An ongoing concern in the area of nuclear safety and security is the possibility that terrorist organizations may attack facilities possessing radioactive material in order to cause widespread radioactive contamination or to construct nuclear weapons. Such facilities may include nuclear power plants, civilian research reactors, uranium enrichment plants, fuel fabrication plants, uranium mines, and military bases where nuclear weapons are stored. The attack threat is of several general types: commando-like ground-based attacks on equipment which if disabled could lead to a reactor core meltdown or widespread dispersal of radioactivity, external attacks such as an aircraft crash into a reactor complex, or cyber attacks. [1]
The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the September 11, 2001 attacks. If terrorist groups could sufficiently damage safety systems to cause a core meltdown at a nuclear power plant, and/or sufficiently damage spent fuel pools, such an attack could lead to widespread radioactive contamination. The Federation of American Scientists have said that if nuclear power use is to expand significantly, nuclear facilities will have to be made extremely safe from such attacks. New reactor designs have features of passive nuclear safety, which may help. In the United States, the Nuclear Regulatory Commission carries out "Force on Force" exercises at all nuclear power plant sites at least once every three years. [1]
Nuclear power plants become preferred targets during military conflict and, over the past three decades, have been repeatedly attacked during military air strikes, occupations, and invasions. [2] Various acts of civil disobedience since 1980 by the peace group Plowshares have demonstrated extraordinary breaches of security at nuclear weapons plants in the United States. The National Nuclear Security Administration has acknowledged the seriousness of the 2012 Plowshares action. Non-proliferation policy experts have questioned "the use of private contractors to provide security at facilities that manufacture and store the government's most dangerous military material". [3] Nuclear weapons materials on the black market are a global concern, [4] [5] and there is concern about the possible detonation of a dirty bomb by a militant group in a major city. [6] [7]
The number and sophistication of cyber attacks is on the rise. Stuxnet is a computer worm discovered in June 2010 that is believed to have been created by the United States and Israel to attack Iran's uranium enrichment facilities. It caused major damage to the facility by operating the centrifuges in erratic and unintended ways. [8] The computers of South Korea's nuclear plant operator (KHNP) were hacked in December 2014. The cyber attacks involved thousands of phishing emails containing malicious code, and information was stolen. [9] Neither of these attacks directly involved nuclear reactors or their facilities.
Nuclear reactors become preferred targets during military conflict and, over the past three decades, have been repeatedly attacked during military air strikes, occupations, invasions and campaigns: [2]
Risks of nuclear energy systems aren't limited to deliberate bombing/shelling of or near nuclear energy plants – nuclear energy systems within war-zones in general have various additional vulnerabilities. Deliberate or unintentional bombing/shelling of or near radioactive waste-sites [15] is a further concern. These risks have become clearer during the 2022 Russian invasion of Ukraine. For example, when Russian forces occupied the inactive nuclear plant at Chernobyl, it still required "a crew of workers to maintain and monitor it to prevent any further nuclear incidents" and before occupation, fatigue of workers, which may not be allowed to freely come and go, may make mistakes more likely. [16] [17] [18]
The EU Commission’s research center (JRC) investigated in spring 2021 in a report and concluded that the terrorist risk of nuclear power plants is vanishingly small, and that even successful terrorism will have relatively insignificant consequences. JRC, finds that hydropower/dams and oil and gas infrastructure pose a significantly greater terrorist risk, although this is still an extremely unlikely hypothetical scenario [19]
American physicist and nuclear energy critic Amory Lovins, in his 1982 book Brittle Power , argued that the energy generation and distribution system of the United States is "brittle" (easily shattered by accident or malice) and that this poses a grave and growing threat to national security, life, and liberty. [20] Lovins claims that these vulnerabilities are increasingly being exploited. His book documents many significant assaults on energy facilities, other than during a war, in 40 countries and, within the United States, in some 24 states. [21] Following 9/11, he re-released this book.
