PEPAP

Last updated
PEPAP
PEPAP.svg
Clinical data
Other namesPEPAP
Legal status
Legal status
Identifiers
  • 4-Phenyl-1-(2-phenylethyl)piperidin-4-yl acetate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H25NO2
Molar mass 323.436 g·mol−1
3D model (JSmol)
  • O=C(C)OC1(CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3
  • InChI=1S/C21H25NO2/c1-18(23)24-21(20-10-6-3-7-11-20)13-16-22(17-14-21)15-12-19-8-4-2-5-9-19/h2-11H,12-17H2,1H3 Yes check.svgY
  • Key:BVURVTVDNWSNFN-UHFFFAOYSA-N Yes check.svgY
   (verify)

PEPAP (phenethylphenylacetoxypiperidine) is an opioid analgesic that is an analog of desmethylprodine.

It is related to the drug MPPP, with an N-phenethyl group in place of the N-methyl substitution and an acetate ester rather than propionate. PEPAP is approximately 6–7 times more potent than morphine in laboratory rats. [1] PEPAP presumably has similar effects to other opioids, producing analgesia, sedation and euphoria. Side effects can include itching, nausea and potentially serious respiratory depression which can be life-threatening.

PEPAP has been found to be a potent CYP2D6 inhibitor, which makes it likely to cause adverse interactions with some other drugs, although the inhibitory potency of PEPAP is less than that of MPPP. [2] Both cocaine and methadone are also CYP2D6 inhibitors and could, in theory, potentiate the effect.

It is unlikely that the tetrahydropyridine byproducts that may be formed during the synthesis of PEPAP are neurotoxic in the same way as the MPPP byproduct MPTP. It appears that the N-methyl group of MPTP is required for neurotoxic activity. In animal experiments, only MPTP analogues that preserved the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine structure were active as dopaminergic neurotoxins. Most structural changes, including replacing the N-methyl group with other substituents, abolished neurotoxicity. [3]

There is evidence that the clandestine manufacturers who produced MPPP in the 1970s, including the tainted batch, went on to produce PEPAP [4] in an attempt to avoid using watched precursors or drug intermediates that were illegal.

See also

Related Research Articles

<span class="mw-page-title-main">MPTP</span> Chemical compound

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is an organic compound. It is classified as a tetrahydropyridine. It is of interest as a precursor to the neurotoxin MPP+, which causes permanent symptoms of Parkinson's disease by destroying dopaminergic neurons in the substantia nigra of the brain. It has been used to study disease models in various animals.

<span class="mw-page-title-main">Desmethylprodine</span> Opioid analgesic drug

Desmethylprodine or 1-methyl-4-phenyl-4-propionoxypiperidine is an opioid analgesic drug developed in the 1940s by researchers at Hoffmann-La Roche. Desmethylprodine has been labeled by the DEA as a Schedule I drug in the United States. It is an analog of pethidine (meperidine) a Schedule II drug. Chemically, it is a reversed ester of pethidine which has about 70% of the potency of morphine. Unlike its derivative prodine, it was not reported to exhibit optical isomerism. It was reported to have 30 times the activity of pethidine and a greater analgesic effect than morphine in rats, and it was demonstrated to cause central nervous system stimulation in mice.

Neurotoxicity is a form of toxicity in which a biological, chemical, or physical agent produces an adverse effect on the structure or function of the central and/or peripheral nervous system. It occurs when exposure to a substance – specifically, a neurotoxin or neurotoxicant– alters the normal activity of the nervous system in such a way as to cause permanent or reversible damage to nervous tissue. This can eventually disrupt or even kill neurons, which are cells that transmit and process signals in the brain and other parts of the nervous system. Neurotoxicity can result from organ transplants, radiation treatment, certain drug therapies, recreational drug use, exposure to heavy metals, bites from certain species of venomous snakes, pesticides, certain industrial cleaning solvents, fuels and certain naturally occurring substances. Symptoms may appear immediately after exposure or be delayed. They may include limb weakness or numbness, loss of memory, vision, and/or intellect, uncontrollable obsessive and/or compulsive behaviors, delusions, headache, cognitive and behavioral problems and sexual dysfunction. Chronic mold exposure in homes can lead to neurotoxicity which may not appear for months to years of exposure. All symptoms listed above are consistent with mold mycotoxin accumulation.

