3-Hydroxymorphinan

Last updated
3-Hydroxymorphinan
3-Hydroxymorphinan.png
3-Hydroxymorphinan molecule ball.png
Clinical data
ATC code
  • None
Pharmacokinetic data
Bioavailability 18%
Identifiers
  • (±)-morphinan-3-ol
CAS Number
ChemSpider
UNII
Chemical and physical data
Formula C16H21NO
Molar mass 243.350 g·mol−1
3D model (JSmol)
  • Oc3ccc4C[C@H]1NCC[C@@]2(CCCC[C@@H]12)c4c3
  • InChI=1S/C16H21NO/c18-12-5-4-11-9-15-13-3-1-2-6-16(13,7-8-17-15)14(11)10-12/h4-5,10,13,15,17-18H,1-3,6-9H2/t13-,15+,16+/m0/s1 Yes check.svgY
  • Key:IYNWSQDZXMGGGI-NUEKZKHPSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

3-Hydroxymorphinan (3-HM), or morphinan-3-ol, is a psychoactive drug of the morphinan family. [1] It is the racemic counterpart to norlevorphanol.

The dextrorotatory stereoisomer of the compound is an active metabolite of dextromethorphan, dextrorphan, and 3-methoxymorphinan, [2] and similarly to them has potent neuroprotective and neurotrophic effects on LTS- and MPTP-treated dopaminergic neurons of the nigrostriatal pathway, [3] [4] but notably without producing any neuropsychotoxic side effects (e.g., dissociation or hallucinations) or having any anticonvulsant actions. [5] [6] It does not seem to bind to the NMDA receptor, [6] and instead, its neuroprotective properties appear result from inhibition of glutamate release via the suppression of presynaptic voltage-dependent Ca2+ entry and protein kinase C activity. [7] In any case, as such, the compound has been investigated as a potential management of Parkinson's disease medication (antiparkinsonian agent). A prodrug, GCC1290K, has been developed on account of 3-HM's poor bioavailability (18%), and a New Drug Application has been approved for it by the United States Food and Drug Administration. [6] It is currently undergoing clinical trials for the treatment of Parkinson's disease. [6] It does not have a Controlled Substances Act 1970 schedule, ACSCN, or annual aggregate manufacturing quota and may not necessarily be controlled, whilst norlevorphanol is; none of the dextrorotary derivatives of the dromoran and norlevorphanol sub-families of morphinan derivatives are controlled as they do not have opioid activity but the other racemic compounds are. [8]

3-HM's levorotatory stereoisomer, norlevorphanol, in contrast to (+)-3-HM, is an opioid analgesic. [9] It was never marketed as such however, probably due to a combination of the facts that norlevorphanol has low bioavailability and that its potency is diminished compared to its N-methylated analogue levorphanol. [10]

(+)-3-Hydroxymorphinan the Dextro isomer of 3-hydroxymorphinan. The Dextro form is metabolite of 3-methoxymorphinan which is metabolite of Dextromethorphan (+)-3-Hydroxymorphinan.png
(+)-3-Hydroxymorphinan the Dextro isomer of 3-hydroxymorphinan. The Dextro form is metabolite of 3-methoxymorphinan which is metabolite of Dextromethorphan

Related Research Articles

<span class="mw-page-title-main">MPTP</span> Chemical compound

MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is an organic compound. It is classified as a tetrahydropyridine. It is of interest as a precursor to the neurotoxin MPP+, which causes permanent symptoms of Parkinson's disease by destroying dopaminergic neurons in the substantia nigra of the brain. It has been used to study disease models in various animals.