Lovins further claims that in 1966, 20 natural uranium fuel rods were stolen from the Bradwell nuclear power station in England, and in 1971, five more were stolen at the Wylfa Nuclear Power Station. In 1971, an intruder wounded a night watchman at the Vermont Yankee reactor in the US. The New York University reactor building was broken into in 1972, as was the Oconee Nuclear Station's fuel storage building in 1973. In 1975, the Kerr McGee plutonium plant had thousands of dollars worth of platinum stolen and taken home by workers. In 1975, at the Biblis Nuclear Power Plant in Germany, a Member of Parliament demonstrated the lack of security by carrying a bazooka into the plant under his coat. [22]
Nuclear plants were designed to withstand earthquakes, hurricanes, and other extreme natural events. But deliberate attacks involving large airliners loaded with fuel, such as those that crashed into the World Trade Center and the Pentagon, were not considered when design requirements for today's fleet of reactors were determined. It was in 1972 when three hijackers took control of a domestic passenger flight along the east coast of the U.S. and threatened to crash the plane into a U.S. nuclear weapons plant in Oak Ridge, Tennessee. The plane got as close as 8,000 feet above the site before the hijackers' demands were met. [23] [24]
In February 1993, a man drove his car past a checkpoint at the Three Mile Island Nuclear plant, then broke through an entry gate. He eventually crashed the car through a secure door and entered the Unit 1 reactor turbine building. The intruder, who had a history of mental illness, hid in a building and was not apprehended for four hours. Stephanie Cooke asks: "What if he'd been a terrorist armed with a ticking bomb?" [25]
Fissile material may be stolen from nuclear plants and this may promote the spread of nuclear weapons. Many terrorist groups are eager to acquire the fissile material needed to make a crude nuclear device, or a dirty bomb. Nuclear weapons materials on the black market are a global concern, [4] [5] and there is concern about the possible detonation of a small, crude nuclear weapon by a militant group in a major city, with significant loss of life and property. [6] [7] It is feared that a terrorist group could detonate a radiological or "dirty bomb", composed of any radioactive source and a conventional explosive. The radioactive material is dispersed by the detonation of the explosive. Detonation of such a weapon is not as powerful as a nuclear blast, but can produce considerable radioactive fallout. Alternatively, a terrorist group may position some of its members, or sympathisers, within the plant to sabotage it from inside. [26]
The IAEA Incident and Trafficking Database (ITDB) notes 1,266 incidents reported by 99 countries over the last 12 years, including 18 incidents involving HEU or plutonium trafficking: [27]
Terrorists could target nuclear power plants in an attempt to release radioactive contamination into the community. The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the September 11, 2001 attacks. If terrorist groups could sufficiently damage safety systems to cause a core meltdown at a nuclear power plant, and/or sufficiently damage spent fuel pools, such an attack could lead to a widespread radioactive contamination. According to a 2004 report by the U.S. Congressional Budget Office, "The human, environmental, and economic costs from a successful attack on a nuclear power plant that results in the release of substantial quantities of radioactive material to the environment could be great." [37] An attack on a reactor's spent fuel pool could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities. [1]
If nuclear power use is to expand significantly, nuclear facilities will have to be made extremely safe from attacks that could release massive quantities of radioactivity into the community. New reactor designs have features of passive safety, such as the flooding of the reactor core without active intervention by reactor operators. But these safety measures have generally been developed and studied with respect to accidents, not to the deliberate reactor attack by a terrorist group. However, the US Nuclear Regulatory Commission does now also require new reactor license applications to consider security during the design stage. [1]
In the United States, the NRC carries out "Force on Force" (FOF) exercises at all nuclear power plant (NPP) sites at least once every three years. The FOF exercise, which is typically conducted over 3 weeks, "includes both tabletop drills and exercises that simulate combat between a mock adversary force and the licensee’s security force. At an NPP, the adversary force attempts to reach and simulate damage to key safety systems and components, defined as "target sets" that protect the reactor's core or the spent fuel pool, which could potentially cause a radioactive release to the environment. The licensee's security force, in turn, interposes itself to prevent the adversaries from reaching target sets and thus causing such a release". [1]
