Levophenacylmorphan

Last updated
Levophenacylmorphan
Levophenacylmorphan.svg
Clinical data
Other namesLevophenacylmorphan
ATC code
  • none
Legal status
Legal status
Identifiers
  • (−)-3-Hydroxy-N-phenacylmorphinan
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
ECHA InfoCard 100.030.168 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C24H27NO2
Molar mass 361.485 g·mol−1
3D model (JSmol)
  • C1CC[C@@]23CCN([C@@H]([C@@H]2C1)CC4=C3C=C(C=C4)O)CC(=O)C5=CC=CC=C5
  • InChI=1S/C24H27NO2/c26-19-10-9-18-14-22-20-8-4-5-11-24(20,21(18)15-19)12-13-25(22)16-23(27)17-6-2-1-3-7-17/h1-3,6-7,9-10,15,20,22,26H,4-5,8,11-14,16H2/t20-,22+,24+/m0/s1 X mark.svgN
  • Key:RCYBMSQOSGJZLO-BGWNEDDSSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Levophenacylmorphan is a morphinan derivative that acts as an opioid agonist. It has potent analgesic effects and is around 10x more potent than morphine. [1] Adverse effects associated with its use are those of the opioids as a whole, including pruritus, nausea, respiratory depression, euphoria and development of tolerance and dependence to its effects. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Nalbuphine</span> Opioid analgesic

Nalbuphine, sold under the brand names Nubain among others, is an opioid analgesic which is used in the treatment of pain. It is given by injection into a vein, muscle, or fat.

<span class="mw-page-title-main">Dihydroetorphine</span> Chemical compound

Dihydroetorphine was developed by K. W. Bentley at McFarlan-Smith in the 1960s and is a potent opioid analgesic used mainly in China. It is a derivative of the better-known opioid etorphine, a very potent veterinary painkiller and anesthetic medication used primarily for the sedation of large animals such as elephants, giraffes, and rhinos.

<span class="mw-page-title-main">Dezocine</span> Opioid analgesic

Dezocine, sold under the brand name Dalgan, is an atypical opioid analgesic which is used in the treatment of pain. It is used by intravenous infusion and intramuscular injection.

<span class="mw-page-title-main">Cyprenorphine</span> Chemical compound

Cyprenorphine (M285), N-cyclo-propylmethyl-6,14-endoetheno-7α-(1-hydroxy-1-methylethyl)-6,7,8,14-tetrahydronororipavine, is an opioid drug. It is related to more well-known opioids such as buprenorphine, which is used as an analgesic and for the treatment of opioid addiction, and diprenorphine, which is used as an antidote to reverse the effects of other opioids. It is roughly 35 times as strong as nalorphine.

<span class="mw-page-title-main">Phenazocine</span> Opioid analgesic

Phenazocine is an opioid analgesic drug, which is related to pentazocine and has a similar profile of effects.

<span class="mw-page-title-main">Enadoline</span> Chemical compound

Enadoline is a drug which acts as a highly selective κ-opioid agonist.

<span class="mw-page-title-main">Viminol</span> Opioid analgesic medicine

Viminol is an opioid analgesic developed by a team at the drug company Zambon in the 1960s. Viminol is based on the α-pyrryl-2-aminoethanol structure, unlike any other class of opioids.

<span class="mw-page-title-main">RB-101</span> Chemical compound

RB-101 is a drug that acts as an enkephalinase inhibitor, which is used in scientific research.

<span class="mw-page-title-main">14-Methoxymetopon</span> Chemical compound

14-Methoxymetopon is an experimental opioid drug developed by a team led by Professor Helmut Schmidhammer at the University of Insbruck in the mid 1990s. It is a derivative of metopon in which a methoxy group has been inserted at the 14-position. It is a highly potent analgesic drug that is around 500 times stronger than morphine when administered systemically; however, when given spinally or supraspinally, it exhibits analgesic activity up to a million fold greater than morphine. It binds strongly to the μ-opioid receptor and activates it to a greater extent than most similar opioid drugs. This produces an unusual pharmacological profile, and although 14-methoxymetopon acts as a potent μ-opioid full agonist in regard to some effects such as analgesia, a ceiling effect is seen on other effects such as constipation and respiratory depression which is believed to involve interaction with the κ-opioid receptor

<span class="mw-page-title-main">BU-48</span> Chemical compound

BU-48 is a drug that is used in scientific research. It is from the oripavine family, related to better-known drugs such as etorphine and buprenorphine.

<span class="mw-page-title-main">RWJ-394674</span> Chemical compound

RWJ-394674 is a drug that is used in scientific research. It is a potent, orally active analgesic drug that produces little respiratory depression. RWJ-394674 itself is a potent and selective agonist for δ-opioid receptors, with a Ki of 0.24 nM at δ and 72 nM at μ. However once inside the body, RWJ-394674 is dealkylated to its monodesethyl metabolite RWJ-413216, which is a potent agonist at the μ-opioid receptor and has less affinity for δ. The effect of RWJ-394674 when administered in vivo thus produces potent agonist effects at both μ and δ receptors through the combined actions of the parent drug and its active metabolite, with the δ-agonist effects counteracting the respiratory depression from the μ-opioid effects, and the only prominent side-effect being sedation.

