Syntaxin-2, also known as epimorphin, is a protein that in humans is encoded by the STX2 gene. [5] [6] [7]
The product of this gene belongs to the syntaxin/epimorphin family of proteins. The syntaxins are a large protein family implicated in the targeting and fusion of intracellular transport vesicles. The product of this gene regulates epithelial-mesenchymal interactions and epithelial cell morphogenesis and activation. Alternatively spliced transcript variants encoding different isoforms have been identified. [7] When the N terminus is on the cytosolic face it acts as a t-SNARE involved in intracellular vesicle docking and is called Syntaxin-2. When flipped inside out, i.e. N terminus hangs out on the extracellular surface (by some nonclassical secretion pathway) it acts as a versatile morphogen and is called epimorphin. This membrane protein enjoys the double choice of another form of topological alternatives of being targeted to either apical or basolateral surface of an epithelial cell in a regulated way depending on various contexts. When expressed by mesenchymal cells it can instruct epithelial morphogenesis at epithelial mesenchymal interfaces.
STX2 has been shown to interact with SNAP-25, [8] [9] SNAP23, [9] [10] [11] [12] STXBP1 [8] [13] and Syntaxin binding protein 3. [13]
Synaptosomal-Associated Protein, 25kDa (SNAP-25) is a Target Soluble NSF (N-ethylmaleimide-sensitive factor) Attachment Protein Receptor (t-SNARE) protein encoded by the SNAP25 gene found on chromosome 20p12.2 in humans. SNAP-25 is a component of the trans-SNARE complex, which accounts for membrane fusion specificity and directly executes fusion by forming a tight complex that brings the synaptic vesicle and plasma membranes together.
Syntaxin-1A is a protein that in humans is encoded by the STX1A gene.
Synaptosomal-associated protein 23 is a protein that in humans is encoded by the SNAP23 gene. Two alternative transcript variants encoding different protein isoforms have been described for this gene.
Syntaxin-4 is a protein that in humans is encoded by the STX4 gene.
Synaptotagmin-1 is a protein that in humans is encoded by the SYT1 gene.
Vesicle-associated membrane protein 2 (VAMP2) is a protein that in humans is encoded by the VAMP2 gene.
Syntaxin-binding protein 1 is a protein that in humans is encoded by the STXBP1 gene. This gene encodes a syntaxin-binding protein. The encoded protein appears to play a role in release of neurotransmitters via regulation of syntaxin, a transmembrane attachment protein receptor. Mutations in this gene have been associated with neurological disorders including epilepsy, intellectual disability, and movement disorders.
Syntaxin-7 is a protein that in humans is encoded by the STX7 gene.
Syntaxin-6 is a protein that in humans is encoded by the STX6 gene.
Vesicle-associated membrane protein 3 is a protein that in humans is encoded by the VAMP3 gene.
Syntaxin-5 is a protein that in humans is encoded by the STX5 gene.
Syntaxin-12 is a protein that in humans is encoded by the STX12 gene.
Syntaxin-8 is a protein that in humans is encoded by the STX8 gene.
Golgi SNAP receptor complex member 1 is a protein that in humans is encoded by the GOSR1 gene.
Syntaxin-binding protein 2 is a protein that in humans is encoded by the STXBP2 gene.
Syntaxin-binding protein 3 is a protein that in humans is encoded by the STXBP3 gene.
Vesicle-associated membrane protein 1 (VAMP1) is a protein that in humans is encoded by the VAMP1 gene.
Syntaxin-1B is a protein that in humans is encoded by the STX1B gene.
Syntaxin 3, also known as STX3, is a protein which in humans is encoded by the STX3 gene.
Munc-18 proteins are the mammalian homologue of UNC-18 and are a member of the Sec1/Munc18-like (SM) protein family. Munc-18 proteins have been identified as essential components of the synaptic vesicle fusion protein complex and are crucial for the regulated exocytosis of neurons and neuroendocrine cells.