In the U.S., plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards. [38]
In 2009, a paper published in the United States Military Academy's journal alleged that Pakistan's nuclear sites had been attacked by al-Qaeda and the Taliban at least three times. [29] However, the then Director General ISPR Athar Abbas said the claims were "factually incorrect", adding that the sites were "military facilities, not nuclear installations". [30] [31] In January 2010, it was revealed that the US military was training a specialised unit "to seal off and snatch back" Pakistani nuclear weapons in the event that militants would obtain a nuclear device or materials that could make one. Pakistan supposedly possesses about 160 nuclear warheads. US officials refused to speak on the record about the American safety plans. [39]
Insider sabotage regularly occurs, because insiders can observe and work around security measures. In a study of insider crimes, the authors repeatedly said that successful insider crimes depended on the perpetrators' observation and knowledge of security vulnerabilities. Since the atomic age began, the U.S. Department of Energy's nuclear laboratories have been known for widespread violations of security rules. During the Manhattan Project, physicist Richard Feynman was barred from entering certain nuclear facilities; he would crack safes and violate other rules as pranks to reveal deficiencies in security. [40]
A deliberate fire caused between $5m and $10m worth of damage to New York's Indian Point Energy Center in 1971. The arsonist turned out to be a plant maintenance worker. Sabotage by workers has been reported at many other reactors in the United States: at Zion Nuclear Power Station (1974), Quad Cities Nuclear Generating Station, Peach Bottom Nuclear Generating Station, Fort St. Vrain Generating Station, Trojan Nuclear Power Plant (1974), Browns Ferry Nuclear Power Plant (1980), and Beaver Valley Nuclear Generating Station (1981). Many reactors overseas have also reported sabotage by workers. Suspected arson has occurred in the United States and overseas. [22]
In 1998 a group of workers at one of Russia's largest nuclear weapons facilities attempted to steal 18.5 kilograms of HEU—enough for a bomb. [22]
It can be argued that Pakistan's whole nuclear program was jump-started due to sabotage by insiders. Following India's first nuclear weapons test, URENCO scientist A.Q. Khan wrote a letter to the Pakistani Prime Minister, Zulfiqar Ali Bhutto, offering to help start a nuclear weapons program for his home country. Soon after their conversations, Khan started delivering instructions and blueprints to Pakistan, which he got access to through his work translating the sophisticated G-1 and G-2 centrifuge designs from German to Dutch. Khan also acquired the essential expertise for running centrifuge operations from URENCO, which he would later relay back to scientists in Pakistan. When his coworkers at URENCO started to suspect something was going on, Khan had already fled back to his guaranteed safety in Pakistan. After just six years, Khan said his plants were “producing substantial quantities of uranium”. [41] Due to his help getting Pakistan the blueprints needed to start enriching uranium within their borders, Khan is widely regarded to as "the father of Pakistan’s nuclear weapons program". [42]
Various acts of civil disobedience since 1980 by the peace group Plowshares have shown how nuclear weapons facilities can be penetrated, and the group's actions represent extraordinary breaches of security at nuclear weapons plants in the United States. On July 28, 2012, three members of Plowshares cut through fences at the Y-12 National Security Complex in Oak Ridge, Tennessee, which manufactures US nuclear weapons and stockpiles highly enriched uranium. The group spray-painted protest messages, hung banners, and splashed blood. [3]
The National Nuclear Security Administration has acknowledged the seriousness of the 2012 Plowshares action, which involved the protesters walking into a high-security zone of the plant, calling the security breach "unprecedented." Independent security contractor, WSI, has since had a weeklong "security stand-down," a halt to weapons production, and mandatory refresher training for all security staff. [3]
