500 (number)

Last updated • 17 min readFrom Wikipedia, The Free Encyclopedia
499 500 501
Cardinal five hundred
Ordinal 500th
(five hundredth)
Factorization 22 × 53
Greek numeral Φ´
Roman numeral D
Binary 1111101002
Ternary 2001123
Senary 21526
Octal 7648
Duodecimal 35812
Hexadecimal 1F416
Armenian Շ
Hebrew ת"ק / ך
Babylonian cuneiform 𒐜⟪
Egyptian hieroglyph 𓍦

500 (five hundred) is the natural number following 499 and preceding 501.

Contents

Mathematical properties

500 = 22× 53. It is an Achilles number and a Harshad number, meaning it is divisible by the sum of its digits. It is the number of planar partitions of 10. [1]

Other fields

Five hundred is also

Slang names

Integers from 501 to 599

500s

501

501 = 3 × 167. It is:

  • the sum of the first 18 primes (a term of the sequence OEIS:  A007504 ).
  • palindromic in bases 9 (6169) and 20 (15120).

502

  • 502 = 2 × 251
  • vertically symmetric number (sequence A053701 in the OEIS )

503

503 is:

504

504 = 23× 32× 7. It is:

is prime [12]

505

506

506 = 2 × 11 × 23. It is:

is a prime number. Its decimal expansion is 252 nines, an eight, and 253 more nines.

507

  • 507 = 3 × 132 = 232 - 23 + 1, which makes it a central polygonal number [17]
    • The age Ming had before dying.

508

  • 508 = 22× 127, sum of four consecutive primes (113 + 127 + 131 + 137), number of graphical forest partitions of 30, [18] since 508 = 222 + 22 + 2 it is the maximum number of regions into which 23 intersecting circles divide the plane. [19]

509

509 is:

510s

510

510 = 2 × 3 × 5 × 17. It is:

  • the sum of eight consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • the sum of ten consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71).
  • the sum of twelve consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67).
  • a nontotient.
  • a sparsely totient number. [21]
  • a Harshad number.
  • the number of nonempty proper subsets of an 9-element set. [22]

511

511 = 7 × 73. It is:

512

512 = 83 = 29. It is:

513

513 = 33× 19. It is:

514

514 = 2 × 257, it is:

515

515 = 5 × 103, it is:

  • the sum of nine consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73).
  • the number of complete compositions of 11. [27]

516

516 = 22× 3 × 43, it is:

517

517 = 11 × 47, it is:

  • the sum of five consecutive primes (97 + 101 + 103 + 107 + 109).
  • a Smith number. [29]

518

518 = 2 × 7 × 37, it is:

  • = 51 + 12 + 83 (a property shared with 175 and 598).
  • a sphenic number.
  • a nontotient.
  • an untouchable number. [28]
  • palindromic and a repdigit in bases 6 (22226) and 36 (EE36).
  • a Harshad number.

519

519 = 3 × 173, it is:

  • the sum of three consecutive primes (167 + 173 + 179)
  • palindromic in bases 9 (6369) and 12 (37312)
  • a D-number. [30]

520s

520

520 = 23× 5 × 13. It is:

521

521 is:

  • a Lucas prime. [31]
  • A Mersenne exponent, i.e. 2521−1 is prime.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • palindromic in bases 11 (43411) and 20 (16120).

4521 - 3521 is prime

522

522 = 2 × 32× 29. It is:

  • the sum of six consecutive primes (73 + 79 + 83 + 89 + 97 + 101).
  • a repdigit in bases 28 (II28) and 57 (9957).
  • a Harshad number.
  • number of series-parallel networks with 8 unlabeled edges. [33]

523

523 is:

524

524 = 22× 131

  • number of partitions of 44 into powers of 2 [35]

525

525 = 3 × 52× 7. It is palindromic in base ten, as well as the fifty-fifth self number greater than 1 in decimal. [36] It is also:

525 is the number of scan lines in the NTSC television standard.

