi:10.1080/14772019.2011.588254. S2CID   85682211.