Non-proliferation policy experts are concerned about the relative ease with which these unarmed, unsophisticated protesters could cut through a fence and walk into the center of the facility. This is further evidence that nuclear security—the securing of highly enriched uranium and plutonium—should be a top priority to prevent terrorist groups from acquiring nuclear bomb-making material. These experts have questioned "the use of private contractors to provide security at facilities that manufacture and store the government's most dangerous military material". [3]
In 2010, there was a security breach at a Belgian Air Force base which possessed U.S. nuclear warheads. The incident involved six anti-nuclear activists entering Kleine Brogel Air Base. The activists stayed in the snow-covered base for about 20 minutes, before being arrested. A similar event occurred in 2009. [43]
On December 5, 2011, two anti-nuclear campaigners breached the perimeter of the Cruas Nuclear Power Plant in France, escaping detection for more than 14 hours, while posting videos of their sit-in on the internet. [44]
Stuxnet is a computer worm discovered in June 2010 that is believed to have been created by the United States and Israel to attack Iran's nuclear facilities. [8] It switched off safety devices, causing centrifuges to spin out of control. Stuxnet initially spreads via Microsoft Windows, and targets Siemens industrial control systems. While it is not the first time that hackers have targeted industrial systems, [45] it is the first discovered malware that spies on and subverts industrial systems, [46] and the first to include a programmable logic controller (PLC) rootkit. [47] [48]
Different variants of Stuxnet targeted five Iranian organizations, [49] with the probable target widely suspected to be uranium enrichment infrastructure in Iran; [50] [51] Symantec noted in August 2010 that 60% of the infected computers worldwide were in Iran. [52] Siemens stated that the worm has not caused any damage to its customers, [53] but the Iran nuclear program, which uses embargoed Siemens equipment procured secretly, has been damaged by Stuxnet. [54] [55] Kaspersky Lab concluded that the sophisticated attack could only have been conducted "with nation-state support". [56]
Idaho National Laboratory ran the Aurora Experiment in 2007 to demonstrate how a cyber attack could destroy physical components of the electric grid. [57] The experiment used a computer program to rapidly open and close a diesel generator's circuit breakers out of phase from the rest of the grid and explode. This vulnerability is referred to as the Aurora Vulnerability.
The number and sophistication of cyber attacks is on the rise. The computers of South Korea's nuclear plant operator (KHNP) were hacked in December 2014. The cyber attacks involved thousands of phishing emails containing malicious code, and information was stolen. [9] Nothing important was hacked at the plant, so the group was unable to threaten the operation of the reactor. Releasing personnel files and business data doesn’t compromise nuclear safety, even if it embarasses the company. [58]
In December 2017 it was reported that the safety systems of an unidentified power station, believed to be in Saudi Arabia were compromised when the Triconex industrial safety technology made by Schneider Electric SE was targeted in what is believed to have been a state sponsored attack. The computer security company Symantec claimed that the malware, known as Triton exploited a vulnerability in computers running the Microsoft Windows operating system. [59]
Population density is one critical lens through which risks have to be assessed, says Laurent Stricker, a nuclear engineer and chairman of the World Association of Nuclear Operators: [60]
The KANUPP plant in Karachi, Pakistan, has the most people—8.2 million—living within 30 kilometres, although it has just one relatively small reactor with an output of 125 megawatts. Next in the league, however, are much larger plants—Taiwan's 1,933-megawatt Kuosheng plant with 5.5 million people within a 30-kilometre radius and the 1,208-megawatt Chin Shan plant with 4.7 million; both zones include the capital city of Taipei. [60]
172,000 people living within a 30 kilometre radius of the Fukushima Daiichi nuclear power plant have been forced or advised to evacuate the area. More generally, a 2011 analysis by Nature and Columbia University shows that some 21 nuclear plants have populations larger than 1 million within a 30-km radius, and six plants have populations larger than 3 million within that radius. [60]
However, government plans for remote siting of nuclear plants in rural areas, and the transmission of electricity by high-voltage direct current lines to industrial regions would enhance safety and security.
On the other hand, nuclear plant security would be at elevated risk during a natural or man-made electromagnetic pulse event, and the ensuing civil disorder in surrounding areas.