526

526 = 2 × 263, centered pentagonal number, [39] nontotient, Smith number [29]

527

527 = 17 × 31. It is:

  • palindromic in base 15 (25215)
  • number of diagonals in a 34-gon [40]
  • also, the section of the US Tax Code regulating soft money political campaigning (see 527 groups)

528

528 = 24× 3 × 11. It is:

529

529 = 232. It is:

530s

530

530 = 2 × 5 × 53. It is:

531

531 = 32× 59. It is:

  • palindromic in base 12 (38312).
  • a Harshad number.
  • number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to 6 [44]

532

532 = 22× 7 × 19. It is:

533

533 = 13 × 41. It is:

  • the sum of three consecutive primes (173 + 179 + 181).
  • the sum of five consecutive primes (101 + 103 + 107 + 109 + 113).
  • palindromic in base 19 (19119).
  • generalized octagonal number. [46]

534

534 = 2 × 3 × 89. It is:

  • a sphenic number.
  • the sum of four consecutive primes (127 + 131 + 137 + 139).
  • a nontotient.
  • palindromic in bases 5 (41145) and 14 (2A214).
  • an admirable number.
is prime [12]

535

535 = 5 × 107. It is:

  • a Smith number. [29]

for ; this polynomial plays an essential role in Apéry's proof that is irrational.

535 is used as an abbreviation for May 35, which is used in China instead of June 4 to evade censorship by the Chinese government of references on the Internet to the Tiananmen Square protests of 1989. [47]

536

536 = 23× 67. It is:

  • the number of ways to arrange the pieces of the ostomachion into a square, not counting rotation or reflection.
  • the number of 1's in all partitions of 23 into odd parts [48]
  • a refactorable number. [11]
  • the lowest happy number beginning with the digit 5.
  • the 168th Totient number. [49]

537

537 = 3 × 179, Mertens function (537) = 0, Blum integer, D-number [30]

538

538 = 2 × 269. It is:

539

539 = 72× 11

is prime [12]

540s

540

540 = 22× 33× 5. It is:

541

541 is:

For the Mertens function,

542

542 = 2 × 271. It is:

543

543 = 3 × 181; palindromic in bases 11 (45411) and 12 (39312), D-number. [30]

is prime [12]

544

544 = 25× 17. Take a grid of 2 times 5 points. There are 14 points on the perimeter. Join every pair of the perimeter points by a line segment. The lines do not extend outside the grid. 544 is the number of regions formed by these lines. OEIS:  A331452

544 is also the number of pieces that could be seen in a 5×5×5×5 Rubik's Tesseract. As a standard 5×5×5 has 98 visible pieces (53 − 33), a 5×5×5×5 has 544 visible pieces (54 − 34).

545

545 = 5 × 109. It is:

546

546 = 2 × 3 × 7 × 13. It is:

  • the sum of eight consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79 + 83).
  • palindromic in bases 4 (202024), 9 (6669), and 16 (22216).
  • a repdigit in bases 9 and 16.
  • 546! − 1 is prime.

547

547 is:

548

548 = 22× 137. It is:

Also, every positive integer is the sum of at most 548 ninth powers;

549

549 = 32× 61, it is:

  • a repdigit in bases 13 (33313) and 60 (9960).
  • φ(549) = φ(σ(549)). [62]

550s

550

550 = 2 × 52× 11. It is:

551

551 = 19 × 29. It is:

  • It is the number of mathematical trees on 12 unlabeled nodes. [65]
  • the sum of three consecutive primes (179 + 181 + 191).
  • palindromic in base 22 (13122).
  • the SMTP status code meaning user is not local

552

552 = 23× 3 × 23. It is:

  • the number of prime knots with 11 crossings. [66]
  • the sum of six consecutive primes (79 + 83 + 89 + 97 + 101 + 103).
  • the sum of ten consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73).
  • a pronic number. [16]
  • an untouchable number. [28]
  • palindromic in base 19 (1A119).
  • a Harshad number.
  • the model number of U-552.
  • the SMTP status code meaning requested action aborted because the mailbox is full.

553

553 = 7 × 79. It is:

  • the sum of nine consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • a central polygonal number. [17]
  • the model number of U-553.
  • the SMTP status code meaning requested action aborted because of faulty mailbox name.

554

554 = 2 × 277. It is:

  • a nontotient.
  • a 2-Knödel number
  • the SMTP status code meaning transaction failed.

Mertens function(554) = 6, a record high that stands until 586.

555

555 = 3 × 5 × 37 is:

  • a sphenic number.
  • palindromic in bases 9 (6769), 10 (55510), and 12 (3A312).
  • a repdigit in bases 10 and 36.
  • a Harshad number.
  • φ(555) = φ(σ(555)). [62]

556

556 = 22× 139. It is:

  • the sum of four consecutive primes (131 + 137 + 139 + 149).
  • an untouchable number, because it is never the sum of the proper divisors of any integer. [28]
  • a happy number.
  • the model number of U-556; 5.56×45mm NATO cartridge.

