Stericated 5-simplexes

Last updated
5-simplex t0.svg 5-simplex t0 A4.svg
5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t04.svg 5-simplex t04 A4.svg
Stericated 5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-simplex t014.svg 5-simplex t014 A4.svg
Steritruncated 5-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-simplex t024.svg 5-simplex t024 A4.svg
Stericantellated 5-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-simplex t0124.svg 5-simplex t0124 A4.svg
Stericantitruncated 5-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-simplex t0134.svg 5-simplex t0134 A4.svg
Steriruncitruncated 5-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-simplex t01234.svg 5-simplex t01234 A4.svg
Steriruncicantitruncated 5-simplex
(Omnitruncated 5-simplex)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in A5 and A4 Coxeter planes

In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.

Contents

There are six unique sterications of the 5-simplex, including permutations of truncations, cantellations, and runcinations. The simplest stericated 5-simplex is also called an expanded 5-simplex, with the first and last nodes ringed, for being constructible by an expansion operation applied to the regular 5-simplex. The highest form, the steriruncicantitruncated 5-simplex is more simply called an omnitruncated 5-simplex with all of the nodes ringed.

Stericated 5-simplex

Stericated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2r2r{3,3,3,3}
2r{32,2} =
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
or CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.png
4-faces626+6 {3,3,3} Schlegel wireframe 5-cell.png
15+15 {}×{3,3} Tetrahedral prism.png
20 {3}×{3} 3-3 duoprism.png
Cells18060 {3,3} Tetrahedron.png
120 {}×{3} Triangular prism.png
Faces210120 {3}
90 {4}
Edges120
Vertices30
Vertex figure Stericated hexateron verf.png
Tetrahedral antiprism
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal, isotoxal

A stericated 5-simplex can be constructed by an expansion operation applied to the regular 5-simplex, and thus is also sometimes called an expanded 5-simplex. It has 30 vertices, 120 edges, 210 faces (120 triangles and 90 squares), 180 cells (60 tetrahedra and 120 triangular prisms) and 62 4-faces (12 5-cells, 30 tetrahedral prisms and 20 3-3 duoprisms).

Alternate names

Cross-sections

The maximal cross-section of the stericated hexateron with a 4-dimensional hyperplane is a runcinated 5-cell. This cross-section divides the stericated hexateron into two pentachoral hypercupolas consisting of 6 5-cells, 15 tetrahedral prisms and 10 3-3 duoprisms each.

Coordinates

The vertices of the stericated 5-simplex can be constructed on a hyperplane in 6-space as permutations of (0,1,1,1,1,2). This represents the positive orthant facet of the stericated 6-orthoplex.

A second construction in 6-space, from the center of a rectified 6-orthoplex is given by coordinate permutations of:

(1,-1,0,0,0,0)

The Cartesian coordinates in 5-space for the normalized vertices of an origin-centered stericated hexateron are:

Root system

Its 30 vertices represent the root vectors of the simple Lie group A5. It is also the vertex figure of the 5-simplex honeycomb.

Images

orthographic projections
Ak
Coxeter plane
A5A4
Graph 5-simplex t04.svg 5-simplex t04 A4.svg
Dihedral symmetry [6][[5]]=[10]
Ak
Coxeter plane
A3A2
Graph 5-simplex t04 A3.svg 5-simplex t04 A2.svg
Dihedral symmetry [4][[3]]=[6]
Stericated hexateron ortho.svg
orthogonal projection with [6] symmetry

Steritruncated 5-simplex

Steritruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,4{3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
4-faces626 t{3,3,3}
15 {}×t{3,3}
20 {3}×{6}
15 {}×{3,3}
6 t0,3{3,3,3}
Cells330
Faces570
Edges420
Vertices120
Vertex figure Steritruncated 5-simplex verf.png
Coxeter group A5 [3,3,3,3], order 720
Properties convex, isogonal

Alternate names

Coordinates

The coordinates can be made in 6-space, as 180 permutations of:

(0,1,1,1,2,3)

This construction exists as one of 64 orthant facets of the steritruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5A4
Graph 5-simplex t014.svg 5-simplex t014 A4.svg
Dihedral symmetry [6][5]
Ak
Coxeter plane
A3A2
Graph 5-simplex t014 A3.svg 5-simplex t014 A2.svg
Dihedral symmetry [4][3]

Stericantellated 5-simplex

Stericantellated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,2,4{3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.png
4-faces6212 rr{3,3,3}
30 rr{3,3}x{}
20 {3}×{3}
Cells42060 rr{3,3}
240 {}×{3}
90 {}×{}×{}
30 r{3,3}
Faces900360 {3}
540 {4}
Edges720
Vertices180
Vertex figure Stericantellated 5-simplex verf.png
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