Neurotoxicity is a form of toxicity in which a biological, chemical, or physical agent produces an adverse effect on the structure or function of the central and/or peripheral nervous system. It occurs when exposure to a substance – specifically, a neurotoxin or neurotoxicant– alters the normal activity of the nervous system in such a way as to cause permanent or reversible damage to nervous tissue. This can eventually disrupt or even kill neurons, which are cells that transmit and process signals in the brain and other parts of the nervous system. Neurotoxicity can result from organ transplants, radiation treatment, certain drug therapies, recreational drug use, exposure to heavy metals, bites from certain species of venomous snakes, pesticides, certain industrial cleaning solvents, fuels and certain naturally occurring substances. Symptoms may appear immediately after exposure or be delayed. They may include limb weakness or numbness, loss of memory, vision, and/or intellect, uncontrollable obsessive and/or compulsive behaviors, delusions, headache, cognitive and behavioral problems and sexual dysfunction. Chronic mold exposure in homes can lead to neurotoxicity which may not appear for months to years of exposure. All symptoms listed above are consistent with mold mycotoxin accumulation.

<span class="mw-page-title-main">Dextrorphan</span> Psychoactive cough suppressant medication

Dextrorphan (DXO) is a psychoactive drug of the morphinan class which acts as an antitussive or cough suppressant and dissociative hallucinogen. It is the dextrorotatory enantiomer of racemorphan; the levorotatory enantiomer is levorphanol. Dextrorphan is produced by O-demethylation of dextromethorphan by CYP2D6. Dextrorphan is an NMDA antagonist and contributes to the psychoactive effects of dextromethorphan.

<span class="mw-page-title-main">Dextromethorphan</span> Morphinan antitussive and dissociative drug

Dextromethorphan (DXM) is a cough suppressant used in many cough and cold medicines. It affects serotonin, norepinephrine, NMDA, and sigma-1 receptors in the brain, all of which have been implicated in the pathophysiology of depression. In 2022, the FDA approved the combination dextromethorphan/bupropion to serve as a rapid acting antidepressant in patients with major depressive disorder.

<span class="mw-page-title-main">Neuroprotection</span> Relative preservation of neuronal structure and/or function

Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation. It is a widely explored treatment option for many central nervous system (CNS) disorders including neurodegenerative diseases, stroke, traumatic brain injury, spinal cord injury, and acute management of neurotoxin consumption. Neuroprotection aims to prevent or slow disease progression and secondary injuries by halting or at least slowing the loss of neurons. Despite differences in symptoms or injuries associated with CNS disorders, many of the mechanisms behind neurodegeneration are the same. Common mechanisms of neuronal injury include decreased delivery of oxygen and glucose to the brain, energy failure, increased levels in oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation. Of these mechanisms, neuroprotective treatments often target oxidative stress and excitotoxicity—both of which are highly associated with CNS disorders. Not only can oxidative stress and excitotoxicity trigger neuron cell death but when combined they have synergistic effects that cause even more degradation than on their own. Thus limiting excitotoxicity and oxidative stress is a very important aspect of neuroprotection. Common neuroprotective treatments are glutamate antagonists and antioxidants, which aim to limit excitotoxicity and oxidative stress respectively.

<span class="mw-page-title-main">Levomethamphetamine</span> Nasal decongestant and optical isomer of methamphetamine

Levomethamphetamine is the levorotatory (L-enantiomer) form of methamphetamine. Levomethamphetamine is a sympathomimetic vasoconstrictor that is the active ingredient in some over-the-counter (OTC) nasal decongestant inhalers in the United States.

<span class="mw-page-title-main">Omigapil</span> Drug developed by Novartis

Omigapil is a drug that was developed by Novartis and tested in clinical trials for its ability to help treat Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). The development for PD and ALS have been terminated due to lack of benefit, but Santhera Pharmaceuticals bought the compound for development for the treatment of congenital muscular dystrophy (CMD).

<span class="mw-page-title-main">Levorphanol</span> Opioid analgesic drug

Levorphanol is an opioid medication used to treat moderate to severe pain. It is the levorotatory enantiomer of the compound racemorphan. Its dextrorotatory counterpart is dextrorphan.

<span class="mw-page-title-main">Morphinan</span> Chemical compound

Morphinan is the prototype chemical structure of a large chemical class of psychoactive drugs, consisting of opiate analgesics, cough suppressants, and dissociative hallucinogens, among others. Typical examples include compounds such as morphine, codeine, and dextromethorphan (DXM). Despite related molecular structures, the pharmacological profiles and mechanisms of action between the various types of morphinan substances can vary substantially. They tend to function either as μ-opioid receptor agonists (analgesics), or NMDA receptor antagonists (dissociatives).

