Digital autopsy

Last updated

A digital autopsy is a non-invasive autopsy in which digital imaging technology, such as with computerized tomography (CT) or magnetic resonance imaging (MRI) scans, is used to develop three-dimensional images for a virtual exploration of a human body.

Contents

Digital autopsy, simply, means conducting autopsy in computerized environment by digital tools. The first step of digitizing starts with the medical imaging modalities that provide the raw data images from the deceased. The most common modalities are computerized tomography (CT scan) and magnetic resonance imaging (MRI) scanner. Three dimensional medical visualization is the technical process that provide the digital environment for exploration of the 3D body and conducting the digital autopsy.

The term cannot be found before 1985 in the literature. However, there are many other similar terms like: Postmortem CT scanning for individual organs, [1] volumetric radiologic scanning, [2] Virtual Autopsy [3] and Virtopsy. [4]

History

One of the first documented Digital Autopsy studies was conducted at the department of Neuroradiology, University Hospital Mainz, Germany in the year 1980, where in 105 specimens of human stillborn and live-birth infants, ranging in age from gestational week 13 to postnatal month 18 were studied. [5] Since then the arena of 2D CT scan images has gradually evolved to present day technologies of Multi-planar reconstructions (MPR) and real to life high definition 3D rendering. In the year 1998 various aspects of human and animal anatomy and pathology were successfully studied by Digital 3D examination on the ancient mummified specimens at the Academic Medical Centre, Amsterdam. Similar studies have also since then been done at the British Museum. The digital 3D analysis of data obtained from CT scanning the mummies has helped in visualization of the faces of some of the mummies, including that of chanters from the Temple of Karnak. This technology has also given vast information about the embalming and burial processes. [6] In the year, 2009 CT scanning and digital analysis of DICOM data was successfully used by the VIFM, Australia during the phase 2 of the DVI process for the Victorian bushfires. All dead bodies and scattered remains were CT scanned in their body bags using specific protocols and analyzed. Digital examination helped not only in separating the presence of non-human remains, but also was useful at the time of autopsy to capture and analyze the identifying features in cases of severe disfiguration. [7]

Currently digital autopsy is being successfully used in many countries like Switzerland, The United States of America, The United Kingdom, Malaysia, and Japan. Radiologists may call it Post-mortem Computed Tomography (PMCT) that does not provide colourful 3D views. In Switzerland, it is called Virtopsy (virtual autopsy). Pathologists (Forensic pathologists) know this procedure as Digital Autopsy.

Concept

In a forensic autopsy or Post-mortem examination, body of deceased is examined to acquire information on the cause of death inclusive but not limited to manner of death in people dying sudden, unexpected, violent, drug-related, or otherwise suspicious deaths. [8] Digital Autopsy tries to answer the same investigative questions without actual dissection as in a conventional autopsy.

The main concept of Digital Autopsy came into existence to overcome some problems during conventional autopsies without losing the objectivity of post-mortem examination. The main problems in conventional autopsy are:

Showing only the muscles of the three dimensional body (This picture is created by iDASS and copyrighted to iGene Sdn. Bhd.) Mona Ant Muscle.jpg
Showing only the muscles of the three dimensional body (This picture is created by iDASS and copyrighted to iGene Sdn. Bhd.)
Showing only the bony skeleton of the three dimensional body(This picture is created by iDASS and copyrighted to iGene Sdn. Bhd.) Mona Anterior-LE.png
Showing only the bony skeleton of the three dimensional body(This picture is created by iDASS and copyrighted to iGene Sdn. Bhd.)

Digital Autopsy would be a technical solution for above mentioned problems. Employing medical imaging modalities like CT or MRI scanners is the first step in order to examine the deceased visually without any destructive, contaminating and non-preservative procedures like dissection. Moreover, using these images with software processing in visualization is the second step toward acquiring data from difficult regions from anatomical perspective and dignity of the body. Digital bodies in the system can be examined multiple times and reported not only in text but also in variety of available media (photo, movie, etc.). In addition, quick evaluation of bodies and body parts in massive disasters is available in comparison to time-consuming procedure of conventional autopsy.

However, there are few limitations in Digital Autopsy. The main constraint is the data that is provided by medical imaging modalities are based on X-Ray and Magnetic fields (CT and MRI) that limits the view to what can be recorded by these technologies. A very obvious difference is the real colour of internal body organs and their changes in the deceased, in comparison to what is simulated in the visualization software. The novelty of this technological solution has not given enough time for studies on the consistency of reports among different professionals on the same cases. Moreover, there are few articles about validity of Digital Autopsy in action.

