Z4349

Last updated
Z4349
Viminol pyrrolidone derivative.svg
Identifiers
  • (5S)-5-[(1S)-2-[bis[(2R)-butan-2-yl]amino]-1-hydroxyethyl]-1-(2-chlorobenzyl)pyrrolidin-2-one
CAS Number
PubChem CID
ChemSpider
UNII
Chemical and physical data
Formula C21H33ClN2O2
Molar mass 380.96 g·mol−1
3D model (JSmol)
  • CC[C@@H](C)N(C[C@@H]([C@@H]1CCC(=O)N1CC2=CC=CC=C2Cl)O)[C@H](C)CC
  • InChI=1S/C21H33ClN2O2/c1-5-15(3)23(16(4)6-2)14-20(25)19-11-12-21(26)24(19)13-17-9-7-8-10-18(17)22/h7-10,15-16,19-20,25H,5-6,11-14H2,1-4H3/t15-,16-,19+,20+/m1/s1
  • Key:YNGZJSALRCLELM-YKCBXCCJSA-N

Z4349 is an opioid analgesic drug developed in the 1990s by the pharmaceutical company Zambon. It is a derivative of an older drug viminol, which has been modified to improve potency and metabolic stability. In tests on mice it was found to be several hundred times the potency of morphine. [1] [2]

Contents

Synthesis

Z4349 synthesis Z4349 synthesis.svg
Z4349 synthesis

Esterification of L-glutamic acid [56-86-0] (1) with ethanol gives Glutamic acid diethyl ester [16450-41-2] (2). Lactam formation occurs on heating to give L-Pyroglutamic acid ethyl ester [7149-65-7] (3). The reduction of the ester with sodium borohydride gives L-Pyroglutaminol [17342-08-4] (4). Treatment with methyl chloride gave (S)-(5-Oxopyrrolidin-2-yl)methyl methanesulfonate [93288-20-1] (5). Displacement of the leaving group with cyanide led to (S)-5-Oxo-2-pyrrolidineacetonitrile [72479-06-2] (6). Catalytic reduction over Rosenmund catalyst in the presence of dimethylamine led to (5S)-5-[2-(dimethylamino)ethyl]pyrrolidin-2-one, PC13306712 (7). Oxidation in the presence of hydrogen peroxide formed the N-oxide (8). Elimination of the amino group in the presence of weak base led to (S)-5-Vinylpyrrolidin-2-one [93288-23-4] (9). Alkylation of the amino group with 2-Chlorobenzyl chloride [611-19-8] (10) in the presence of sodium hydride base led to (5S)-1-[(2-chlorophenyl)methyl]-5-ethenylpyrrolidin-2-one, PC56976994 (11). Treatment of the vinyl group with peroxy acid gave the oxirane. (5S)-1-[(2-chlorophenyl)methyl]-5-(oxiran-2-yl)pyrrolidin-2-one, PC88496451 (12). Treatment with (2R)-N-[(2R)-butan-2-yl]butan-2-amine, PC6347588 (13) completed the synthesis of Z4349 (14).

See also

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

Thailand's Psychotropic Substances Act is a law designed to regulate certain mind-altering drugs. According to the Office of the Narcotics Control Board, "The Act directly resulted from the Convention on Psychotropic Substances 1971 of which Thailand is a party." The Act divides psychotropic drugs into four Schedules. Offenses involving Schedule I and II drugs carry heavier penalties than those involving Schedule III and IV drugs. Note that this statute does not regulate most opioids, cocaine, or some amphetamines. The vast majority of narcotic painkillers, along with cocaine and most amphetamines are regulated under the Narcotics Act.

The Controlled Drugs and Substances Act is Canada's federal drug control statute. Passed in 1996 under Prime Minister Jean Chrétien's government, it repeals the Narcotic Control Act and Parts III and IV of the Food and Drugs Act, and establishes eight Schedules of controlled substances and two Classes of precursors. It provides that "The Governor in Council may, by order, amend any of Schedules I to VIII by adding to them or deleting from them any item or portion of an item, where the Governor in Council deems the amendment to be necessary in the public interest."

<span class="mw-page-title-main">Chiral auxiliary</span> Stereogenic group placed on a molecule to encourage stereoselectivity in reactions

In stereochemistry, a chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

<span class="mw-page-title-main">Danishefsky Taxol total synthesis</span>

The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.

<span class="mw-page-title-main">Ortho ester</span> Chemical group with the structure RC(OR)3

In organic chemistry, an ortho ester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR')3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived. An example is ethyl orthoacetate, CH3C(OCH2CH3)3, more correctly known as 1,1,1-triethoxyethane.

<span class="mw-page-title-main">Etonitazene</span> Chemical compound

Etonitazene, also known as EA-4941 or CS-4640, is a benzimidazole opioid, first reported in 1957, that has been shown to have approximately 1,000 to 1,500 times the potency of morphine in animals.