<span class="mw-page-title-main">Rasagiline</span> Chemical compound

Rasagiline is an irreversible inhibitor of monoamine oxidase-B used as a monotherapy to treat symptoms in early Parkinson's disease or as an adjunct therapy in more advanced cases.

<span class="mw-page-title-main">Methorphan</span> Group of stereoisomers

Methorphan comes in two isomeric forms, each with differing pharmacology and effects:

<span class="mw-page-title-main">Dimemorfan</span> Cough suppressant

Dimemorfan (INN), or dimemorfan phosphate (JAN), also known as 3,17-dimethylmorphinan, is an antitussive of the morphinan family that is widely used in Japan and is also marketed in Spain and Italy. It was developed by Yamanouchi Pharmaceutical and introduced in Japan in 1975. It was later introduced in Spain in 1981 and Japan in 1985.

<span class="mw-page-title-main">LY-503430</span> Chemical compound

LY-503430 is an AMPA receptor positive allosteric modulator developed by Eli Lilly.

<span class="mw-page-title-main">Remacemide</span> Chemical compound

Remacemide is a drug which acts as a low-affinity NMDA antagonist with sodium channel blocking properties. It has been studied for the treatment of acute ischemic stroke, epilepsy, Huntington's disease, and Parkinson's disease.

<span class="mw-page-title-main">Racemorphan</span> Racemic mixture

Racemorphan, or morphanol, is the racemic mixture of the two stereoisomers of 17-methylmorphinan-3-ol, each with differing pharmacology and effects:

<span class="mw-page-title-main">Repinotan</span> Chemical compound

Repinotan (BAYx3702), an aminomethylchroman derivative, is a selective 5-HT1A receptor full agonist with high potency and efficacy. It has neuroprotective effects in animal studies, and was trialed in humans for reducing brain injury following head trauma. It was subsequently trialed up to phase II for treatment of stroke, but while side effects were mild and consisted mainly of nausea, repinotan failed to demonstrate sufficient efficacy to justify further clinical trials. However, repinotan continues to be investigated for other applications, and was found to be effective at counteracting the respiratory depression produced by morphine, though with slight reduction in analgesic effects.

<span class="mw-page-title-main">(+)-Naloxone</span> Drug

(+)-Naloxone (dextro-naloxone) is a drug which is the opposite enantiomer of the opioid antagonist drug (−)-naloxone. Unlike (−)-naloxone, (+)-naloxone has no significant affinity for opioid receptors, but instead has been discovered to act as a selective antagonist of Toll-like receptor 4. This receptor is involved in immune system responses, and activation of TLR4 induces glial activation and release of inflammatory mediators such as TNF-α and Interleukin-1.

<span class="mw-page-title-main">Pseudophenmetrazine</span> Chemical compound

Pseudophenmetrazine is a psychostimulant compound of the morpholine class. It is the N-demethylated and cis-configured analogue of phendimetrazine as well as the cis-configured stereoisomer of phenmetrazine. In addition, along with phenmetrazine, it is believed to be one of the active metabolites of phendimetrazine, which itself is inactive and behaves merely as a prodrug. Relative to phenmetrazine, pseudophenmetrazine is of fairly low potency, acting as a modest releasing agent of norepinephrine (EC50 = 514 nM), while its (+)-enantiomer is a weak releaser of dopamine (EC50 = 1,457 nM) whereas its (−)-enantiomer is a weak reuptake inhibitor of dopamine (Ki = 2,691 nM); together as a racemic mixture with the two enantiomers combined, pseudophenmetrazine behaves overall more as a dopamine reuptake inhibitor (Ki = 2,630 nM), possibly due to the (+)-enantiomer blocking the uptake of the (−)-enantiomer into dopaminergic neurons and thus preventing it from inducing dopamine release. Neither enantiomer has any significant effect on serotonin reuptake or release (both Ki = >10,000 nM and EC50 = >10,000 nM, respectively).