557

557 is:

  • a prime number.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • the number of parallelogram polyominoes with 9 cells. [67]

558

558 = 2 × 32× 31. It is:

  • a nontotient.
  • a repdigit in bases 30 (II30) and 61 (9961).
  • a Harshad number.
  • The sum of the largest prime factors of the first 558 is itself divisible by 558 (the previous such number is 62, the next is 993).
  • in the title of the Star Trek: Deep Space Nine episode "The Siege of AR-558"

559

559 = 13 × 43. It is:

  • the sum of five consecutive primes (103 + 107 + 109 + 113 + 127).
  • the sum of seven consecutive primes (67 + 71 + 73 + 79 + 83 + 89 + 97).
  • a nonagonal number. [68]
  • a centered cube number. [69]
  • palindromic in base 18 (1D118).
  • the model number of U-559.

560s

560

560 = 24× 5 × 7. It is:

  • a tetrahedral number. [70]
  • a refactorable number.
  • palindromic in bases 3 (2022023) and 6 (23326).
  • the number of diagonals in a 35-gon [40]

561

561 = 3 × 11 × 17. It is:

562

562 = 2 × 281. It is:

  • a Smith number. [29]
  • an untouchable number. [28]
  • the sum of twelve consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71).
  • palindromic in bases 4 (203024), 13 (34313), 14 (2C214), 16 (23216), and 17 (1G117).
  • a lazy caterer number (sequence A000124 in the OEIS ).
  • the number of Native American (including Alaskan) Nations, or "Tribes," recognized by the USA government.

56264 + 1 is prime

563

563 is:

564

564 = 22× 3 × 47. It is:

  • the sum of a twin prime (281 + 283).
  • a refactorable number.
  • palindromic in bases 5 (42245) and 9 (6869).
  • number of primes <= 212. [78]

565

565 = 5 × 113. It is:

  • the sum of three consecutive primes (181 + 191 + 193).
  • a member of the Mian–Chowla sequence. [79]
  • a happy number.
  • palindromic in bases 10 (56510) and 11 (47411).

566

566 = 2 × 283. It is:

567

567 = 34× 7. It is:

  • palindromic in base 12 (3B312).
is prime [12]

568

568 = 23× 71. It is:

  • the sum of the first nineteen primes (a term of the sequence OEIS:  A007504 ).
  • a refactorable number.
  • palindromic in bases 7 (14417) and 21 (16121).
  • the smallest number whose seventh power is the sum of 7 seventh powers.
  • the room number booked by Benjamin Braddock in the 1967 film The Graduate .
  • the number of millilitres in an imperial pint.
  • the name of the Student Union bar at Imperial College London

569

569 is:

  • a prime number.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • a strictly non-palindromic number. [76]

570s

570

570 = 2 × 3 × 5 × 19. It is:

  • a triangular matchstick number [80]
  • a balanced number [81]

571

571 is:

  • a prime number.
  • a Chen prime.
  • a centered triangular number. [26]
  • the model number of U-571 which appeared in the 2000 movie U-571

572

572 = 22× 11 × 13. It is:

573

573 = 3 × 191. It is:

574

574 = 2 × 7 × 41. It is:

  • a sphenic number.
  • a nontotient.
  • palindromic in base 9 (7079).
  • number of partitions of 27 that do not contain 1 as a part. [82]
  • number of amino acid residues in a hemoglobin molecule.

575

575 = 52× 23. It is:

And the sum of the squares of the first 575 primes is divisible by 575. [84]

576

576 = 26× 32 = 242. It is:

  • the sum of four consecutive primes (137 + 139 + 149 + 151).
  • a highly totient number. [85]
  • a Smith number. [29]
  • an untouchable number. [28]
  • palindromic in bases 11 (48411), 14 (2D214), and 23 (12123).
  • a Harshad number.
  • four-dozen sets of a dozen, which makes it 4 gross.
  • a cake number.
  • the number of parts in all compositions of 8. [86]

577

577 is:

578

578 = 2 × 172. It is:

  • a nontotient.
  • palindromic in base 16 (24216).
  • area of a square with diagonal 34 [88]

579

579 = 3 × 193; it is a ménage number, [89] and a semiprime.

