Part of a series of articles about |
Calculus |
---|
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. [1] There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.
Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [3]
Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis. It gives simple arithmetic formulas to accurately compute values of many transcendental functions such as the exponential function and trigonometric functions. It is the starting point of the study of analytic functions, and is fundamental in various areas of mathematics, as well as in numerical analysis and mathematical physics. Taylor's theorem also generalizes to multivariate and vector valued functions. It provided the mathematical basis for some landmark early computing machines: Charles Babbage's Difference Engine calculated sines, cosines, logarithms, and other transcendental functions by numerically integrating the first 7 terms of their Taylor series.
If a real-valued function is differentiable at the point , then it has a linear approximation near this point. This means that there exists a function h1(x) such that
Here
is the linear approximation of for x near the point a, whose graph is the tangent line to the graph at x = a. The error in the approximation is:
As x tends to a, this error goes to zero much faster than , making a useful approximation.
For a better approximation to , we can fit a quadratic polynomial instead of a linear function:
Instead of just matching one derivative of at , this polynomial has the same first and second derivatives, as is evident upon differentiation.
Taylor's theorem ensures that the quadratic approximation is, in a sufficiently small neighborhood of , more accurate than the linear approximation. Specifically,
Here the error in the approximation is
which, given the limiting behavior of , goes to zero faster than as x tends to a.
Similarly, we might get still better approximations to f if we use polynomials of higher degree, since then we can match even more derivatives with f at the selected base point.
In general, the error in approximating a function by a polynomial of degree k will go to zero much faster than as x tends to a. However, there are functions, even infinitely differentiable ones, for which increasing the degree of the approximating polynomial does not increase the accuracy of approximation: we say such a function fails to be analytic at x = a: it is not (locally) determined by its derivatives at this point.
Taylor's theorem is of asymptotic nature: it only tells us that the error in an approximation by a -th order Taylor polynomial Pk tends to zero faster than any nonzero -th degree polynomial as . It does not tell us how large the error is in any concrete neighborhood of the center of expansion, but for this purpose there are explicit formulas for the remainder term (given below) which are valid under some additional regularity assumptions on f. These enhanced versions of Taylor's theorem typically lead to uniform estimates for the approximation error in a small neighborhood of the center of expansion, but the estimates do not necessarily hold for neighborhoods which are too large, even if the function f is analytic. In that situation one may have to select several Taylor polynomials with different centers of expansion to have reliable Taylor-approximations of the original function (see animation on the right.)
There are several ways we might use the remainder term:
The precise statement of the most basic version of Taylor's theorem is as follows:
Taylor's theorem [4] [5] [6] — Let k ≥ 1 be an integer and let the function f : R → R be k times differentiable at the point a ∈ R. Then there exists a function hk : R → R such that
and This is called the Peano form of the remainder.
The polynomial appearing in Taylor's theorem is the -th order Taylor polynomial
of the function f at the point a. The Taylor polynomial is the unique "asymptotic best fit" polynomial in the sense that if there exists a function hk : R → R and a -th order polynomial p such that
then p = Pk. Taylor's theorem describes the asymptotic behavior of the remainder term
which is the approximation error when approximating f with its Taylor polynomial. Using the little-o notation, the statement in Taylor's theorem reads as
Under stronger regularity assumptions on f there are several precise formulas for the remainder term Rk of the Taylor polynomial, the most common ones being the following.
Mean-value forms of the remainder — Let f : R → R be k + 1 times differentiable on the open interval with f(k) continuous on the closed interval between and . [7] Then
for some real number between and . This is the Lagrange form [8] of the remainder.
Similarly,
for some real number between and . This is the Cauchy form [9] of the remainder.
Both can be thought of as specific cases of the following result: Consider
for some real number between and . This is the Schlömilch form of the remainder (sometimes called the Schlömilch-Roche ). The choice is the Lagrange form, whilst the choice is the Cauchy form.
These refinements of Taylor's theorem are usually proved using the mean value theorem, whence the name. Additionally, notice that this is precisely the mean value theorem when . Also other similar expressions can be found. For example, if G(t) is continuous on the closed interval and differentiable with a non-vanishing derivative on the open interval between and , then
for some number between and . This version covers the Lagrange and Cauchy forms of the remainder as special cases, and is proved below using Cauchy's mean value theorem. The Lagrange form is obtained by taking and the Cauchy form is obtained by taking .
