It has been requested that the title of this article be changed to Mobile web . Please see the relevant discussion on the discussion page. The page should not be moved unless the discussion is closed; summarizing the consensus achieved in support of the move. |
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages) (Learn how and when to remove this template message)
|
The mobile web, also known as mobile internet, refers to browser-based Internet services accessed from handheld mobile devices, such as smartphones or feature phones, through a mobile or other wireless network.
In computing, a web application or web app is a client–server computer program which the client runs in a web browser. Common web applications include webmail, online retail sales, and online auction.
The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries a vast range of information resources and services, such as the inter-linked hypertext documents and applications of the World Wide Web (WWW), electronic mail, telephony, and file sharing. Some publications no longer capitalize "internet".
A mobile device is a computing device small enough to hold and operate in the hand. Typically, any handheld computer device will have an LCD or OLED flatscreen interface, providing a touchscreen interface with digital buttons and keyboard or physical buttons along with a physical keyboard. Many such devices can connect to the Internet and interconnect with other devices such as car entertainment systems or headsets via Wi-Fi, Bluetooth, cellular networks or near field communication (NFC). Integrated cameras, digital media players, the ability to place and receive telephone calls, video games, and Global Positioning System (GPS) capabilities are common. Power is typically provided by a lithium battery. Mobile devices may run mobile operating systems that allow third-party apps specialized for said capabilities to be installed and run.
Traditionally, the World Wide Web has been accessed via fixed-line services on laptops and desktop computers. However, the web is now more accessible by portable and wireless devices. An early 2010 ITU (International Telecommunication Union) report said that with current growth rates, web access by people on the go – via laptops and smart mobile devices – is likely to exceed web access from desktop computers within the next five years. [1] In January 2014, mobile internet use exceeded desktop use in the United States. [2] The shift to mobile web access has accelerated since 2007 with the rise of larger multitouch smartphones, and since 2010 with the rise of multitouch tablet computers. Both platforms provide better Internet access, screens, and mobile browsers, or application-based user web experiences than previous generations of mobile devices. Web designers may work separately on such pages, or pages may be automatically converted, as in Mobile Wikipedia. Faster speeds, smaller, feature-rich devices, and a multitude of applications continue to drive explosive growth for mobile internet traffic. The 2017 Virtual Network Index (VNI) report produced by Cisco Systems forecasts that by 2021, there will be 5.5 billion global mobile users (up from 4.9 billion in 2016). [3] Additionally, the same 2017 VNI report forecasts that average access speeds will increase by roughly three times from 6.8 Mbit/s to 20 Mbit/s in that same period with video comprising the bulk of the traffic (78%).
The World Wide Web (WWW), commonly known as the Web, is an information space where documents and other web resources are identified by Uniform Resource Locators, which may be interlinked by hypertext, and are accessible over the Internet. The resources of the WWW may be accessed by users by a software application called a web browser.
A landline telephone is a phone that uses a metal wire or optical fiber telephone line for transmission as distinguished from a mobile cellular line, which uses radio waves for transmission. In 2003, the CIA World Factbook reported approximately 1.263 billion main telephone lines worldwide. China had more than any other country at 350 million and the United States was second with 268 million. The United Kingdom had 23.7 million residential fixed home phones.
A tablet computer, commonly shortened to tablet, is a mobile device, typically with a mobile operating system and touchscreen display processing circuitry, and a rechargeable battery in a single thin, flat package. Tablets, being computers, do what other personal computers do, but lack some input/output (I/O) abilities that others have. Modern tablets largely resemble modern smartphones, the only differences being that tablets are relatively larger than smartphones, with screens 7 inches (18 cm) or larger, measured diagonally, and may not support access to a cellular network.
The distinction between mobile web applications and native applications is anticipated to become increasingly blurred, as mobile browsers gain direct access to the hardware of mobile devices (including accelerometers and GPS chips), and the speed and abilities of browser-based applications improve. Persistent storage and access to sophisticated user interface graphics functions may further reduce the need for the development of platform-specific native applications.
