Synaptobrevin

Last updated
Synaptobrevin
Coresnarecomplex.png
Three different views of the high resolution structure of a truncated neuronal SNARE complex. Legend: synaptobrevin-2 (red), Syntaxin-1 (pink), SNAP-25 (purple).
Identifiers
SymbolSynaptobrevin
Pfam PF00957
InterPro IPR016444
PROSITE PDOC00368
SCOPe 1sfc / SUPFAM
OPM superfamily 197
OPM protein 4wy4
Membranome 351

Synaptobrevins (synaptobrevin isotypes 1-2) are small integral membrane proteins of secretory vesicles with molecular weight of 18 kilodalton (kDa) that are part of the vesicle-associated membrane protein (VAMP) family. [1] [2] [3] [4] [5]

Contents

Synaptobrevin is one of the SNARE proteins involved in formation of the SNARE complexes.

Structure

Out of four α-helices of the core SNARE complex one is contributed by synaptobrevin, one by syntaxin, and two by SNAP-25 (in neurons).

Function

SNARE proteins are the key components of the molecular machinery that drives fusion of membranes in exocytosis. Their function however is subject to fine-tuning by various regulatory proteins collectively referred to as SNARE masters.

Classification

In the Q/R nomenclature for organizing SNARE proteins, VAMP/synaptobrevin family members are classified as R-SNAREs, so named for the presence of an arginine at a specific location within the primary sequence of the protein (as opposed to the SNAREs of the target membrane, which contain a glutamine and are so named Q-SNAREs). Synaptobrevin is classified as a V-SNARE in the V/T nomenclature, an alternative classification scheme in which SNAREs are classified as V-SNAREs and T-SNAREs for their localization to vesicles and target membranes, respectively. [6]

Clinical significance

Synaptobrevin is degraded by tetanospasmin, a protein derived from the bacterium Clostridium tetani , which causes tetanus. A related bacterium, Clostridium botulinum , produces the botulinum toxin. Various botulinum toxin serotypes exist that each cleave specific peptide bonds of specific neuronal SNARE proteins, and synaptobrevin is this target protein for several of the serotypes.

Human proteins containing this domain

SEC22A; SEC22B; SYBL1; VAMP1; VAMP2; VAMP3; VAMP4; VAMP5; VAMP8; YKT6;

References and notes

  1. Baumert M, Maycox PR, Navone F, De Camilli P, Jahn R (February 1, 1989). "Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain". EMBO J. 8 (2): 379–84. doi:10.1002/j.1460-2075.1989.tb03388.x. PMC   400817 . PMID   2498078.
  2. Bock JB, Scheller RH (October 1999). "SNARE proteins mediate lipid bilayer fusion". Proc. Natl. Acad. Sci. U.S.A. 96 (22): 12227–9. Bibcode:1999PNAS...9612227B. doi:10.1073/pnas.96.22.12227. PMC   34255 . PMID   10535902.
  3. Ernst JA, Brunger AT (2003). "High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex". J Biol Chem. 278 (10): 8630–6. doi: 10.1074/jbc.M211889200 . PMID   12496247.
  4. Fasshauer D, Sutton RB, Brunger AT, Jahn R (December 1998). "Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs". Proc. Natl. Acad. Sci. U.S.A. 95 (26): 15781–6. Bibcode:1998PNAS...9515781F. doi:10.1073/pnas.95.26.15781. PMC   28121 . PMID   9861047.
  5. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998). "SNAREpins: minimal machinery for membrane fusion". Cell. 92 (6): 759–72. doi:10.1016/S0092-8674(00)81404-X. PMID   9529252. S2CID   5637048.
  6. Juan S. Bonifacino and Benjamin S. Glick. "The Mechanisms of Vesicle Budding and Fusion." Cell, Vol. 116, 153–166, January 23, 2004,

Related Research Articles

Tetanospasmin

Tetanus toxin is an extremely potent neurotoxin produced by the vegetative cell of Clostridium tetani in anaerobic conditions, causing tetanus. It has no known function for clostridia in the soil environment where they are normally encountered. It is also called spasmogenic toxin, or TeNT. The LD50 of this toxin has been measured to be approximately 2.5-3 ng/kg, making it second only to the related botulinum toxin (LD50 2 ng/kg) as the deadliest toxin in the world. However, these tests are conducted solely on mice, which may react to the toxin differently from humans and other animals.

<i>N</i>-ethylmaleimide sensitive fusion protein

N-ethylmaleimide-sensitive factor, also known as NSF or N-ethylmaleimide sensitive fusion proteins, is an enzyme which in humans is encoded by the NSF gene.

Synaptic vesicle Neurotransmitters that are released at the synapse

In a neuron, synaptic vesicles store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell. The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.