The statement for the integral form of the remainder is more advanced than the previous ones, and requires understanding of Lebesgue integration theory for the full generality. However, it holds also in the sense of Riemann integral provided the (k + 1)th derivative of f is continuous on the closed interval [a,x].
Integral form of the remainder [10] — Let be absolutely continuous on the closed interval between and . Then
Due to the absolute continuity of f(k) on the closed interval between and , its derivative f(k+1) exists as an L1-function, and the result can be proven by a formal calculation using the fundamental theorem of calculus and integration by parts.
It is often useful in practice to be able to estimate the remainder term appearing in the Taylor approximation, rather than having an exact formula for it. Suppose that f is (k + 1)-times continuously differentiable in an interval I containing a. Suppose that there are real constants q and Q such that
throughout I. Then the remainder term satisfies the inequality [11]
if x > a, and a similar estimate if x < a. This is a simple consequence of the Lagrange form of the remainder. In particular, if
on an interval I = (a − r,a + r) with some , then
for all x∈(a − r,a + r). The second inequality is called a uniform estimate, because it holds uniformly for all x on the interval (a − r,a + r).
Suppose that we wish to find the approximate value of the function on the interval while ensuring that the error in the approximation is no more than 10−5. In this example we pretend that we only know the following properties of the exponential function:
(★) |
From these properties it follows that for all , and in particular, . Hence the -th order Taylor polynomial of at and its remainder term in the Lagrange form are given by
where is some number between 0 and x. Since ex is increasing by ( ★ ), we can simply use for to estimate the remainder on the subinterval . To obtain an upper bound for the remainder on , we use the property for to estimate
using the second order Taylor expansion. Then we solve for ex to deduce that
simply by maximizing the numerator and minimizing the denominator. Combining these estimates for ex we see that
so the required precision is certainly reached, when
(See factorial or compute by hand the values and .) As a conclusion, Taylor's theorem leads to the approximation
For instance, this approximation provides a decimal expression , correct up to five decimal places.
Let I ⊂ R be an open interval. By definition, a function f : I → R is real analytic if it is locally defined by a convergent power series. This means that for every a ∈ I there exists some r > 0 and a sequence of coefficients ck ∈ R such that (a − r, a + r) ⊂ I and
In general, the radius of convergence of a power series can be computed from the Cauchy–Hadamard formula
This result is based on comparison with a geometric series, and the same method shows that if the power series based on a converges for some b ∈ R, it must converge uniformly on the closed interval , where . Here only the convergence of the power series is considered, and it might well be that (a − R,a + R) extends beyond the domain I of f.
The Taylor polynomials of the real analytic function f at a are simply the finite truncations
of its locally defining power series, and the corresponding remainder terms are locally given by the analytic functions
Here the functions
are also analytic, since their defining power series have the same radius of convergence as the original series. Assuming that [a − r, a + r] ⊂ I and r < R, all these series converge uniformly on (a − r, a + r). Naturally, in the case of analytic functions one can estimate the remainder term by the tail of the sequence of the derivatives f′(a) at the center of the expansion, but using complex analysis also another possibility arises, which is described below.
The Taylor series of f will converge in some interval in which all its derivatives are bounded and do not grow too fast as k goes to infinity. (However, even if the Taylor series converges, it might not converge to f, as explained below; f is then said to be non-analytic.)
One might think of the Taylor series
of an infinitely many times differentiable function f : R → R as its "infinite order Taylor polynomial" at a. Now the estimates for the remainder imply that if, for any r, the derivatives of f are known to be bounded over (a − r, a + r), then for any order k and for any r > 0 there exists a constant Mk,r > 0 such that
(★★) |
for every x ∈ (a − r,a + r). Sometimes the constants Mk,r can be chosen in such way that Mk,r is bounded above, for fixed r and all k. Then the Taylor series of f converges uniformly to some analytic function
(One also gets convergence even if Mk,r is not bounded above as long as it grows slowly enough.)