A mobile app or mobile application is a computer program or software application designed to run on a mobile device such as a phone/tablet or watch. Apps were originally intended for productivity assistance such as Email, calendar, and contact databases, but the public demand for apps caused rapid expansion into other areas such as mobile games, factory automation, GPS and location-based services, order-tracking, and ticket purchases, so that there are now millions of apps available. Apps are generally downloaded from application distribution platforms which are operated by the owner of the mobile operating system, such as the App Store (iOS) or Google Play Store. Some apps are free, and others have a price, with the profit being split between the application's creator and the distribution platform. Mobile applications often stand in contrast to desktop applications which are designed to run on desktop computers, and web applications which run in mobile web browsers rather than directly on the mobile device.
A mobile browser is a web browser designed for use on a mobile device such as a mobile phone or PDA. Mobile browsers are optimized so as to display Web content most effectively for small screens on portable devices. Mobile browser software must be small and efficient to accommodate the low memory capacity and low-bandwidth of wireless handheld devices. Typically, they were stripped-down web browsers, however, some recent mobile browsers can handle latest technologies also such as CSS 3, JavaScript, and Ajax.
An accelerometer is a device that measures proper acceleration. Proper acceleration, being the acceleration of a body in its own instantaneous rest frame, is not the same as coordinate acceleration, being the acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall will measure zero.
The mobile web has also been called Web 3.0, drawing parallels to the changes users were experiencing as Web 2.0 websites proliferated. [4] [5] [6]
Web 2.0 refers to websites that emphasize user-generated content, ease of use, participatory culture and interoperability for end users. The term was invented by Darcy DiNucci in 1999 and later popularized by Tim O'Reilly and Dale Dougherty at the O'Reilly Media Web 2.0 Conference in late 2004. The Web 2.0 framework only specifies the design and use of websites and does not place any technical demands or specifications on designers. The transition was gradual and, therefore, no precise date for when this change happened has been given.
Mobile web access today still suffers from interoperability and usability problems. Interoperability issues stem from the platform fragmentation of mobile devices, mobile operating systems, and browsers. Usability problems are centered on the small physical size of the mobile phone form factors (limits on display resolution and user input/operating). Despite these shortcomings, many mobile developers choose to create apps using mobile web. A June 2011 research on mobile development found mobile web the third most used platform, trailing Android and iOS. [7]
Interoperability is a characteristic of a product or system, whose interfaces are completely understood, to work with other products or systems, at present or in the future, in either implementation or access, without any restrictions.
Usability is the ease of use and learnability of a human-made object such as a tool or device. In software engineering, usability is the degree to which a software can be used by specified consumers to achieve quantified objectives with effectiveness, efficiency, and satisfaction in a quantified context of use.
A computing platform or digital platform is the environment in which a piece of software is executed. It may be the hardware or the operating system (OS), even a web browser and associated application programming interfaces, or other underlying software, as long as the program code is executed with it. Computing platforms have different abstraction levels, including a computer architecture, an OS, or runtime libraries. A computing platform is the stage on which computer programs can run.
In an article in Communications of the ACM in April 2013, Web technologist Nicholas C. Zakas noted that mobile phones in use in 2013 were more powerful than Apollo 11's 70 pounds (32 kg) Apollo Guidance Computer used in the July 1969 lunar landing. [8] [9] [10] However, in spite of their power, in 2013, mobile devices still suffer from web performance with slow connections similar to the 1996 stage of web development. [9] [10] Mobile devices with slower download request/response times, the latency of over-the-air data transmission, [9] [10] with "high-latency connections, slower CPUs, and less memory" force developers to rethink web applications created for desktops with "wired connections, fast CPUs, and almost endless memory." [9] [10]
Communications of the ACM is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with backgrounds in all areas of computer science and information systems. The focus is on the practical implications of advances in information technology and associated management issues; ACM also publishes a variety of more theoretical journals.
Apollo 11 was the spaceflight that landed the first two people on the Moon. Commander Neil Armstrong and lunar module pilot Buzz Aldrin, both American, landed the Apollo Lunar Module Eagle on July 20, 1969, at 20:17 UTC. Armstrong became the first person to step onto the lunar surface six hours later on July 21 at 02:56:15 UTC; Aldrin joined him 19 minutes later. They spent about two and a quarter hours together outside the spacecraft, and collected 47.5 pounds (21.5 kg) of lunar material to bring back to Earth. Command module pilot Michael Collins flew the command module Columbia alone in lunar orbit while they were on the Moon's surface. Armstrong and Aldrin spent 21.5 hours on the lunar surface before rejoining Columbia in lunar orbit.
