N-Desethyletonitazene

Last updated

N-Desethyletonitazene
N-desethyletonitazene structure.png
Legal status
Legal status
Identifiers
  • 2-[2-[(4-ethoxyphenyl)methyl]-5-nitrobenzimidazol-1-yl]-N-ethylethanamine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C20H24N4O3
Molar mass 368.437 g·mol−1
3D model (JSmol)
  • CCNCCN1C2=C(C=C(C=C2)[N+](=O)[O-])N=C1CC3=CC=C(C=C3)OCC
  • InChI=1S/C20H24N4O3/c1-3-21-11-12-23-19-10-7-16(24(25)26)14-18(19)22-20(23)13-15-5-8-17(9-6-15)27-4-2/h5-10,14,21H,3-4,11-13H2,1-2H3
  • Key:RESPFUMJVJRUMB-UHFFFAOYSA-N

N-Desethyletonitazene (NDE, Noretonitazene) is a benzimidazole derivative with potent opioid effects which has been sold as a designer drug. It is better known as an active metabolite of the related compound etonitazene, but has similar activity to the parent compound and has sometimes appeared as a drug of abuse in its own right, [2] [3] first being identified in New Zealand in 2024. [4] [5]

See also

Related Research Articles

<span class="mw-page-title-main">Salvinorin A</span> Chemical compound

Salvinorin A is the main active psychotropic molecule in Salvia divinorum. Salvinorin A is considered a dissociative hallucinogen.

<span class="mw-page-title-main">Sufentanil</span> Synthetic opioid analgesic drug

Sufentanil, sold under the brand names Sufenta among others, is a synthetic opioid analgesic drug approximately 5 to 10 times as potent as its parent drug, fentanyl, and 500 to 1,000 times as potent as morphine. Structurally, sufentanil differs from fentanyl through the addition of a methoxymethyl group on the piperidine ring, and the replacement of the phenyl ring by thiophene. Sufentanil first was synthesized at Janssen Pharmaceutica in 1974.

<span class="mw-page-title-main">Etonitazene</span> Chemical compound

Etonitazene, also known as EA-4941 or CS-4640, is a benzimidazole opioid, first reported in 1957, that has been shown to have approximately 1,000 to 1,500 times the potency of morphine in animals.

<span class="mw-page-title-main">Dihydroetorphine</span> Opioid analgesic drug

Dihydroetorphine was developed by K. W. Bentley at McFarlan-Smith in the 1960s and is a potent opioid analgesic used mainly in China. It is a derivative of the better-known opioid etorphine, a very potent veterinary painkiller and anesthetic medication used primarily for the sedation of large animals such as elephants, giraffes, and rhinos.

<span class="mw-page-title-main">Oripavine</span> Chemical compound

Oripavine is an opioid and the major metabolite of thebaine. It is the parent compound from which a series of semi-synthetic opioids are derived, which includes the compounds etorphine and buprenorphine. Although its analgesic potency is comparable to morphine, it is not used clinically due to its severe toxicity and low therapeutic index. Due to its use in manufacture of strong opioids, oripavine is a controlled substance in some jurisdictions.

<span class="mw-page-title-main">Viminol</span> Opioid analgesic medicine

Viminol is an opioid analgesic developed by a team at the drug company Zambon in the 1960s. Viminol is based on the α-pyrryl-2-aminoethanol structure, unlike any other class of opioids.

<span class="mw-page-title-main">MT-45</span> Chemical compound

MT-45 (IC-6) is an opioid analgesic drug invented in the 1970s by Dainippon Pharmaceutical Co. It is chemically a 1-substituted-4-(1,2-diphenylethyl) piperazine derivative, which is structurally unrelated to most other opioid drugs. Racemic MT-45 has around 80% the potency of morphine, with almost all opioid activity residing in the (S) enantiomer. It has been used as a lead compound from which a large family of potent opioid drugs have been developed, including full agonists, partial agonists, and antagonists at the three main opioid receptor subtypes. Fluorinated derivatives of MT-45 such as 2F-MT-45 are significantly more potent as μ-opioid receptor agonists, and one of its main metabolites 1,2-diphenylethylpiperazine also blocks NMDA receptors.

<span class="mw-page-title-main">U-47700</span> Opioid analgesic

U-47700, also known as U4, pink heroin, pinky, and pink, is an opioid analgesic drug developed by a team at Upjohn in the 1970s which has around 7.5 times the potency of morphine in animal models.

<span class="mw-page-title-main">PB-22</span> Chemical compound

PB-22 is a designer drug offered by online vendors as a cannabimimetic agent, and detected being sold in synthetic cannabis products in Japan in 2013. PB-22 represents a structurally unique synthetic cannabinoid chemotype, since it contains an ester linker at the indole 3-position, rather than the precedented ketone of JWH-018 and its analogs, or the amide of APICA and its analogs.

<span class="mw-page-title-main">Metonitazene</span> Chemical compound (analgesic drug)

Metonitazene is an analgesic compound related to etonitazene, which was first reported in 1957, and has been shown to have approximately 1000 times the potency of morphine by central routes of administration, but if used orally it has been shown to have approximately 10 times the potency of morphine.

<span class="mw-page-title-main">Isotonitazene</span> Chemical compound

Isotonitazene is a benzimidazole-derived opioid analgesic drug related to etonitazene, which has been sold as a designer drug. It has only around half the potency of etonitazene in animal studies, but it is likely even less potent in humans as was seen with etonitazene. Isotonitazene was fully characterized in November 2019 in a paper where the authors performed a full analytical structure elucidation in addition to determination of the potency at the μ-opioid receptor using a biological functional assay in vitro. While isotonitazene was not compared directly to morphine in this assay, it was found to be around 2.5 times more potent than hydromorphone and slightly more potent than fentanyl.