Technology

Computed tomography and MRI scanning are the most common imaging modalities employed for this Digital Autopsy. Furthermore, CT Angiography has been used to provide the imaging data for analysing the deceased. The work output of these modalities are standard image files (DICOM files). Each image may have a thickness of 5mm, which means after whole body scan (human average height of 175 cm) it would produce 3500 images (slices) of human body. Using volume rendering these two dimensional images are assembled to make a 3D projection of human body. The 3D model is painted through RGBA transfer function to a colourful model. All visualization and image processing features for manipulating and navigating this 3D model make digital tools for conducting a Digital Autopsy. These features enable pathologist to explore the entire body and examine interested regions and organs from different angles. Image processing algorithms help them to virtually remove layers of body tissues like skin, muscle and bones. Moreover, low density objects like air and high density objects like metallic foreign bodies can be marked and viewed in the three dimensional body. For instance, organs with air (inside) like sinuses or intestines can be separated from other parts or any remnants of bullet in body due to gunshot injuries.

Conducting an autopsy

The process starts with registration of the case with all corresponding meta-data in a Digital Autopsy Facility. The best place for these facilities are in neighbourhood of mortuaries because of considerations about security, carriage and body condition. The body would be scanned according to the schedule with proper adjustments for deceased body. It means there are different configuration for emitting the ray in deceased in comparison to live bodies. This step may take 5 – 10 minutes depends on the abilities of scanner. The output is aforementioned DICOM files (around 3500 files for whole body scan) that would be sent for visualization process. The result is a colourful 3D body that can be explored and examined for positive or negative findings with the digital tools. The process is not finished with 3D exploration. The findings would be reported digitally in a multimedia report. This report includes all textual results accompanied by images and recorded movie of Digital Autopsy during examination. This report is not only for common submission to the court but also to be displayed in the court for attendance.

Acceptance

There are not many justice systems around the world who have accepted the Digital Autopsy as their legal procedures of forensic investigations. While Switzerland is pioneering in the acceptance, [9] countries like Israel with strong religious background does not accept forensic imaging as a substitute or in conjunction with autopsy report. This might be due to lack of cases and documentation. [10] Some researchers tried to evaluate the reliability of Digital Autopsy in comparison with conventional (standard) autopsy that reveals totally 68% accuracy of Digital Autopsy regarding the pathogenetic mechanisms. [11]

In UK, the Department of Health is currently considering recommendations for an integrated national cross-sectional autopsy imaging service, based on a regional service provided by mortuary-based imaging centres. [12] Furthermore, Royal College of Radiologists and the Royal College of Pathologists prepared a document to standardize medico-legal post-mortem cross-sectional imaging in adults in the UK. [13]

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body. For example, 18
F
-FDG
is commonly used to detect cancer, NaF18
F
is widely used for detecting bone formation, and oxygen-15 is sometimes used to measure blood flow.

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

<span class="mw-page-title-main">Picture archiving and communication system</span> Medical imaging technology

A picture archiving and communication system (PACS) is a medical imaging technology which provides economical storage and convenient access to images from multiple modalities. Electronic images and reports are transmitted digitally via PACS; this eliminates the need to manually file, retrieve, or transport film jackets, the folders used to store and protect X-ray film. The universal format for PACS image storage and transfer is DICOM. Non-image data, such as scanned documents, may be incorporated using consumer industry standard formats like PDF, once encapsulated in DICOM. A PACS consists of four major components: The imaging modalities such as X-ray plain film (PF), computed tomography (CT) and magnetic resonance imaging (MRI), a secured network for the transmission of patient information, workstations for interpreting and reviewing images, and archives for the storage and retrieval of images and reports. Combined with available and emerging web technology, PACS has the ability to deliver timely and efficient access to images, interpretations, and related data. PACS reduces the physical and time barriers associated with traditional film-based image retrieval, distribution, and display.

Digital Imaging and Communications in Medicine (DICOM) is the standard for the communication and management of medical imaging information and related data. DICOM is most commonly used for storing and transmitting medical images enabling the integration of medical imaging devices such as scanners, servers, workstations, printers, network hardware, and picture archiving and communication systems (PACS) from multiple manufacturers. It has been widely adopted by hospitals and is making inroads into smaller applications such as dentists' and doctors' offices.