580s

580

580 = 22× 5 × 29. It is:

  • the sum of six consecutive primes (83 + 89 + 97 + 101 + 103 + 107).
  • palindromic in bases 12 (40412) and 17 (20217).

581

581 = 7 × 83. It is:

  • the sum of three consecutive primes (191 + 193 + 197).
  • a Blum integer

582

582 = 2 × 3 × 97. It is:

  • a sphenic number.
  • the sum of eight consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83 + 89).
  • a nontotient.
  • a vertically symmetric number (sequence A053701 in the OEIS ).
  • an admirable number.

583

583 = 11 × 53. It is:

  • palindromic in base 9 (7179).
  • number of compositions of 11 whose run-lengths are either weakly increasing or weakly decreasing [90]

584

584 = 23× 73. It is:

  • an untouchable number. [28]
  • the sum of totient function for first 43 integers.
  • a refactorable number.

585

585 = 32× 5 × 13. It is:

  • palindromic in bases 2 (10010010012), 8 (11118), and 10 (58510).
  • a repdigit in bases 8, 38, 44, and 64.
  • the sum of powers of 8 from 0 to 3.

When counting in binary with fingers, expressing 585 as 1001001001, results in the isolation of the index and little fingers of each hand, "throwing up the horns".

586

586 = 2 × 293.

587

587 is:

  • a prime number.
  • safe prime. [3]
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • the sum of five consecutive primes (107 + 109 + 113 + 127 + 131).
  • palindromic in bases 11 (49411) and 15 (29215).
  • the outgoing port for email message submission.
  • a prime index prime.

588

588 = 22× 3 × 72. It is:

  • a Smith number. [29]
  • palindromic in base 13 (36313).
  • a Harshad number.

589

589 = 19 × 31. It is:

590s

590

590 = 2 × 5 × 59. It is:

591

591 = 3 × 197, D-number [30]

592

592 = 24× 37. It is:

  • palindromic in bases 9 (7279) and 12 (41412).
  • a Harshad number.

59264 + 1 is prime

593

593 is:

  • a prime number.
  • a Sophie Germain prime.
  • the sum of seven consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101).
  • the sum of nine consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83).
  • an Eisenstein prime with no imaginary part.
  • a balanced prime. [75]
  • a Leyland prime [91] using 2 & 9 (29 + 92)
  • a member of the Mian–Chowla sequence. [79]
  • a strictly non-palindromic number. [76]

594

594 = 2 × 33× 11. It is:

  • the sum of ten consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79).
  • a nontotient.
  • palindromic in bases 5 (43345) and 16 (25216).
  • a Harshad number.
  • the number of diagonals in a 36-gon. [40]
  • a balanced number. [81]

595

595 = 5 × 7 × 17. It is:

596

596 = 22× 149. It is:

  • the sum of four consecutive primes (139 + 149 + 151 + 157).
  • a nontotient.
  • a lazy caterer number (sequence A000124 in the OEIS ).

597

597 = 3 × 199. It is:

598

598 = 2 × 13 × 23 = 51 + 92 + 83. It is:

599

599 is:

  • a prime number.
  • a Chen prime.
  • an Eisenstein prime with no imaginary part.
  • a prime index prime.

4599 - 3599 is prime.

Related Research Articles

111 is the natural number following 110 and preceding 112.

78 (seventy-eight) is the natural number following 77 and preceding 79.

72 (seventy-two) is the natural number following 71 and preceding 73. It is half a gross or six dozen.

114 is the natural number following 113 and preceding 115.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

300 is the natural number following 299 and preceding 301.

<span class="mw-page-title-main">360 (number)</span> Natural number

360 is the natural number following 359 and preceding 361.

400 is the natural number following 399 and preceding 401.

555 is the natural number following 554 and preceding 556.

720 is the natural number following 719 and preceding 721.

700 is the natural number following 699 and preceding 701.

600 is the natural number following 599 and preceding 601.

800 is the natural number following 799 and preceding 801.

900 is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 positive integers. In base 10, it is a Harshad number. It is also the first number to be the square of a sphenic number.

2000 is a natural number following 1999 and preceding 2001.

10,000 is the natural number following 9,999 and preceding 10,001.

3000 is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English.

248 is the natural number following 247 and preceding 249.

230 is the natural number following 229 and preceding 231.