Coordinates

The coordinates can be made in 6-space, as permutations of:

(0,1,1,2,2,3)

This construction exists as one of 64 orthant facets of the stericantellated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5A4
Graph 5-simplex t024.svg 5-simplex t024 A4.svg
Dihedral symmetry [6][[5]]=[10]
Ak
Coxeter plane
A3A2
Graph 5-simplex t024 A3.svg 5-simplex t024 A2.svg
Dihedral symmetry [4][[3]]=[6]

Stericantitruncated 5-simplex

Stericantitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,2,4{3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
4-faces62
Cells480
Faces1140
Edges1080
Vertices360
Vertex figure Stericanitruncated 5-simplex verf.png
Coxeter group A5 [3,3,3,3], order 720
Properties convex, isogonal

Alternate names

Coordinates

The coordinates can be made in 6-space, as 360 permutations of:

(0,1,1,2,3,4)

This construction exists as one of 64 orthant facets of the stericantitruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5A4
Graph 5-simplex t0124.svg 5-simplex t0124 A4.svg
Dihedral symmetry [6][5]
Ak
Coxeter plane
A3A2
Graph 5-simplex t0124 A3.svg 5-simplex t0124 A2.svg
Dihedral symmetry [4][3]

Steriruncitruncated 5-simplex

Steriruncitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,3,4{3,3,3,3}
2t{32,2}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
or CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.png
4-faces6212 t0,1,3{3,3,3}
30 {}×t{3,3}
20 {6}×{6}
Cells450
Faces1110
Edges1080
Vertices360
Vertex figure Steriruncitruncated 5-simplex verf.png
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

Coordinates

The coordinates can be made in 6-space, as 360 permutations of:

(0,1,2,2,3,4)

This construction exists as one of 64 orthant facets of the steriruncitruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5A4
Graph 5-simplex t0134.svg 5-simplex t0134 A4.svg
Dihedral symmetry [6][[5]]=[10]
Ak
Coxeter plane
A3A2
Graph 5-simplex t0134 A3.svg 5-simplex t0134 A2.svg
Dihedral symmetry [4][[3]]=[6]

Omnitruncated 5-simplex

Omnitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol t0,1,2,3,4{3,3,3,3}
2tr{32,2}
Coxeter-Dynkin
diagram
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
or CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.png
4-faces6212 t0,1,2,3{3,3,3} Schlegel half-solid omnitruncated 5-cell.png
30 {}×tr{3,3} Truncated octahedral prism.png
20 {6}×{6} 6-6 duoprism.png
Cells540360 t{3,4} Truncated octahedron.png
90 {4,3} Tetragonal prism.png
90 {}×{6} Hexagonal prism.png
Faces1560480 {6}
1080 {4}
Edges1800
Vertices720
Vertex figure Omnitruncated 5-simplex verf.png
Irregular 5-cell
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal, zonotope

The omnitruncated 5-simplex has 720 vertices, 1800 edges, 1560 faces (480 hexagons and 1080 squares), 540 cells (360 truncated octahedra, 90 cubes, and 90 hexagonal prisms), and 62 4-faces (12 omnitruncated 5-cells, 30 truncated octahedral prisms, and 20 6-6 duoprisms).

Alternate names

Coordinates

The vertices of the omnitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,1,2,3,4,5). These coordinates come from the positive orthant facet of the steriruncicantitruncated 6-orthoplex, t0,1,2,3,4{34,4}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Images

orthographic projections
Ak
Coxeter plane
A5A4
Graph 5-simplex t01234.svg 5-simplex t01234 A4.svg
Dihedral symmetry [6][[5]]=[10]
Ak
Coxeter plane
A3A2
Graph 5-simplex t01234 A3.svg 5-simplex t01234 A2.svg
Dihedral symmetry [4][[3]]=[6]
Stereographic projection Omnitruncated Hexateron.png
Stereographic projection

Permutohedron

The omnitruncated 5-simplex is the permutohedron of order 6. It is also a zonotope, the Minkowski sum of six line segments parallel to the six lines through the origin and the six vertices of the 5-simplex.

Omnitruncated Hexateron as Permutohedron.svg
Orthogonal projection, vertices labeled as a permutohedron.

The omnitruncated 5-simplex honeycomb is constructed by omnitruncated 5-simplex facets with 3 facets around each ridge. It has Coxeter-Dynkin diagram of CDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png.