This is the list of extremely hazardous substances defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act. The list can be found as an appendix to 40 CFR 355. Updates as of 2006 can be seen on the Federal Register, 71 FR 47121.

<span class="mw-page-title-main">Latamoxef</span> Chemical compound

Latamoxef is an oxacephem antibiotic usually grouped with the cephalosporins. In oxacephems such as latamoxef, the sulfur atom of the cephalosporin core is replaced with an oxygen atom.

<span class="mw-page-title-main">Mukaiyama Taxol total synthesis</span>

The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.

<span class="mw-page-title-main">Viminol</span> Opioid analgesic medicine

Viminol is an opioid analgesic developed by a team at the drug company Zambon in the 1960s. Viminol is based on the α-pyrryl-2-aminoethanol structure, unlike any other class of opioids.

<span class="mw-page-title-main">Efaroxan</span> Chemical compound

Efaroxan is an α2-adrenergic receptor antagonist and antagonist of the imidazoline receptor.

<span class="mw-page-title-main">Proxorphan</span> Chemical compound

Proxorphan (INN), also known as proxorphan tartate (USAN), is an opioid analgesic and antitussive drug of the morphinan family that was never marketed. It acts preferentially as a κ-opioid receptor partial agonist and to a lesser extent as a μ-opioid receptor partial agonist.

<span class="mw-page-title-main">Cholesterol total synthesis</span>

Cholesterol total synthesis in chemistry describes the total synthesis of the complex biomolecule cholesterol and is considered a great scientific achievement. The research group of Robert Robinson with John Cornforth published their synthesis in 1951 and that of Robert Burns Woodward with Franz Sondheimer in 1952. Both groups competed for the first publication since 1950 with Robinson having started in 1932 and Woodward in 1949. According to historian Greg Mulheirn the Robinson effort was hampered by his micromanagement style of leadership and the Woodward effort was greatly facilitated by his good relationships with chemical industry. Around 1949 steroids like cortisone were produced from natural resources but expensive. Chemical companies Merck & Co. and Monsanto saw commercial opportunities for steroid synthesis and not only funded Woodward but also provided him with large quantities of certain chemical intermediates from pilot plants. Hard work also helped the Woodward effort: one of the intermediate compounds was named Christmasterone as it was synthesized on Christmas Day 1950 by Sondheimer.

<span class="mw-page-title-main">GABA analogue</span> Class of drugs

A GABA analogue is a compound which is an analogue or derivative of the neurotransmitter gamma-Aminobutyric acid (GABA).

<span class="mw-page-title-main">Ethyl cyanoacetate</span> Chemical compound

Ethyl cyanoacetate is an organic compound that contains a carboxylate ester and a nitrile. It is a colourless liquid with a pleasant odor. This material is useful as a starting material for synthesis due to its variety of functional groups and chemical reactivity.

<span class="mw-page-title-main">Diethyl oxomalonate</span> Chemical compound

Diethyl oxomalonate is the diethyl ester of mesoxalic acid (ketomalonic acid), the simplest oxodicarboxylic acid and thus the first member (n = 0) of a homologous series HOOC–CO–(CH2)n–COOH with the higher homologues oxalacetic acid (n = 1), α-ketoglutaric acid (n = 2) and α-ketoadipic acid (n = 3) (the latter a metabolite of the amino acid lysine). Diethyl oxomalonate reacts because of its highly polarized keto group as electrophile in addition reactions and is a highly active reactant in pericyclic reactions such as the Diels-Alder reactions, cycloadditions or ene reactions. At humid air, mesoxalic acid diethyl ester reacts with water to give diethyl mesoxalate hydrate and the green-yellow oil are spontaneously converted to white crystals.

<span class="mw-page-title-main">Diethyl acetamidomalonate</span> Chemical compound

Diethyl acetamidomalonate (DEAM) is a derivative of malonic acid diethyl ester. Formally, it is derived through the acetylation of ester from the unstable aminomalonic acid. DEAM serves as a starting material for racemates including both, natural and unnatural α-amino acids or hydroxycarboxylic acids. It is also usable as a precursor in pharmaceutical formulations, particularly in the cases of active ingredients like fingolimod, which is used to treat multiple sclerosis.

References

  1. US 4960788,Carenzi A, Chiarino D, Bella DD, Grancini GC, Veneziani C,"Pyrrolidone-2 compounds and their use for central analgesic activity",issued 2 October 1990, assigned to Zambon Group S.P.A.
  2. Napoletano M, Delia BD, Fraire C, Grancini G, Masotto C, Ricciardi S, Zambon C (1995). "Stereoselective synthesis and evaluation of all stereoisomers of Z4349, a novel and selective μ-opioid analgesic". Bioorganic & Medicinal Chemistry Letters. 5 (6): 589–592. doi:10.1016/0960-894X(95)00077-7.