240 is the natural number following 239 and preceding 241.

References

  1. Sloane, N. J. A. (ed.). "SequenceA000219(Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. Evans, I.H., Brewer's Dictionary of Phrase and Fable, 14th ed., Cassell, 1990, ISBN   0-304-34004-9
  3. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA005385(Safe primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  4. that is, a term of the sequence OEIS:  A034961
  5. that is, the first term of the sequence OEIS:  A133525
  6. since 503+2 is a product of two primes, 5 and 101
  7. since it is a prime which is congruent to 2 modulo 3.
  8. Sloane, N. J. A. (ed.). "SequenceA001606(Indices of prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  9. Sloane, N. J. A. (ed.). "SequenceA259180(Amicable pairs.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2024-05-22.
  10. Sloane, N. J. A. (ed.). "SequenceA000073(Tribonacci numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  11. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA033950(Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  12. 1 2 3 4 5 Sloane, N. J. A. (ed.). "SequenceA162862(Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  13. Wohlfahrt, K. (1985). "Macbeath's curve and the modular group". Glasgow Math. J. 27: 239–247. doi: 10.1017/S0017089500006212 . MR   0819842.
  14. 1 2 Sloane, N. J. A. (ed.). "SequenceA067128(Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  15. Sloane, N. J. A. (ed.). "SequenceA000330(Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  16. 1 2 Sloane, N. J. A. (ed.). "SequenceA002378(Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  17. 1 2 Sloane, N. J. A. (ed.). "SequenceA002061". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  18. Sloane, N. J. A. (ed.). "SequenceA000070". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-05-31.
  19. Sloane, N. J. A. (ed.). "SequenceA014206". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  20. Sloane, N. J. A. (ed.). "SequenceA100827(Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  21. Sloane, N. J. A. (ed.). "SequenceA036913(Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  22. Sloane, N. J. A. (ed.). "SequenceA000918". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  23. Sloane, N. J. A. (ed.). "SequenceA076980(Leyland numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  24. Sloane, N. J. A. (ed.). "SequenceA061209(Numbers which are the cubes of their digit sum)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  25. Sloane, N. J. A. (ed.). "SequenceA045575(Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  26. 1 2 Sloane, N. J. A. (ed.). "SequenceA005448(Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  27. Sloane, N. J. A. (ed.). "SequenceA107429(Number of complete compositions of n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  28. 1 2 3 4 5 6 7 8 9 10 Sloane, N. J. A. (ed.). "SequenceA005114(Untouchable numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  29. 1 2 3 4 5 6 Sloane, N. J. A. (ed.). "SequenceA006753(Smith numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  30. 1 2 3 4 Sloane, N. J. A. (ed.). "SequenceA033553(3-Knödel numbers or D-numbers: numbers n > 3 such that n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-05-31.
  31. Sloane, N. J. A. (ed.). "SequenceA005479(Prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  32. Dr. Kirkby (May 19, 2021). "Many more twin primes below Mersenne exponents than above Mersenne exponents". Mersenne Forum.
  33. Sloane, N. J. A. (ed.). "SequenceA000084(Number of series-parallel networks with n unlabeled edges. Also called yoke-chains by Cayley and MacMahon.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  34. Sloane, N. J. A. (ed.). "SequenceA348699(Primes with a prime number of prime digits)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  35. Sloane, N. J. A. (ed.). "SequenceA000123(Number of binary partitions: number of partitions of 2n into powers of 2)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  36. Sloane, N. J. A. (ed.). "SequenceA003052(Self numbers or Colombian numbers (numbers that are not of the form m + sum of digits of m for any m).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2024-01-09.
  37. Sloane, N. J. A. (ed.). "SequenceA329191(The prime divisors of the orders of the sporadic finite simple groups.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2024-01-09.
  38. Sloane, N. J. A. (ed.). "SequenceA113907(Dimensions of the five sporadic Lie groups.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2024-01-09.
  39. Sloane, N. J. A. (ed.). "SequenceA005891(Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  40. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA000096". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-05-31.
  41. "A000217 - OEIS". oeis.org. Retrieved 2024-11-27.
  42. "A002202 - OEIS". oeis.org. Retrieved 2024-11-27.
  43. Sloane, N. J. A. (ed.). "SequenceA016754(Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  44. Sloane, N. J. A. (ed.). "SequenceA138178(Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  45. 1 2 Sloane, N. J. A. (ed.). "SequenceA000326(Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  46. Sloane, N. J. A. (ed.). "SequenceA001082(Generalized octagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  47. Larmer, Brook (October 26, 2011). "Where an Internet Joke Is Not Just a Joke". New York Times. Retrieved November 1, 2011.