<span class="mw-page-title-main">Spiradoline</span> Chemical compound

Spiradoline (U-62066) is a drug which acts as a highly selective κ-opioid agonist. It has analgesic, diuretic, and antitussive effects, and produces subjective effects in animals similar to those of ketazocine and alazocine. The main effect in humans is sedation, along with analgesic and diuretic effects, but significant side effects such as dysphoria and hallucinations have stopped it from being used clinically.

<span class="mw-page-title-main">HZ-2</span> Chemical compound

HZ-2 is a drug which acts as a highly selective κ-opioid agonist. It is a potent analgesic with around the same potency as morphine, with a long duration of action and high oral bioavailability. Side effects include sedation, nausea and dysphoria as well as diuretic effects.

<span class="mw-page-title-main">Alazocine</span> Synthetic opioid analgesic

Alazocine, also known more commonly as N-allylnormetazocine (NANM), is a synthetic opioid analgesic of the benzomorphan family related to metazocine, which was never marketed. In addition to its opioid activity, the drug is a sigma receptor agonist, and has been used widely in scientific research in studies of this receptor. Alazocine is described as a potent analgesic, psychotomimetic or hallucinogen, and opioid antagonist. Moreover, one of its enantiomers was the first compound that was found to selectively label the σ1 receptor, and led to the discovery and characterization of the receptor.

<span class="mw-page-title-main">4-Fluoropethidine</span> Chemical compound

4-Fluoropethidine is a drug that is a derivative of pethidine (meperidine), which combines pethidine's opioid analgesic effects with increased monoamine reuptake inhibition. It is around 50% less potent than pethidine as an opioid analgesic, but conversely is 50% more potent as a dopamine reuptake inhibitor, with other derivatives such as the 4-iodo and 3,4-dichloro analogues being even more potent dopamine reuptake inhibitors again. However none of these compounds substitute for cocaine or produce stimulant effects in animals, suggesting that they still act primarily as opioid analgesic drugs in practice. Its action and degree of relation to pethidine means that it may be controlled in those countries which have laws about controlled-substance analogues; it is not itself listed in the Controlled Substances Act 1970.

<span class="mw-page-title-main">LPK-26</span> Chemical compound

LPK-26 is a potent and selective κ-opioid agonist, and has analgesic effects.

<span class="mw-page-title-main">IBNtxA</span> Chemical compound

IBNtxA, or 3-iodobenzoyl naltrexamine, is an atypical opioid analgesic drug derived from naltrexone. In animal studies it produces potent analgesic effects that are blocked by levallorphan and so appear to be μ-opioid mediated, but it fails to produce constipation or respiratory depression, and is neither rewarding or aversive in conditioned place preference protocols. These unusual properties are thought to result from agonist action at a splice variant or heterodimer of the μ-opioid receptor, rather than at the classical full length form targeted by conventional opioid drugs.

<span class="mw-page-title-main">Metkefamide</span> Chemical compound

Metkefamide (INN; LY-127,623), or metkephamid acetate (USAN), but most frequently referred to simply as metkephamid, is a synthetic opioid pentapeptide and derivative of [Met]enkephalin with the amino acid sequence Tyr-D-Ala-Gly-Phe-(N-Me)-Met-NH2. It behaves as a potent agonist of the δ- and μ-opioid receptors with roughly equipotent affinity, and also has similarly high affinity as well as subtype-selectivity for the κ3-opioid receptor.

<span class="mw-page-title-main">Cebranopadol</span> Chemical compound

Cebranopadol is an opioid analgesic of the benzenoid class which is currently under development internationally by Grünenthal, a German pharmaceutical company, and its partner Depomed, a pharmaceutical company in the United States, for the treatment of a variety of different acute and chronic pain states. As of November 2014, it is in phase III clinical trials.

<span class="mw-page-title-main">PZM21</span> Chemical compound

PZM21 is an experimental opioid analgesic drug that is being researched for the treatment of pain. It is claimed to be a functionally selective μ-opioid receptor agonist which produces μ-opioid receptor mediated G protein signaling, with potency and efficacy similar to morphine, but with less β-arrestin 2 recruitment. However, recent reports highlight that this might be due to its low intrinsic efficacy, rather than functional selectivity or 'G protein bias' as initially reported. In tests on mice, PZM21 was slightly less potent than morphine or TRV130 as an analgesic, but also had significantly reduced adverse effects, with less constipation than morphine, and very little respiratory depression, even at high doses. This research was described as a compelling example of how modern high-throughput screening techniques can be used to discover new chemotypes with specific activity profiles, even at targets such as the μ-opioid receptor which have already been thoroughly investigated. More recent research has suggested however that at higher doses, PZM21 is capable of producing classic opioid side effects such as respiratory depression and development of tolerance and may have only limited functional selectivity.

References

  1. May E, Eddy N (February 1959). "A New Potent Synthetic Analgesic". Communications. The Journal of Organic Chemistry. 24 (2): 294–5. doi:10.1021/jo01084a655.
  2. Fraser HF, Isbell H (January 1960). "Human pharmacology and addiction liabilities of phenazocine and levophenacylmorphan". Bulletin on Narcotics. 12 (2): 15–23.