<span class="mw-page-title-main">Pethidine</span> Opioid analgesic

Pethidine, also known as meperidine and sold under the brand name Demerol among others, is a fully synthetic opioid pain medication of the phenylpiperidine class. Synthesized in 1938 as a potential anticholinergic agent by the German chemist Otto Eisleb, its analgesic properties were first recognized by Otto Schaumann while working for IG Farben, in Germany. Pethidine is the prototype of a large family of analgesics including the pethidine 4-phenylpiperidines, the prodines, bemidones and others more distant, including diphenoxylate and analogues.

<span class="mw-page-title-main">Dextromoramide</span> Opioid analgesic drug

Dextromoramide is a powerful opioid analgesic approximately three times more potent than morphine but shorter acting. It is subject to drug prohibition regimes, both internationally through UN treaties and by the criminal law of individual states, and is usually prescribed only in the Netherlands.

J. William Langston is the founder and chief scientific officer, movement disorder specialist, and chief executive officer of the Parkinson's Institute and Clinical Center in Sunnyvale, California, the founding member of the Scientific Advisory Board for the Michael J. Fox Foundation and the Co-Editor-in-Chief of the Journal of Parkinson's Disease. He is a graduate of the University of Missouri School of Medicine. Langston was formerly a faculty member at Stanford University and Chairman of Neurology at Santa Clara Valley Medical Center in San Jose, California. Langston has authored or co-authored some 360 peer-reviewed articles in the field of neurology, most of which are on Parkinson's disease and related disorders. Langston gained national and international recognition in 1982 for the discovery of the link between a "synthetic heroin" contaminant (MPTP) and parkinsonism.

<span class="mw-page-title-main">Phenoperidine</span> Opioid analgesic drug

Phenoperidine, is an opioid analgesic which is structurally related to pethidine and is used clinically as a general anesthetic.

<span class="mw-page-title-main">3-Methylfentanyl</span> Opioid analgesic

3-Methylfentanyl is an opioid analgesic that is an analog of fentanyl. 3-Methylfentanyl is one of the most potent opioids, estimated to be between 400 and 6000 times stronger than morphine, depending on which isomer is used.

<span class="mw-page-title-main">Dezocine</span> Opioid analgesic

Dezocine, sold under the brand name Dalgan, is an atypical opioid analgesic which is used in the treatment of pain. It is used by intravenous infusion and intramuscular injection.

<span class="mw-page-title-main">Propiram</span> Opioid analgesic drug

Propiram is a partial μ-opioid receptor agonist and weak μ antagonist analgesic from the ampromide family of drugs related to other drugs such as phenampromide and diampromide. It was invented in 1963 in the United Kingdom by Bayer but was not widely marketed, although it saw some limited clinical use, especially in dentistry. Propiram reached Phase III clinical trials in the United States and Canada.

<span class="mw-page-title-main">Allylnorpethidine</span> Chemical compound

Allylnorpethidine (WIN-7681) is a 4-phenylpiperidine derivative that is related to the opioid analgesic drug pethidine (meperidine).

<span class="mw-page-title-main">BU-48</span> Chemical compound

BU-48 is a drug that is used in scientific research. It is from the oripavine family, related to better-known drugs such as etorphine and buprenorphine.

<span class="mw-page-title-main">Piroheptine</span> Chemical compound

Piroheptine is an anticholinergic and antihistamine used as an antiparkinsonian agent.

<span class="mw-page-title-main">4-Benzylpiperidine</span> Chemical compound

4-Benzylpiperidine is a drug and research chemical used in scientific studies. It acts as a monoamine releasing agent with 20- to 48-fold selectivity for releasing dopamine versus serotonin. It is most efficacious as a releaser of norepinephrine, with an EC50 of 109 nM (DA), 41.4 nM (NE) and 5246 nM (5-HT). It has a fast onset of action and a short duration. It also functions as a monoamine oxidase inhibitor (MAOI) with preference for MAO-A.