  48. Sloane, N. J. A. (ed.). "SequenceA036469(Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  49. "A002202 - OEIS". oeis.org. Retrieved 2024-11-27.
  50. Sloane, N. J. A. (ed.). "SequenceA001107(10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  51. Snorri Sturluson (1880). "Prose Edda". p. 107.
  52. Snorri Sturluson (1880). "Prose Edda". p. 82.
  53. Sloane, N. J. A. (ed.). "SequenceA031157(Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  54. Sloane, N. J. A. (ed.). "SequenceA003154(Centered 12-gonal numbers. Also star numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  55. Sloane, N. J. A. (ed.). "SequenceA000670(Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2023-10-23.
  56. Sloane, N. J. A. (ed.). "SequenceA059801(Numbers k such that 4^k - 3^k is prime.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2023-10-23.
  57. Sloane, N. J. A. (ed.). "SequenceA002088". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  58. Sloane, N. J. A. (ed.). "SequenceA001844(Centered square numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  59. Sloane, N. J. A. (ed.). "SequenceA002407(Cuban primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  60. Sloane, N. J. A. (ed.). "SequenceA003215(Hex (or centered hexagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  61. Sloane, N. J. A. (ed.). "SequenceA069099(Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  62. 1 2 Sloane, N. J. A. (ed.). "SequenceA006872". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  63. Sloane, N. J. A. (ed.). "SequenceA002411(Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  64. 1 2 Sloane, N. J. A. (ed.). "SequenceA071395(Primitive abundant numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  65. "Sloane's A000055: Number of trees with n unlabeled nodes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Archived from the original on 2010-11-29. Retrieved 2021-12-19.
  66. Sloane, N. J. A. (ed.). "SequenceA002863(Number of prime knots with n crossings)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  67. Sloane, N. J. A. (ed.). "SequenceA006958(Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  68. Sloane, N. J. A. (ed.). "SequenceA001106(9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  69. Sloane, N. J. A. (ed.). "SequenceA005898(Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  70. Sloane, N. J. A. (ed.). "SequenceA000292(Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  71. "A000217 - OEIS". oeis.org. Retrieved 2024-11-29.
  72. Sloane, N. J. A. (ed.). "SequenceA000384(Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  73. Higgins, Peter (2008). Number Story: From Counting to Cryptography . New York: Copernicus. p.  14. ISBN   978-1-84800-000-1.
  74. Sloane, N. J. A. (ed.). "SequenceA007540(Wilson primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  75. 1 2 Sloane, N. J. A. (ed.). "SequenceA006562(Balanced primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  76. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA016038(Strictly non-palindromic numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  77. Sloane, N. J. A. (ed.). "SequenceA059802(Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  78. Sloane, N. J. A. (ed.). "SequenceA007053". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  79. 1 2 Sloane, N. J. A. (ed.). "SequenceA005282(Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  80. Sloane, N. J. A. (ed.). "SequenceA045943". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  81. 1 2 Sloane, N. J. A. (ed.). "SequenceA020492(Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  82. Sloane, N. J. A. (ed.). "SequenceA002865(Number of partitions of n that do not contain 1 as a part)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  83. Sloane, N. J. A. (ed.). "SequenceA001845(Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  84. Sloane, N. J. A. (ed.). "SequenceA111441(Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  85. Sloane, N. J. A. (ed.). "SequenceA097942(Highly totient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  86. Sloane, N. J. A. (ed.). "SequenceA001792". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  87. Sloane, N. J. A. (ed.). "SequenceA080076(Proth primes)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  88. Sloane, N. J. A. (ed.). "SequenceA001105". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  89. Sloane, N. J. A. (ed.). "SequenceA000179(Ménage numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.
  90. Sloane, N. J. A. (ed.). "SequenceA332835(Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2022-06-02.
  91. Sloane, N. J. A. (ed.). "SequenceA094133(Leyland prime numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  92. "A000217 - OEIS". oeis.org. Retrieved 2024-11-29.
  93. Sloane, N. J. A. (ed.). "SequenceA060544(Centered 9-gonal (also known as nonagonal or enneagonal) numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved 2016-06-11.