<span class="mw-page-title-main">Radiology</span> Branch of Medicine

Radiology is the medical discipline that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography, but today it includes all imaging modalities, including those that use no electromagnetic radiation, as well as others that do, such as computed tomography (CT), fluoroscopy, and nuclear medicine including positron emission tomography (PET). Interventional radiology is the performance of usually minimally invasive medical procedures with the guidance of imaging technologies such as those mentioned above.

<span class="mw-page-title-main">Medical imaging</span> Technique and process of creating visual representations of the interior of a body

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

<span class="mw-page-title-main">Autopsy</span> Medical examination of a corpse

An autopsy is a surgical procedure that consists of a thorough examination of a corpse by dissection to determine the cause, mode, and manner of death; or the exam may be performed to evaluate any disease or injury that may be present for research or educational purposes. For animals, the term necropsy is generally reserved.

<span class="mw-page-title-main">Nuclear medicine</span> Medical specialty

Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

<span class="mw-page-title-main">Tomography</span> Imaging by sections or sectioning using a penetrative wave

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.

<span class="mw-page-title-main">Angiography</span> Medical imaging technique

Angiography or arteriography is a medical imaging technique used to visualize the inside, or lumen, of blood vessels and organs of the body, with particular interest in the arteries, veins, and the heart chambers. Modern angiography is performed by injecting a radio-opaque contrast agent into the blood vessel and imaging using X-ray based techniques such as fluoroscopy.

<span class="mw-page-title-main">OsiriX</span>

OsiriX is an image processing application for the Apple MacOS operating system dedicated to DICOM images produced by equipment. OsiriX is complementary to existing viewers, in particular to nuclear medicine viewers. It can also read many other file formats: TIFF, JPEG, PDF, AVI, MPEG and QuickTime. It is fully compliant with the DICOM standard for image communication and image file formats. OsiriX is able to receive images transferred by DICOM communication protocol from any PACS or medical imaging modality.

<span class="mw-page-title-main">Neuroimaging</span> Set of techniques to measure and visualize aspects of the nervous system

Neuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Increasingly it is also being used for quantitative research studies of brain disease and psychiatric illness. Neuroimaging is highly multidisciplinary involving neuroscience, computer science, psychology and statistics, and is not a medical specialty. Neuroimaging is sometimes confused with neuroradiology.

Virtopsy is a virtual alternative to a traditional autopsy, conducted with scanning and imaging technology. The name is a portmanteau of "virtual" and "autopsy" and is a trademark registered to Richard Dirnhofer (de), the former head of the Institute of Forensic Medicine of the University of Bern, Switzerland.

<span class="mw-page-title-main">PET-CT</span>

Positron emission tomography–computed tomography is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed (co-registered) image. Thus, functional imaging obtained by PET, which depicts the spatial distribution of metabolic or biochemical activity in the body can be more precisely aligned or correlated with anatomic imaging obtained by CT scanning. Two- and three-dimensional image reconstruction may be rendered as a function of a common software and control system.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">PET-MRI</span>

Positron emission tomography–magnetic resonance imaging (PET–MRI) is a hybrid imaging technology that incorporates magnetic resonance imaging (MRI) soft tissue morphological imaging and positron emission tomography (PET) functional imaging.

<span class="mw-page-title-main">Cone beam computed tomography</span> Medical imaging technique

Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.

<span class="mw-page-title-main">Computed tomography of the head</span> Cross-sectional X-rays of the head

Computed tomography of the head uses a series of X-rays in a CT scan of the head taken from many different directions; the resulting data is transformed into a series of cross sections of the brain using a computer program. CT images of the head are used to investigate and diagnose brain injuries and other neurological conditions, as well as other conditions involving the skull or sinuses; it used to guide some brain surgery procedures as well. CT scans expose the person getting them to ionizing radiation which has a risk of eventually causing cancer; some people have allergic reactions to contrast agents that are used in some CT procedures.

<span class="mw-page-title-main">Forensic radiology</span>

Forensic radiology is the discipline which comprises the performance, interpretation and reportage of the radiological examinations and procedures which are needed in court procedures or law enforcement. Radiological methods are widely used in identification, age estimation and establishing cause of death. Comparison of ante mortem and post mortem radiographs is one of the means of identification. The scanning of baggage, vehicles and individuals have many applications.