<span class="mw-page-title-main">Brorphine</span> Chemical compound

Brorphine is a piperidine-based opioid analgesic compound. Brorphine was originally discovered in a 2018 paper investigating functionally biased opioid compounds, with the intention of finding safer analgesics that produce less respiratory depression than typical opioids. Brorphine was originally reported to be highly biased, with an EC50 of 4.8nM for GTPγS binding and 182nM for β-arrestin recruitment, however a more recent study found no significant bias for any of the compounds tested, including brorphine. Its safety profile in any animal model has never been established. Despite the lack of safety information on the compound, brorphine has been sold as a designer drug since mid-2019, initially being identified in the US Midwest, though it has since been found in 2020 in Belgium. It is related in chemical structure to compounds such as benzylfentanyl and bezitramide, though it is sufficiently structurally distinct to fall outside the formal definition of a "fentanyl analogue" in jurisdictions such as the US and New Zealand which have Markush structure controls over this family of drugs.

<span class="mw-page-title-main">Etonitazepyne</span> Chemical compound

Etonitazepyne is a benzimidazole derivative with potent opioid effects which has been sold over the internet as a designer drug and linked to numerous cases of overdose.

<span class="mw-page-title-main">Metodesnitazene</span> Chemical compound

Metodesnitazene is a benzimidazole derivative with opioid effects, though unlike related compounds such as metonitazene and etodesnitazene which are quite potent, metodesnitazene is only around the same potency as morphine in animal studies. It is illegal in both the US and UK.

<span class="mw-page-title-main">Protonitazene</span> Chemical compound

Protonitazene is a benzimidazole derivative with potent opioid effects which has been sold over the internet as a designer drug since 2019, and has been identified in various European countries, as well as Canada, the US and Australia. It has been linked to numerous cases of drug overdose, and is a Schedule I drug in the US.

<span class="mw-page-title-main">Butonitazene</span> Chemical compound

Butonitazene is a benzimidazole derivative with opioid effects, which has been sold over the internet as a designer drug. It has relatively low potency compared to many related compounds, and has generally been encountered as a component of mixtures with other substances rather than in its pure form. However, it is still several times the potency of morphine and has been implicated in several cases of drug overdose. Butonitazene is a Schedule I drug in the US, along with several related compounds.

<span class="mw-page-title-main">N-Desethylisotonitazene</span> Chemical compound

N-Desethylisotonitazene (norisotonitazene) is a benzimidazole opioid with potent analgesic effects which has been sold as a designer drug. It was first identified in 2023 as an active metabolite of the closely related compound isotonitazene, and was found to have similar potency. It is one of the strongest benzimidazole opioids discovered, with an analgesic strength 20 times stronger than fentanyl.

Utopioids are a class of synthetic opioid analgesic drugs first developed in the 1970s by the pharmaceutical company Upjohn. However, they were never marketed for medical use. Some compounds from this class have been used for scientific research as model kappa opioid receptor agonists. In the mid-2010s, one mu opioid receptor selective compound from this class, U-47700, re-emerged as a designer drug and became widely sold around the world for several years before being banned in various jurisdictions from 2016 onwards. Following the prohibition of U-47700, a number of related compounds have continued to appear on illicit drug markets. They are often marketed online or included as components in mixtures sold under the guise of "street heroin." U-47700 itself is the most potent mu opioid agonist from this class, around 7-10x the potency of morphine. Some other compounds such as 3,4-MDO-U-47700 and N-Ethyl-U-47700 retain similar mu selectivity but with lower potency similar to that of morphine, or have a mixture of mu and kappa mediated effects, such as U-48800. Most utopioid derivatives are however selective kappa agonists, which may have limited abuse potential as dissociative hallucinogens, but do not alleviate withdrawal distress in opioid dependent individuals or maintain addiction in a typical sense. Nevertheless, this has not stopped them from being sold as designer drugs, and a number of these compounds are now banned in many jurisdictions alongside U-47700 itself.

<span class="mw-page-title-main">Flunitazene</span> Designer drug with opioid effects

Flunitazene (Fluonitazene) is a benzimidazole derivative with opioid effects, first developed in the 1950s as part of the research that led to better-known compounds such as etonitazene. It is one of the least potent derivatives from this class to have appeared as a designer drug, with only around the same potency as morphine, but nevertheless has been sold since around 2020, and has been linked to numerous drug overdose cases.

References

  1. Anvisa (2024-05-28). "RDC Nº 877 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 877 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União. Archived from the original on 2024-09-25. Retrieved 2024-09-25.
  2. Vandeputte MM, Van Uytfanghe K, Layle NK, St Germaine DM, Iula DM, Stove CP (April 2021). "Synthesis, Chemical Characterization, and μ-Opioid Receptor Activity Assessment of the Emerging Group of "Nitazene" 2-Benzylbenzimidazole Synthetic Opioids". ACS Chemical Neuroscience. 12 (7): 1241–1251. doi:10.1021/acschemneuro.1c00064. hdl: 1854/LU-8714061 . PMID   33759494. S2CID   232337929.
  3. Pergolizzi Jr J, Raffa R, LeQuang JK, Breve F, Varrassi G (21 June 2023). "Old Drugs and New Challenges: A Narrative Review of Nitazenes". Cureus. 15 (6): e40736. doi: 10.7759/cureus.40736 . PMC   10361140 . PMID   37485167.
  4. "Highly potent synthetic opioid detected in fake diazepam tablet". High Alert. New Zealand Government. 2024.
  5. Campbell G (9 May 2024). "N-Desethyletonitazene found in second fake tablet, this time in Tauranga". New Zealand Herald.