The limit function Tf is by definition always analytic, but it is not necessarily equal to the original function f, even if f is infinitely differentiable. In this case, we say f is a non-analytic smooth function, for example a flat function:
Using the chain rule repeatedly by mathematical induction, one shows that for any order k,
for some polynomial pk of degree 2(k − 1). The function tends to zero faster than any polynomial as , so f is infinitely many times differentiable and f(k)(0) = 0 for every positive integer k. The above results all hold in this case:
However, as k increases for fixed r, the value of Mk,r grows more quickly than rk, and the error does not go to zero.
Taylor's theorem generalizes to functions f : C → C which are complex differentiable in an open subset U ⊂ C of the complex plane. However, its usefulness is dwarfed by other general theorems in complex analysis. Namely, stronger versions of related results can be deduced for complex differentiable functions f : U → C using Cauchy's integral formula as follows.
Let r > 0 such that the closed disk B(z, r) ∪ S(z, r) is contained in U. Then Cauchy's integral formula with a positive parametrization γ(t) = z + reit of the circle S(z, r) with gives
Here all the integrands are continuous on the circle S(z, r), which justifies differentiation under the integral sign. In particular, if f is once complex differentiable on the open set U, then it is actually infinitely many times complex differentiable on U. One also obtains Cauchy's estimate [12]
for any z ∈ U and r > 0 such that B(z, r) ∪ S(c, r) ⊂ U. The estimate implies that the complex Taylor series
of f converges uniformly on any open disk with into some function Tf. Furthermore, using the contour integral formulas for the derivatives f(k)(c),
so any complex differentiable function f in an open set U ⊂ C is in fact complex analytic. All that is said for real analytic functions here holds also for complex analytic functions with the open interval I replaced by an open subset U ∈ C and a-centered intervals (a − r, a + r) replaced by c-centered disks B(c, r). In particular, the Taylor expansion holds in the form
where the remainder term Rk is complex analytic. Methods of complex analysis provide some powerful results regarding Taylor expansions. For example, using Cauchy's integral formula for any positively oriented Jordan curve which parametrizes the boundary of a region , one obtains expressions for the derivatives f(j)(c) as above, and modifying slightly the computation for Tf(z) = f(z), one arrives at the exact formula
The important feature here is that the quality of the approximation by a Taylor polynomial on the region is dominated by the values of the function f itself on the boundary . Similarly, applying Cauchy's estimates to the series expression for the remainder, one obtains the uniform estimates
The function
is real analytic, that is, locally determined by its Taylor series. This function was plotted above to illustrate the fact that some elementary functions cannot be approximated by Taylor polynomials in neighborhoods of the center of expansion which are too large. This kind of behavior is easily understood in the framework of complex analysis. Namely, the function f extends into a meromorphic function
on the compactified complex plane. It has simple poles at and , and it is analytic elsewhere. Now its Taylor series centered at z0 converges on any disc B(z0, r) with r < |z − z0|, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i. For the same reason the Taylor series of f centered at 1 converges on and does not converge for any z ∈ C with .
A function f: Rn → R is differentiable at a ∈ Rn if and only if there exists a linear functional L : Rn → R and a function h : Rn → R such that
If this is the case, then is the (uniquely defined) differential of f at the point a. Furthermore, then the partial derivatives of f exist at a and the differential of f at a is given by
Introduce the multi-index notation
for α ∈ Nn and x ∈ Rn. If all the -th order partial derivatives of f : Rn → R are continuous at a ∈ Rn, then by Clairaut's theorem, one can change the order of mixed derivatives at a, so the short-hand notation
for the higher order partial derivatives is justified in this situation. The same is true if all the (k − 1)-th order partial derivatives of f exist in some neighborhood of a and are differentiable at a. [13] Then we say that f is ktimes differentiable at the point a.
Using notations of the preceding section, one has the following theorem.