<span class="mw-page-title-main">Paleoradiology</span> Study of archaeological remains through the use of radiographic techniques

Paleoradiology is the study of archaeological remains through the use of radiographic techniques, such as X-ray, CT and micro-CT scans. It is predominately used by archaeologists and anthropologists to examine mummified remains due to its non-invasive nature. Paleoradiologists can discover post-mortem damage to the body, or any artefacts buried with them, while still keeping the remains intact. Radiological images can also contribute evidence about the person's life, such as their age and cause of death. The first recorded use of paleoradiology was in 1896, just a year after the Rōntgen radiograph was first produced. Although this method of viewing ancient remains is advantageous due to its non-invasive manner, many radiologists lack expertise in archeology and very few radiologists can identify ancient diseases which may be present.

References

  1. Törő, Klara (2015). "Medicolegal evaluation of environmental-related mortality" (PDF). Edorium J Forensic Sci. 1: 4–8. Retrieved 4 December 2015.
  2. Thali, Michael J.; Braun, Marcel; Kneubuehl, Beat P.; Brueschweiler, Walter; Vock, Peter; Dirnhofer, Richard (May 5, 2000). Oliver, William R. (ed.). "Improved vision in forensic documentation: forensic 3D/CAD-supported photogrammetry of bodily injury external surfaces combined with volumetric radiologic scanning of bodily injury internal structures provides more investigative leads and stronger forensic evidence". Proc. SPIE 3905, 28th AIPR Workshop: 3D Visualization for Data Exploration and Decision Making. 28th AIPR Workshop: 3D Visualization for Data Exploration and Decision Making. 213: 213–221. Bibcode:2000SPIE.3905..213T. doi:10.1117/12.384876. S2CID   62765418 . Retrieved 4 December 2015.
  3. D. N., Notman; Tashjian, Joseph; Aufderheide, Arthur C.; Cass, Oliver W.; Shane 3rd, O. C.; Berquist, T. H.; Gray, J. E.; Gedgaudas, E. (1986). "Modern imaging and endoscopic biopsy techniques in Egyptian mummies". American Journal of Roentgenology. 146 (1): 93–96. doi: 10.2214/ajr.146.1.93 . PMID   3510047.
  4. Törő, Klara (2015). "Medicolegal evaluation of environmental-related mortality" (PDF). Edorium J Forensic Sci. 1: 4–8.
  5. Flodmark, O; Becker, LE; Harwood-Nash, DC; Fitzhardinge, PM; Fitz, CR; Chuang, SH (1980). "Correlation between computed tomography and autopsy in premature and full-term neonates that have suffered perinatal asphyxia". Radiology. 137 (1): 93–103. doi:10.1148/radiology.137.1.7422867. PMID   7422867.
  6. Clark, Nick (10 April 2014). "British Museum uses CT scans to show mummies' faces after thousands of years". INDEPENDENT. Retrieved 6 December 2015.
  7. O'Donnell, C.; Iino, M.; Mansharan, K.; Leditsc, J.; Woodford, N. (February 2011). "Contribution of postmortem multidetector CT scanning to identification of the deceased in a mass disaster: Experience gained from the 2009 Victorian bushfires". Forensic Science International. 205 (1–3): 15–28. doi:10.1016/j.forsciint.2010.05.026. PMID   20691550.
  8. Dolinak, David; Matshes, Evan; Lew, Emma O. (2005). Forensic Pathology: Principles and Practice. Academic Press. ISBN   9780080470665.
  9. Nissan, Ephraim (2010). Computer applications for handling legal evidence, police investigation and case argumentation. Dordrecht: Springer. ISBN   9789048189908.
  10. Tal, S; Berkovitz, N; Gottlieb, P; Zaitsev, K (March 2015). "Acceptance of forensic imaging in Israel" (PDF). Isr Med Assoc J. 17 (3): 141–4. PMID   25946763 . Retrieved 7 December 2015.
  11. Westphal, Saskia E.; Apitzsch, Jonas; Penzkofer, Tobias; Mahnken, Andreas H.; Knüchel, Ruth (23 June 2012). "Virtual CT autopsy in clinical pathology: feasibility in clinical autopsies". Virchows Archiv. 461 (2): 211–219. doi:10.1007/s00428-012-1257-4. PMID   22729140. S2CID   21396180.
  12. "THE USE OF POST-MORTEM IMAGING (ADULTS)" (PDF). Courts and Tribunals Judiciary. Archived from the original (PDF) on 8 December 2015. Retrieved 7 December 2015.
  13. "RCR/RCPath statement on standards for medico-legal post-mortem cross-sectional imaging in adults" (PDF). The Royal College of Radiologists. Retrieved 7 December 2015.