The Apollo Guidance Computer (AGC) was a digital computer produced for the Apollo program that was installed on board each Apollo command module (CM) and Apollo Lunar Module (LM). The AGC provided computation and electronic interfaces for guidance, navigation, and control of the spacecraft.
The mobile web was first popularized by a silicon valley company known as Unwired Planet. [11] In 1997, Unwired Planet, Nokia, Ericsson, and Motorola started the WAP Forum to create and harmonize the standards to ease the transition to bandwidth networks and small display devices. The WAP standard was built on a three-layer, middleware architecture that fueled the early growth of the mobile web, but was made virtually irrelevant with faster networks, larger displays, and advanced smartphones based on Apple's iOS and Google's Android software.
'Mobile Internet' refers to access to the internet via a cellular telephone service provider. It is wireless access that can handoff to another radio tower while it is moving across the service area. It can refer an immobile device that stays connected to one tower, but this is not the meaning of "mobile" here. Wi-Fi and other better methods are commonly available for users not on the move. Cellular base stations are more expensive to provide than a wireless base station that connects directly to an internet service provider, rather than through the telephone system.
A mobile phone, such as a smartphone, that connects to data or voice services without going through the cellular base station is not on the mobile Internet. A laptop with a broadband modem and a cellular service provider subscription, that is traveling on a bus through the city is on mobile Internet.
A mobile broadband modem "tethers" the smartphone to one or more computers or other end-user devices to provide access to the Internet via the protocols that cellular telephone service providers may offer.
According to BuzzCity, mobile internet increased 30% from Q1 to Q2 2011. The four countries which have advertising impression (?) in total more than 1 billion in one quarter were India, Indonesia, Vietnam and the United States. [12] As of July 2012, approximately 10.5% of all web traffic occurs through mobile devices (up from 4% in December 2010). [13]
Standards improve the interoperability, usability, and accessibility of mobile web usage.
The Mobile Web Initiative (MWI) was set up by the W3C to develop the best practices and technologies relevant to the mobile web. The goal of the initiative is to make browsing the web from mobile devices more reliable and accessible. The main aim is to evolve standards of data formats from Internet providers that are tailored to the specifications of particular mobile devices. The W3C has published guidelines for mobile content, and is addressing the problem of device diversity by establishing a technology to support a repository of device descriptions.
W3C is also developing a validating scheme to assess the readiness of content for the mobile web, through its mobileOK Scheme, which will help content developers to determine if their content is web-ready quickly. The W3C guidelines and mobile OK approach have not been immune from criticism.[ citation needed ] This puts the emphasis on adaptation, which is now seen as the key process in achieving the ubiquitous web, when combined with a device description repository.
mTLD, the registry for .mobi, has released a free testing tool called the MobiReady Report (see mobiForge) to analyze the mobile readiness of website. It does a free page analysis and gives a Mobi Ready score. This report tests the mobile-readiness of the site using industry best practices and standards.
Other standards for the mobile web are being documented and explored for particular applications by interested industry groups, such as the use of the mobile web for the purpose of education and training.
The first access to the mobile web was commercially offered in Finland at the end of 1996 on the Nokia 9000 Communicator phone via the Sonera and Radiolinja networks. This was access to the real internet. The first commercial launch of a mobile-specific browser-based web service was in 1999 in Japan when i-mode was launched by NTT DoCoMo.
The mobile web primarily utilizes lightweight pages like this one written in Extensible Hypertext Markup Language (XHTML) or Wireless Markup Language (WML) to deliver content to mobile devices. Many new mobile browsers are moving beyond these limits by supporting a wider range of Web formats, including variants of HTML commonly found on the desktop web.