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

<span class="mw-page-title-main">4-Fluoropethidine</span> Chemical compound

4-Fluoropethidine is a drug that is a derivative of pethidine (meperidine), which combines pethidine's opioid analgesic effects with increased monoamine reuptake inhibition. It is around 50% less potent than pethidine as an opioid analgesic, but conversely is 50% more potent as a dopamine reuptake inhibitor, with other derivatives such as the 4-iodo and 3,4-dichloro analogues being even more potent dopamine reuptake inhibitors again. However none of these compounds substitute for cocaine or produce stimulant effects in animals, suggesting that they still act primarily as opioid analgesic drugs in practice. Its action and degree of relation to pethidine means that it may be controlled in those countries which have laws about controlled-substance analogues; it is not itself listed in the Controlled Substances Act 1970.

<i>N</i>-Methylnorcarfentanil Opioid analgesic

N-Methylnorcarfentanil (R-32395) is an opioid analgesic drug related to the highly potent animal tranquilizer carfentanil, but several thousand times weaker, being only slightly stronger than morphine. It was first synthesised by a team of chemists at Janssen Pharmaceutica led by Paul Janssen, who were investigating the structure-activity relationships of the fentanyl family of drugs. They found that replacing the phenethyl group attached to the piperidine nitrogen of fentanyl with a smaller methyl group, made it so much weaker that it was inactive as an analgesic in animals. However the same change made to the more potent analogue carfentanil retained reasonable opioid receptor activity, reflecting the higher binding affinity produced by the 4-carbomethoxy group.

<span class="mw-page-title-main">UWA-101</span> Chemical compound

UWA-101 is a phenethylamine derivative researched as a potential treatment for Parkinson's disease. Its chemical structure is very similar to that of the illegal drug MDMA, the only difference being the replacement of the α-methyl group with an α-cyclopropyl group. MDMA has been found in animal studies and reported in unauthorised human self-experiments to be effective in the short-term relief of side-effects of Parkinson's disease therapy, most notably levodopa-induced dyskinesia. However the illegal status of MDMA and concerns about its potential for recreational use, neurotoxicity and potentially dangerous side effects mean that it is unlikely to be investigated for medical use in this application, and so alternative analogues were investigated.

<span class="mw-page-title-main">OPPPP</span> Chemical compound

OPPPP is an opioid drug related to medicines such as prodine. It is one of several compounds derived from MPPP, the reverse ester of pethidine, which were sold as designer drugs in the 1980s, but have been rarely encountered by law enforcement since the passage of the Federal Analogue Act in 1986. In animal studies it was found to be around 1000× the potency of pethidine, making it several times the potency of fentanyl and with similar hazards of respiratory depression and overdose. It is closely related to numerous compounds made by Janssen et al. for which the structure-activity relationship is well established.

References

  1. Janssen PA, Eddy NB (February 1960). "Compounds related to pethidine-IV. New general chemical methods of increasing the analgesic activity of pethidine". Journal of Medicinal and Pharmaceutical Chemistry. 2: 31–45. doi:10.1021/jm50008a003. PMID   14406754.
  2. Pritzker D, Kanungo A, Kilicarslan T, Tyndale RF, Sellers EM (June 2002). "Designer drugs that are potent inhibitors of CYP2D6". Journal of Clinical Psychopharmacology. 22 (3): 330–332. doi:10.1097/00004714-200206000-00015. PMID   12006905. S2CID   492513.
  3. Youngster SK, Sonsalla PK, Sieber BA, Heikkila RE (June 1989). "Structure-activity study of the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. I. Evaluation of the biological activity of MPTP analogs". The Journal of Pharmacology and Experimental Therapeutics. 249 (3): 820–828. PMID   2786564.
  4. Langston JW, Palfreman J (1995). The Case of the Frozen Addicts . Pantheon Books. ISBN   0-679-42465-2.