In his book Normal Accidents , Charles Perrow says that multiple and unexpected failures are built into society's complex and tightly coupled nuclear reactor systems. Such accidents are unavoidable and cannot be designed around. [61]
In the 2003 book Brittle Power , Amory Lovins talks about the need for a resilient, secure, energy system:
The foundation of a secure energy system is to need less energy in the first place, then to get it from sources that are inherently invulnerable because they're diverse, dispersed, renewable, and mainly local. They're secure not because they're American but because of their design. Any highly centralised energy system—pipelines, nuclear plants, refineries—invite devastating attack. But invulnerable alternatives don't, and can't, fail on a large scale. [62]
{{cite book}}
: CS1 maint: multiple names: authors list (link)Nuclear proliferation is the spread of nuclear weapons, fissionable material, and weapons-applicable nuclear technology and information to nations not recognized as "Nuclear Weapon States" by the Treaty on the Non-Proliferation of Nuclear Weapons, commonly known as the Non-Proliferation Treaty or NPT. Proliferation has been opposed by many nations with and without nuclear weapons, as governments fear that more countries with nuclear weapons will increase the possibility of nuclear warfare, de-stabilize international or regional relations, or infringe upon the national sovereignty of nation states.
Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238, uranium-235, and uranium-234. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.
Nuclear terrorism refers to any person or persons detonating a nuclear weapon as an act of terrorism. Nuclear terrorism outlines a broad category of possible terror incidents, ranging in feasibility and scope. Possible methods include the sabotage of a nuclear facility, the intentional irradiation of citizens, and/or the detonation of a radiological device, colloquially termed a dirty bomb, but consensus is lacking. According to the 2005 United Nations International Convention for the Suppression of Acts of Nuclear Terrorism. nuclear terrorism is an offense committed if a person unlawfully and intentionally "uses in any way radioactive material … with the intent to cause death or serious bodily injury; or with the intent to cause substantial damage to property or to the environment; or with the intent to compel a natural or legal person, an international organization or a State to do or refrain from doing an act."
A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility." Examples include lethal effects to individuals, large radioactivity release to the environment, or a reactor core melt. The prime example of a "major nuclear accident" is one in which a reactor core is damaged and significant amounts of radioactive isotopes are released, such as in the Chernobyl disaster in 1986 and Fukushima nuclear disaster in 2011.
Pakistan is one of nine states that possess nuclear weapons. Pakistan began developing nuclear weapons in January 1972 under Prime Minister Zulfikar Ali Bhutto, who delegated the program to the Chairman of the Pakistan Atomic Energy Commission (PAEC) Munir Ahmad Khan with a commitment to having the device ready by the end of 1976. Since PAEC, which consisted of over twenty laboratories and projects under reactor physicist Munir Ahmad Khan, was falling behind schedule and having considerable difficulty producing fissile material, Abdul Qadeer Khan, a metallurgist working on centrifuge enrichment for Urenco, joined the program at the behest of the Bhutto administration by the end of 1974. Producing fissile material was pivotal to the Kahuta Project's success and thus to Pakistan obtaining the capability to detonate a nuclear weapon by the end of 1984.
Idaho National Laboratory (INL) is one of the national laboratories of the United States Department of Energy and is managed by the Battelle Energy Alliance. Historically, the lab has been involved with nuclear research, although the laboratory does other research as well. Much of current knowledge about how nuclear reactors behave and misbehave was discovered at what is now Idaho National Laboratory. John Grossenbacher, former INL director, said, "The history of nuclear energy for peaceful application has principally been written in Idaho".
Natanz is a city in the Central District of Natanz County, Isfahan province, Iran, serving as capital of both the county and the district. It is 70 kilometres (43 mi) south-east of Kashan.
Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.
Operation Opera, also known as Operation Babylon, was a surprise airstrike conducted by the Israeli Air Force on 7 June 1981, which destroyed an unfinished Iraqi nuclear reactor located 17 kilometres southeast of Baghdad, Iraq. The Israeli operation came a year after the Islamic Republic of Iran Air Force had caused minor damage to the same nuclear facility in Operation Scorch Sword, with the damage having been subsequently repaired by French technicians. Operation Opera, and related Israeli government statements following it, established the Begin Doctrine, which explicitly stated the strike was not an anomaly, but instead "a precedent for every future government in Israel". Israel's counter-proliferation preventive strike added another dimension to its existing policy of deliberate ambiguity, as it related to the nuclear weapons capability of other states in the region.