The .mobi sponsored top-level domain was launched specifically for the mobile Internet by a consortium of companies including Google, Microsoft, Nokia, Samsung, and Vodafone. By forcing sites to comply with mobile web standards, .mobi tries to ensure visitors a consistent and optimized experience on their mobile device. However, this domain has been criticized by several big names, including Tim Berners-Lee of the W3C, who claims that it breaks the device independence of the web:
It is fundamentally useful to be able to quote the URI for some information and then look up that URI in an entirely different context. For example, I may want to look up a restaurant on my laptop, bookmark it, and then, when I only have my phone, check the bookmark to have a look at the evening menu. Or, my travel agent may send me a pointer to my itinerary for a business trip. I may view the itinerary from my office on a large screen and want to see the map, or I may view it at the airport from my phone when all I want is the gate number.
Dividing the Web into information destined for different devices, or different classes of user, or different classes of information, breaks the Web in a fundamental way.
I urge ICANN not to create the ".mobi" top level domain.
Advertisers are increasingly using the mobile web as a platform to reach consumers. The total value of advertising on mobile was 2.2 billion dollars in 2007. A recent study by the Online Publishers Association, now called Digital Content Next (DCN), reported that about one-in-ten mobile web users said they have made a purchase based on a mobile web ad, while 23% said they had visited a Web site, 13% said they have requested more information about a product or service and 11% said they have gone to a store to check out a product.
In the fall of 2015, Google announced it would be rolling out an open source initiative called "Accelerated Mobile Pages" or AMP. The goal of this project is to improve the speed and performance of content-rich pages which include video, animations, and graphics. Since the majority of the population now consumes the web through tablets and smartphones, having web pages that are optimized for these products is the primary need to AMP. [14] [15]
The three main types of AMP are AMP HTML, AMP JS, and Google AMP Cache. [16]
A recent requirement – beginning February 1, 2018[ citation needed ] – from Google requires the canonical page content should match the content on accelerated mobile pages. In creating a great user experience – and to avoid user interface traps – it's important to display the same content on Accelerated Mobile Pages as there are with the standard canonical pages.[ citation needed ]
Though Internet access "on the go" provides advantages to many, such as the ability to communicate by email with others and obtain information anywhere, the web, accessed from mobile devices, has many limits, which may vary, depending on the device. However, newer smartphones overcome some of these restrictions. Some problems which may be encountered include:
The inability of mobile web applications to access the local capabilities on the mobile device can limit their ability to provide the same features as native applications. The OMTP BONDI activity is acting as a catalyst to enable a set of JavaScript APIs which can access local capabilities in a secure way on the mobile device. Specifications and a reference implementation [18] have been produced. Security is a key aspect in this provision in order to protect users from malicious web applications and widgets.
In addition to the limits of the device, there are limits that should be made known to users concerning the interference these devices cause in other electromagnetic technology.
The convergence of the Internet and phone, in particular has caused hospitals to increase their mobile phone exclusion zones. A study by Erik van Lieshout and colleagues (Academic Medical Centre, University of Amsterdam) has found that the General Packet Radio Service (GPRS) used in modern phones can affect machines from up to 3 meters away. The Universal Mobile Telecommunications System (UMTS) signals, used in 3G networks, have a smaller exclusion zone of just a few centimeters. The worst offenders in hospitals are the doctors. [19]
A website or Web site is a collection of related network web resources, such as web pages, multimedia content, which are typically identified with a common domain name, and published on at least one web server. Notable examples are wikipedia.org, google.com, and amazon.com.
Smartphones are a class of mobile phones and of multi-purpose mobile computing devices. They are distinguished from feature phones by their stronger hardware capabilities and extensive mobile operating systems, which facilitate wider software, internet, and multimedia functionality, alongside core phone functions such as voice calls and text messaging. Smartphones typically include various sensors that can be leveraged by their software, such as a magnetometer, proximity sensors, barometer, gyroscope and accelerometer, and support wireless communications protocols such as Bluetooth, Wi-Fi, and satellite navigation.
The domain name mobi is a top-level domain (TLD) in the Domain Name System of the Internet. Its name is derived from the adjective mobile, indicating it is used by mobile devices for accessing World Wide Web resources via the Mobile Web.
Mobile malware is malicious software that targets mobile phones or wireless-enabled Personal digital assistants (PDA), by causing the collapse of the system and loss or leakage of confidential information. As wireless phones and PDA networks have become more and more common and have grown in complexity, it has become increasingly difficult to ensure their safety and security against electronic attacks in the form of viruses or other malware.