<span class="mw-page-title-main">Hydroxybupropion</span> Group of stereoisomers

Hydroxybupropion, or 6-hydroxybupropion, is the major active metabolite of the antidepressant and smoking cessation drug bupropion. It is formed from bupropion by the liver enzyme CYP2B6 during first-pass metabolism. With oral bupropion treatment, hydroxybupropion is present in plasma at area under the curve concentrations that are as many as 16–20 times greater than those of bupropion itself, demonstrating extensive conversion of bupropion into hydroxybupropion in humans. As such, hydroxybupropion is likely to play a very important role in the effects of oral bupropion, which could accurately be thought of as functioning largely as a prodrug to hydroxybupropion. Other metabolites of bupropion besides hydroxybupropion include threohydrobupropion and erythrohydrobupropion.

Neurotrophin mimetics are small molecules or peptide like molecules that can modulate the action of the neurotrophin receptor. One of the main causes of neurodegeneration involves changes in the expression of neurotrophins (NTs) and/or their receptors. Indeed, these imbalances or changes in their activity, lead to neuronal damage resulting in neurological and neurodegenerative conditions. The therapeutic properties of neurotrophins attracted the focus of many researchers during the years, but the poor pharmacokinetic properties, such as reduced bioavailability and low metabolic stability, the hyperalgesia, the inability to penetrate the blood–brain barrier and the short half-lives render the large neurotrophin proteins not suitable to be implemented as drugs.

References

  1. Ganellin CR, Triggle DJ, Macdonald F (1997). Dictionary of pharmacological agents. CRC Press. p. 1378. ISBN   978-0-412-46630-4 . Retrieved 29 November 2011.
  2. Jacqz-Aigrain E, Cresteil T (1992). "Cytochrome P450-dependent metabolism of dextromethorphan: fetal and adult studies". Developmental Pharmacology and Therapeutics. 18 (3–4): 161–8. doi:10.1159/000480616. PMID   1306804.
  3. Zhang W, Qin L, Wang T, et al. (March 2005). "3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity". The FASEB Journal. 19 (3): 395–7. doi: 10.1096/fj.04-1586fje . PMID   15596482. S2CID   13513164.
  4. Zhang W, Shin EJ, Wang T, et al. (December 2006). "3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro". The FASEB Journal. 20 (14): 2496–511. doi: 10.1096/fj.06-6006com . PMID   17142799. S2CID   23032934.
  5. Shin EJ, Lee PH, Kim HJ, Nabeshima T, Kim HC (January 2008). "Neuropsychotoxicity of abused drugs: potential of dextromethorphan and novel neuroprotective analogs of dextromethorphan with improved safety profiles in terms of abuse and neuroprotective effects". Journal of Pharmacological Sciences. 106 (1): 22–7. doi: 10.1254/jphs.fm0070177 . PMID   18198471.
  6. 1 2 3 4 Shin EJ, Bach JH, Lee SY, et al. (2011). "Neuropsychotoxic and neuroprotective potentials of dextromethorphan and its analogs". Journal of Pharmacological Sciences. 116 (2): 137–48. doi: 10.1254/jphs.11r02cr . PMID   21606622.
  7. Lin TY, Lu CW, Wang SJ (July 2009). "Inhibitory effect of glutamate release from rat cerebrocortical synaptosomes by dextromethorphan and its metabolite 3-hydroxymorphinan". Neurochemistry International. 54 (8): 526–34. doi:10.1016/j.neuint.2009.02.012. PMID   19428798. S2CID   23428637.
  8. "Conversion Factors for Controlled Substances". Diversion Control Division. Drug Enforcement Agency, U.S. Department of Justice. Archived from the original on 2016-03-02. Retrieved 2016-02-27.
  9. Dictionary of organic compounds. London: Chapman & Hall. 1996. ISBN   0-412-54090-8.
  10. Bentham Science Publishers (April 1995). Current Medicinal Chemistry. Bentham Science Publishers. p. 425. Retrieved 29 November 2011.