Nuclear safety is defined by the International Atomic Energy Agency (IAEA) as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards". The IAEA defines nuclear security as "The prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear materials, other radioactive substances or their associated facilities".
This is the timeline of the nuclear program of Iran.
Nuclear power has various environmental impacts, both positive and negative, including the construction and operation of the plant, the nuclear fuel cycle, and the effects of nuclear accidents. Nuclear power plants do not burn fossil fuels and so do not directly emit carbon dioxide. The carbon dioxide emitted during mining, enrichment, fabrication and transport of fuel is small when compared with the carbon dioxide emitted by fossil fuels of similar energy yield, however, these plants still produce other environmentally damaging wastes. Nuclear energy and renewable energy have reduced environmental costs by decreasing CO2 emissions resulting from energy consumption.
Oghab 2 is an Iranian counter-espionage agency tasked to protect Iran's nuclear facilities from threats, including sabotage and cyber warfare. According to The New York Times, Iran has acknowledged that it is fighting nuclear espionage, and has foiled attempts to recruit spies and defectors to pass secrets out of their enrichment facilities. The New York Times also states this may be due to efforts rumoured to have started under the George W. Bush administration in the United States to sabotage parts imported into Iran. It is claimed these efforts were accelerated under President Barack Obama's administration, with the facilities facing trouble with poor designs and difficulty obtaining parts, due to sanctions imposed by the United Nations.
Iran's nuclear program is made up of a number of nuclear facilities, including nuclear reactors and various nuclear fuel cycle facilities.
The Central Intelligence Agency (CIA) has repeatedly intervened in the internal affairs of Iran, from the Mosaddegh coup of 1953 to the present day. The CIA is said to have collaborated with the last Shah, Mohammad Reza Pahlavi. Its personnel may have been involved in the Iran-Contra affair of the 1980s. More recently in 2007-8 CIA operatives were claimed to be supporting the Sunni terrorist group Jundallah against Iran, but these claims were refuted by a later investigation.
IR-40 also known as Arak Nuclear Complex is an Iranian 40 megawatt (thermal) heavy water reactor near Arak, adjacent to the 1990s era Arak Heavy Water Production Plant. Civil works for the construction began in October 2004. It was initially planned that the reactor would begin nuclear operations in 2014.
The National Nuclear Security Administration (NNSA) is a United States federal agency responsible for safeguarding national security through the military application of nuclear science. NNSA maintains and enhances the safety, security, and effectiveness of the U.S. nuclear weapons stockpile; works to reduce the global danger from weapons of mass destruction; provides the United States Navy with safe and effective nuclear propulsion; and responds to nuclear and radiological emergencies in the United States and abroad.
The 2012 Nuclear Security Summit was a summit held at the COEX Convention & Exhibition Center in Seoul, South Korea, on March 26 and 27, 2012. It was the second time the conference was held after the 2010 Nuclear Security Summit.
Stuxnet is a malicious computer worm first uncovered in 2010 and thought to have been in development since at least 2005. Stuxnet targets supervisory control and data acquisition (SCADA) systems and is believed to be responsible for causing substantial damage to the nuclear program of Iran. Although neither country has openly admitted responsibility, multiple independent news organizations recognize Stuxnet to be a cyberweapon built jointly by the United States and Israel in a collaborative effort known as Operation Olympic Games. The program, started during the Bush administration, was rapidly expanded within the first months of Barack Obama's presidency.
2021 Natanz Incident refers to a suspected attack on the Natanz nuclear site in Iran. The Natanz nuclear facility is located in the wilderness of the province of Isfahan, in central Iran. This site is scouted by the International Atomic Energy Agency (IAEA), the U.N. nuclear watchdog.