Proximity marketing is the localized wireless distribution of advertising content associated with a particular place. Transmissions can be received by individuals in that location who wish to receive them and have the necessary equipment to do so.
Wireless Application Protocol (WAP) is a technical standard for accessing information over a mobile wireless network. A WAP browser is a web browser for mobile devices such as mobile phones that uses the protocol. Introduced with much hype in 1999, WAP achieved some popularity in the early 2000s, but by the 2010s it had been largely superseded by more modern standards. Most modern handset internet browsers now fully support HTML, so they do not need to use WAP markup for web page compatibility, and therefore, most are no longer able to render and display pages written in WML, WAP's markup language.
Mobile web analytics studies the behavior of mobile website visitors in a similar way to traditional web analytics. In a commercial context, mobile web analytics refers to the use of data collected as visitors access a website from a mobile phone. It helps to determine which aspects of the website work best for mobile traffic and which mobile marketing campaigns work best for the business, including mobile advertising, mobile search marketing, text campaigns, and desktop promotion of mobile sites and services.
A software widget is a relatively simple and easy-to-use software application or component made for one or more different software platforms.
A mobile content delivery network or mobile content distribution network is a network of servers - systems, computers or devices - that cooperate transparently to optimize the delivery of content to end users on any type of wireless or mobile network. Like traditional CDNs, the primary purpose of a Mobile CDN is to serve content to end users with high availability and high performance. In addition, Mobile CDNs can be used to optimize content delivery for the unique characteristics of wireless networks and mobile devices, such as limited network capacity, or lower device resolution. Added intelligence around device detection, content adaptation can help address challenges inherent to mobile networks which have high latency, higher packet loss and huge variation in download capacity.
The W3C Geolocation API is an effort by the World Wide Web Consortium (W3C) to standardize an interface to retrieve the geographical location information for a client-side device. It defines a set of objects, ECMAScript standard compliant, that executing in the client application give the client's device location through the consulting of Location Information Servers, which are transparent for the application programming interface (API). The most common sources of location information are IP address, Wi-Fi and Bluetooth MAC address, radio-frequency identification (RFID), Wi-Fi connection location, or device Global Positioning System (GPS) and GSM/CDMA cell IDs. The location is returned with a given accuracy depending on the best location information source available.
Mobile technology is the technology used for cellular communication. Mobile code-division multiple access (CDMA) technology has evolved rapidly over the past few years. Since the start of this millennium, a standard mobile device has gone from being no more than a simple two-way pager to being a mobile phone, GPS navigation device, an embedded web browser and instant messaging client, and a handheld gaming console. Many experts believe that the future of computer technology rests in mobile computing with wireless networking. Mobile computing by way of tablet computers are becoming more popular. Tablets are available on the 3G and 4G networks.
Mobile Business Intelligence is defined as “Mobile BI is a system comprising both technical and organizational elements that present historical and/or real-time information to its users for analysis on mobile devices such as smartphones and tablets, to enable effective decision-making and management support, for the overall purpose of increasing firm performance.”. Business intelligence (BI) refers to computer-based techniques used in spotting, digging-out, and analyzing business data, such as sales revenue by products and/or departments or associated costs and incomes.
Mobile security, or more specifically mobile device security, has become increasingly important in mobile computing. Of particular concern is the security of personal and business information now stored on smartphones.
A list of BlackBerry-related topics
An app store is a type of digital distribution platform for computer software, often in a mobile context. Apps provide a specific set of functions which, by definition, do not include the running of the computer itself. Complex software designed for use on a personal computer, for example, may have a related app designed for use on a mobile device. Today apps are normally designed to run on a specific operating system, - such as the contemporary iOS, macOS, Windows or Android - but in the past mobile carriers had their own portals for apps and related media content.
A Rich Mobile Application (RMA) is a mobile application that inherits numerous properties from rich Internet applications and features several explicit properties, such as context awareness and ubiquity. RMAs are "energy efficient, multi-tier, online mobile applications originated from the convergence of mobile cloud computing, future web, and imminent communication technologies envisioning to deliver rich user experience via high functionality, immersive interaction, and crisp response in a secure wireless environment while enabling context-awareness, offline usability, portability, and data ubiquity".
|title=
(help)