Matrix representation of Maxwell's equations

Last updated

In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. [1] A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices. [2]

Contents

Introduction

Maxwell's equations in the standard vector calculus formalism, in an inhomogeneous medium with sources, are: [3]

The media is assumed to be linear, that is

,

where scalar is the permittivity of the medium and scalar the permeability of the medium (see constitutive equation). For a homogeneous medium and are constants. The speed of light in the medium is given by

.

In vacuum, 8.85 × 10−12 C2·N−1·m−2 and × 10−7 H·m−1

One possible way to obtain the required matrix representation is to use the Riemann–Silberstein vector [4] [5] given by

If for a certain medium and are scalar constants (or can be treated as local scalar constants under certain approximations), then the vectors satisfy

Thus by using the Riemann–Silberstein vector, it is possible to reexpress the Maxwell's equations for a medium with constant and as a pair of constitutive equations.

Homogeneous medium

In order to obtain a single matrix equation instead of a pair, the following new functions are constructed using the components of the Riemann–Silberstein vector [6]

The vectors for the sources are

Then,

where * denotes complex conjugation and the triplet, M = [Mx, My, Mz] is a vector whose component elements are abstract 4×4 matricies given by

The component M-matrices may be formed using:

where

from which, get:

Alternately, one may use the matrix Which only differ by a sign. For our purpose it is fine to use either Ω or J. However, they have a different meaning: J is contravariant and Ω is covariant. The matrix Ω corresponds to the Lagrange brackets of classical mechanics and J corresponds to the Poisson brackets.

Note the important relation

Each of the four Maxwell's equations are obtained from the matrix representation. This is done by taking the sums and differences of row-I with row-IV and row-II with row-III respectively. The first three give the y, x, and z components of the curl and the last one gives the divergence conditions.

The matrices M are all non-singular and all are Hermitian. Moreover, they satisfy the usual (quaternion-like) algebra of the Dirac matrices, including,

The (Ψ±, M) are not unique. Different choices of Ψ± would give rise to different M, such that the triplet M continues to satisfy the algebra of the Dirac matrices. The Ψ±via the Riemann–Silberstein vector has certain advantages over the other possible choices. [5] The Riemann–Silberstein vector is well known in classical electrodynamics and has certain interesting properties and uses. [5]

In deriving the above 4×4 matrix representation of the Maxwell's equations, the spatial and temporal derivatives of ε(r, t) and μ(r, t) in the first two of the Maxwell's equations have been ignored. The ε and μ have been treated as local constants.

Inhomogeneous medium

In an inhomogeneous medium, the spatial and temporal variations of ε = ε(r, t) and μ = μ(r, t) are not zero. That is they are no longer local constant. Instead of using ε = ε(r, t) and μ = μ(r, t), it is advantageous to use the two derived laboratory functions namely the resistance function and the velocity function

In terms of these functions:

.

These functions occur in the matrix representation through their logarithmic derivatives;

where

is the refractive index of the medium.

The following matrices naturally arise in the exact matrix representation of the Maxwell's equation in a medium

where Σ are the Dirac spin matrices and α are the matrices used in the Dirac equation, and σ is the triplet of the Pauli matrices

Finally, the matrix representation is

The above representation contains thirteen 8 × 8 matrices. Ten of these are Hermitian. The exceptional ones are the ones that contain the three components of w(r, t), the logarithmic gradient of the resistance function. These three matrices, for the resistance function are antihermitian.

The Maxwell's equations have been expressed in a matrix form for a medium with varying permittivity ε = ε(r, t) and permeability μ = μ(r, t), in presence of sources. This representation uses a single matrix equation, instead of a pair of matrix equations. In this representation, using 8 × 8 matrices, it has been possible to separate the dependence of the coupling between the upper components (Ψ+) and the lower components (Ψ) through the two laboratory functions. Moreover, the exact matrix representation has an algebraic structure very similar to the Dirac equation. [2] Maxwell's equations can be derived from the Fermat's principle of geometrical optics by the process of "wavization"[ clarification needed ] analogous to the quantization of classical mechanics. [7]

Applications

One of the early uses of the matrix forms of the Maxwell's equations was to study certain symmetries, and the similarities with the Dirac equation.

The matrix form of the Maxwell's equations is used as a candidate for the Photon Wavefunction. [8]

Historically, the geometrical optics is based on the Fermat's principle of least time. Geometrical optics can be completely derived from the Maxwell's equations. This is traditionally done using the Helmholtz equation. The derivation of the Helmholtz equation from the Maxwell's equations is an approximation as one neglects the spatial and temporal derivatives of the permittivity and permeability of the medium. A new formalism of light beam optics has been developed, starting with the Maxwell's equations in a matrix form: a single entity containing all the four Maxwell's equations. Such a prescription is sure to provide a deeper understanding of beam-optics and polarization in a unified manner. [9] The beam-optical Hamiltonian derived from this matrix representation has an algebraic structure very similar to the Dirac equation, making it amenable to the Foldy-Wouthuysen technique. [10] This approach is very similar to one developed for the quantum theory of charged-particle beam optics. [11]

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is:

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

In optics, the Ewald–Oseen extinction theorem, sometimes referred to as just the extinction theorem, is a theorem that underlies the common understanding of scattering. It is named after Paul Peter Ewald and Carl Wilhelm Oseen, who proved the theorem in crystalline and isotropic media, respectively, in 1916 and 1915. Originally, the theorem applied to scattering by an isotropic dielectric objects in free space. The scope of the theorem was greatly extended to encompass a wide variety of bianisotropic media.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

References

Notes

  1. (Bialynicki-Birula, 1994, 1996a, 1996b)
  2. 1 2 (Khan, 2002, 2005)
  3. (Jackson, 1998; Panofsky and Phillips, 1962)
  4. Silberstein (1907a, 1907b)
  5. 1 2 3 Bialynicki-Birula (1996b)
  6. Khan (2002, 2005)
  7. (Pradhan, 1987)
  8. (Bialynicki-Birula, 1996b)
  9. (Khan, 2006b, 2010)
  10. (Khan, 2006a, 2008)
  11. (Jagannathan et al., 1989, Jagannathan, 1990, Jagannathan and Khan 1996, Khan, 1997)

Others