SNARE (protein) family of proteins involved in vesicle fusion

SNARE proteins – "SNAPREceptor" – are a large protein family consisting of at least 24 members in yeasts and more than 60 members in mammalian cells. The primary role of SNARE proteins is to mediate vesicle fusion – the fusion of vesicles with the target membrane; this notably mediates exocytosis, but can also mediate the fusion of vesicles with membrane-bound compartments. The best studied SNAREs are those that mediate the neurotransmitter release of synaptic vesicles in neurons. These neuronal SNAREs are the targets of the neurotoxins responsible for botulism and tetanus produced by certain bacteria.

Vesicle-associated membrane protein protein family

Vesicle associated membrane proteins (VAMP) are a family of SNARE proteins with similar structure, and are mostly involved in vesicle fusion.

SNAP25 protein-coding gene in the species Homo sapiens

Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a t-SNARE protein that is encoded by the SNAP25 gene in humans. SNAP-25 is a component of the trans-SNARE complex, which is proposed to account for the specificity of membrane fusion and to directly execute fusion by forming a tight complex that brings the synaptic vesicle and plasma membranes together.

Complexin InterPro Family

Complexin (also known as synaphin) refers to a one of a small set of eukaryotic cytoplasmic neuronal proteins which binds to the SNARE protein complex (SNAREpin) with a high affinity. These are called synaphin 1 and 2. In the presence of Ca2+, the transport vesicle protein synaptotagmin displaces complexin, allowing the SNARE protein complex to bind the transport vesicle to the presynaptic membrane.

STX1A protein-coding gene in the species Homo sapiens

Syntaxin-1A is a protein that in humans is encoded by the STX1A gene.

SNAP23 protein-coding gene in the species Homo sapiens

Synaptosomal-associated protein 23 is a protein that in humans is encoded by the SNAP23 gene. Two alternative transcript variants encoding different protein isoforms have been described for this gene.

VAMP2 protein-coding gene in the species Homo sapiens

Vesicle-associated membrane protein 2 (VAMP2) is a protein that in humans is encoded by the VAMP2 gene.

SYBL1 protein-coding gene in the species Homo sapiens

Synaptobrevin-like protein 1 (SYBL1), also known as vesicle-associated membrane protein 7 (VAMP7), is a protein that in humans is encoded by the VAMP7, or SYBL1, gene.

VAMP3 protein-coding gene in the species Homo sapiens

Vesicle-associated membrane protein 3 is a protein that in humans is encoded by the VAMP3 gene.

Vesicle-associated membrane protein 8 protein-coding gene in the species Homo sapiens

Vesicle-associated membrane protein 8 is a protein that in humans is encoded by the VAMP8 gene.

VAMP4 protein-coding gene in the species Homo sapiens

Vesicle-associated membrane protein 4 is a protein that in humans is encoded by the VAMP4 gene.

VAMP1 protein-coding gene in the species Homo sapiens

Vesicle-associated membrane protein 1 (VAMP1) is a protein that in humans is encoded by the VAMP1 gene.

Vesicle-associated membrane protein 5 also known as VAMP5 is a human gene which encodes a member of the synaptobrevin protein family.

The ribbon synapse is a type of neuronal synapse characterized by the presence of an electron-dense structure, the synaptic ribbon, that holds vesicles close to the active zone. It is characterized by a tight vesicle-calcium channel coupling that promotes rapid neurotransmitter release and sustained signal transmission. Ribbon synapses undergo a cycle of exocytosis and endocytosis in response to graded changes of membrane potential. It has been proposed that most ribbon synapses undergo a special type of exocytosis based on coordinated multivesicular release. This interpretation has recently been questioned at the inner hair cell ribbon synapse, where it has been instead proposed that exocytosis is described by uniquantal release shaped by a flickering vesicle fusion pore.

Vesicle fusion is the merging of a vesicle with other vesicles or a part of a cell membrane. In the latter case, it is the end stage of secretion from secretory vesicles, where their contents are expelled from the cell through exocytosis. Vesicles can also fuse with other target cell compartments, such as a lysosome. Exocytosis occurs when secretory vesicles transiently dock and fuse at the base of cup-shaped structures at the cell plasma membrane called porosome, the universal secretory machinery in cells. Vesicle fusion may depend on SNARE proteins in the presence of increased intracellular calcium (Ca2+) concentration.

Munc-18 proteins are the mammalian homologue of UNC-18 and are a member of the Sec1/Munc18-like (SM) protein family. Munc-18 proteins have been identified as essential components of the synaptic vesicle fusion protein complex and are crucial for the regulated exocytosis of neurons and neuroendocrine cells.

Zero ionic layer is the main site of interaction in the core SNARE complex. Dipole-dipole interactions take place between 3 glutamine (Q) residues and 1 arginine (R) residue exposed in this layer. Despite that, the majority of the SNARE complex is hydrophobic because of the leucine zipper. Extensively studied layers within the SNARE alpha-helical bundle are designated from "-7" to "+8". Zero ionic layer is at the center of the bundle, and thus designated as "0" layer.