Multivariate version of Taylor's theorem [14] — Let f : Rn → R be a k-times continuously differentiable function at the point a ∈ Rn. Then there exist functions hα : Rn → R, where such that
If the function f : Rn → R is k + 1 times continuously differentiable in a closed ball for some , then one can derive an exact formula for the remainder in terms of (k+1)-th order partial derivatives of f in this neighborhood. [15] Namely,
In this case, due to the continuity of (k+1)-th order partial derivatives in the compact set B, one immediately obtains the uniform estimates
For example, the third-order Taylor polynomial of a smooth function is, denoting ,
Let [16]
where, as in the statement of Taylor's theorem,
It is sufficient to show that
The proof here is based on repeated application of L'Hôpital's rule. Note that, for each , . Hence each of the first derivatives of the numerator in vanishes at , and the same is true of the denominator. Also, since the condition that the function be times differentiable at a point requires differentiability up to order in a neighborhood of said point (this is true, because differentiability requires a function to be defined in a whole neighborhood of a point), the numerator and its derivatives are differentiable in a neighborhood of . Clearly, the denominator also satisfies said condition, and additionally, doesn't vanish unless , therefore all conditions necessary for L'Hôpital's rule are fulfilled, and its use is justified. So
where the second-to-last equality follows by the definition of the derivative at .
Let be any real-valued continuous function to be approximated by the Taylor polynomial.
Step 1: Let and be functions. Set and to be
Step 2: Properties of and :
Similarly,
Step 3: Use Cauchy Mean Value Theorem
Let and be continuous functions on . Since so we can work with the interval . Let and be differentiable on . Assume for all . Then there exists such that
Note: in and so
for some .
This can also be performed for :
for some . This can be continued to .
This gives a partition in :
with
Set :
Step 4: Substitute back
By the Power Rule, repeated derivatives of , , so:
This leads to:
By rearranging, we get:
or because eventually:
Let G be any real-valued function, continuous on the closed interval between and and differentiable with a non-vanishing derivative on the open interval between and , and define
For . Then, by Cauchy's mean value theorem,
(★★★) |
for some on the open interval between and . Note that here the numerator is exactly the remainder of the Taylor polynomial for . Compute
plug it into ( ★★★ ) and rearrange terms to find that
This is the form of the remainder term mentioned after the actual statement of Taylor's theorem with remainder in the mean value form. The Lagrange form of the remainder is found by choosing and the Cauchy form by choosing .
Remark. Using this method one can also recover the integral form of the remainder by choosing
but the requirements for f needed for the use of mean value theorem are too strong, if one aims to prove the claim in the case that f(k) is only absolutely continuous. However, if one uses Riemann integral instead of Lebesgue integral, the assumptions cannot be weakened.
Due to the absolute continuity of on the closed interval between and , its derivative exists as an -function, and we can use the fundamental theorem of calculus and integration by parts. This same proof applies for the Riemann integral assuming that is continuous on the closed interval and differentiable on the open interval between and , and this leads to the same result than using the mean value theorem.
The fundamental theorem of calculus states that
Now we can integrate by parts and use the fundamental theorem of calculus again to see that
which is exactly Taylor's theorem with remainder in the integral form in the case . The general statement is proved using induction. Suppose that
(eq1) |
Integrating the remainder term by parts we arrive at
Substituting this into the formula in ( eq1 ) shows that if it holds for the value , it must also hold for the value . Therefore, since it holds for , it must hold for every positive integer .
We prove the special case, where has continuous partial derivatives up to the order in some closed ball with center . The strategy of the proof is to apply the one-variable case of Taylor's theorem to the restriction of to the line segment adjoining and . [17] Parametrize the line segment between and by We apply the one-variable version of Taylor's theorem to the function :
Applying the chain rule for several variables gives
where is the multinomial coefficient. Since , we get:
{{citation}}
: CS1 maint: location (link)In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
A likelihood function measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the joint probability distribution of the random variable that (presumably) generated the observations. When evaluated on the actual data points, it becomes a function solely of the model parameters.
In mathematics, a power series is an infinite series of the form where an represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.
In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.
In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer.
In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem, is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof Thorin.
In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.
In probability and statistics, the Dirichlet distribution, often denoted , is a family of continuous multivariate probability distributions parameterized by a vector of positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution.
In mathematics, in the area of complex analysis, Nachbin's theorem is a result used to establish bounds on the growth rates for analytic functions. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, also called Nachbin summation.
In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series
In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.