Coxeter group
Coxeter-Dynkin CDel node 1.pngCDel infin.pngCDel node 1.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel branch 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png
Picture Uniform apeirogon.png Uniform tiling 333-t012.png Bitruncated cubic honeycomb4.png
Name Apeirogon Hextille Omnitruncated
3-simplex
honeycomb
Omnitruncated
4-simplex
honeycomb
Omnitruncated
5-simplex
honeycomb
Facets 1-simplex t0.svg 2-simplex t01.svg 3-simplex t012.svg 4-simplex t0123.svg 5-simplex t01234.svg

Full snub 5-simplex

The full snub 5-simplex or omnisnub 5-simplex, defined as an alternation of the omnitruncated 5-simplex is not uniform, but it can be given Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png and symmetry [[3,3,3,3]]+, and constructed from 12 snub 5-cells, 30 snub tetrahedral antiprisms, 20 3-3 duoantiprisms, and 360 irregular 5-cells filling the gaps at the deleted vertices.

These polytopes are a part of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

A5 polytopes
5-simplex t0.svg
t0
5-simplex t1.svg
t1
5-simplex t2.svg
t2
5-simplex t01.svg
t0,1
5-simplex t02.svg
t0,2
5-simplex t12.svg
t1,2
5-simplex t03.svg
t0,3
5-simplex t13.svg
t1,3
5-simplex t04.svg
t0,4
5-simplex t012.svg
t0,1,2
5-simplex t013.svg
t0,1,3
5-simplex t023.svg
t0,2,3
5-simplex t123.svg
t1,2,3
5-simplex t014.svg
t0,1,4
5-simplex t024.svg
t0,2,4
5-simplex t0123.svg
t0,1,2,3
5-simplex t0124.svg
t0,1,2,4
5-simplex t0134.svg
t0,1,3,4
5-simplex t01234.svg
t0,1,2,3,4

Notes

  1. Klitizing, (x3o3o3o3x - scad)
  2. Klitizing, (x3x3o3o3x - cappix)
  3. Klitizing, (x3o3x3o3x - card)
  4. Klitizing, (x3x3x3o3x - cograx)
  5. Klitizing, (x3x3o3x3x - captid)
  6. Klitizing, (x3x3x3x3x - gocad)

Related Research Articles

Runcinated 5-cell

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices, 21 edges, 35 triangle faces, 35 tetrahedral cells, 21 5-cell 4-faces, and 7 5-simplex 5-faces. Its dihedral angle is cos−1(1/6), or approximately 80.41°.

7-simplex

In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices, 28 edges, 56 triangle faces, 70 tetrahedral cells, 56 5-cell 5-faces, 28 5-simplex 6-faces, and 8 6-simplex 7-faces. Its dihedral angle is cos−1(1/7), or approximately 81.79°.

Truncated 5-simplexes

In five-dimensional geometry, a truncated 5-simplex is a convex uniform 5-polytope, being a truncation of the regular 5-simplex.

Cantellated 5-simplexes

In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex.

Pentellated 6-simplexes

In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.

Rectified 6-orthoplexes

In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex.

Truncated 6-simplexes

In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex.

Runcinated 5-simplexes

In six-dimensional geometry, a runcinated 5-simplex is a convex uniform 5-polytope with 3rd order truncations (Runcination) of the regular 5-simplex.

Stericated 6-simplexes

In six-dimensional geometry, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations (sterication) of the regular 6-simplex.

Cantellated 7-simplexes

In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.

Stericated 7-simplexes

In seven-dimensional geometry, a stericated 7-simplex is a convex uniform 7-polytope with 4th order truncations (sterication) of the regular 7-simplex.

Pentellated 7-simplexes

In seven-dimensional geometry, a pentellated 7-simplex is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-simplex.

Hexicated 7-simplexes

In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-simplex.

Heptellated 8-simplexes

In eight-dimensional geometry, a heptellated 8-simplex is a convex uniform 8-polytope, including 7th-order truncations (heptellation) from the regular 8-simplex.

Truncated 8-simplexes

In eight-dimensional geometry, a truncated 8-simplex is a convex uniform 8-polytope, being a truncation of the regular 8-simplex.

Cantellated 8-simplexes

In eight-dimensional geometry, a cantellated 8-simplex is a convex uniform 8-polytope, being a cantellation of the regular 8-simplex.

Rectified 10-orthoplexes

In ten-dimensional geometry, a rectified 10-orthoplex is a convex uniform 10-polytope, being a rectification of the regular 10-orthoplex.

Runcinated 5-cubes

In five-dimensional geometry, a runcinated 5-cube is a convex uniform 5-polytope that is a runcination of the regular 5-cube.

Stericated 5-cubes

In five-dimensional geometry, a stericated 5-cube is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-cube.

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds