Historians and sociologists have remarked the occurrence, in science, of "multiple independent discovery". Robert K. Merton defined such "multiples" as instances in which similar discoveries are made by scientists working independently of each other. [1] "Sometimes", writes Merton, "the discoveries are simultaneous or almost so; sometimes a scientist will make a new discovery which, unknown to him, somebody else has made years before." [2]
Commonly cited examples of multiple independent discovery are the 17th-century independent formulation of calculus by Isaac Newton, Gottfried Wilhelm Leibniz and others, described by A. Rupert Hall; [3] the 18th-century discovery of oxygen by Carl Wilhelm Scheele, Joseph Priestley, Antoine Lavoisier and others; and the theory of the evolution of species, independently advanced in the 19th century by Charles Darwin and Alfred Russel Wallace.
Multiple independent discovery, however, is not limited to such famous historic instances. Merton believed that it is multiple discoveries, rather than unique ones, that represent the common pattern in science. [4]
Merton contrasted a "multiple" with a "singleton"—a discovery that has been made uniquely by a single scientist or group of scientists working together. [5]
The distinction may blur as science becomes increasingly collaborative. [6]
A distinction is drawn between a discovery and an invention, as discussed for example by Bolesław Prus. [7] However, discoveries and inventions are inextricably related, in that discoveries lead to inventions, and inventions facilitate discoveries; and since the same phenomenon of multiplicity occurs in relation to both discoveries and inventions, this article lists both multiple discoveries and multiple inventions.
"When the time is ripe for certain things, these things appear in different places in the manner of violets coming to light in early spring."
— Farkas Bolyai to his son János Bolyai, urging him to claim the invention of non-Euclidean geometry without delay,
quoted in Ming Li and Paul Vitanyi, An introduction to Kolmogorov Complexity and Its Applications, 1st ed., 1993, p. 83.
"[Y]ou do not [make a discovery] until a background knowledge is built up to a place where it's almost impossible not to see the new thing, and it often happens that the new step is done contemporaneously in two different places in the world, independently."
— a physicist Nobel laureate interviewed by Harriet Zuckerman, in Scientific Elite: Nobel Laureates in the United States, 1977, p. 204.
"[A] man can no more be completely original ... than a tree can grow out of air."
I never had an idea in my life. My so-called inventions already existed in the environment – I took them out. I've created nothing. Nobody does. There's no such thing as an idea being brain-born; everything comes from the outside.
Albert Einstein was a German-born theoretical physicist who is widely held as one of the most influential scientists. Best known for developing the theory of relativity, Einstein also made important contributions to quantum mechanics. His mass–energy equivalence formula E = mc2, which arises from special relativity, has been called "the world's most famous equation". He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory.
Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Historically, physics emerged from the scientific revolution of the 17th century, grew rapidly in the 19th century, then was transformed by a series of discoveries in the 20th century. Physics today may be divided loosely into classical physics and modern physics.
Sir Roger Penrose is a British mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge, and University College London.
In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction primarily observed as mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.
Jules Henri Poincaré was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist", since he excelled in all fields of the discipline as it existed during his lifetime. Due to his scientific success, influence and his discoveries, he has been deemed "the philosopher par excellence of modern science."
Robert Andrews Millikan was an American experimental physicist who won the Nobel Prize for Physics in 1923 for the measurement of the elementary electric charge and for his work on the photoelectric effect.
Max Born was a German-British physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a number of notable physicists in the 1920s and 1930s. Born was awarded the 1954 Nobel Prize in Physics for his "fundamental research in quantum mechanics, especially in the statistical interpretation of the wave function".
Andrey Nikolaevich Kolmogorov was a Soviet mathematician who played a central role in the creation of modern probability theory. He also contributed to the mathematics of topology, intuitionistic logic, turbulence, classical mechanics, algorithmic information theory and computational complexity.
Kip Stephen Thorne is an American theoretical physicist and writer known for his contributions in gravitational physics and astrophysics. Along with Rainer Weiss and Barry C. Barish, he was awarded the 2017 Nobel Prize in Physics for his contributions to the LIGO detector and the observation of gravitational waves.
Philipp Eduard Anton von Lenard was a Hungarian-German physicist and the winner of the Nobel Prize in Physics in 1905 for his work on cathode rays and the discovery of many of their properties. One of his most important contributions was the experimental realization of the photoelectric effect. He discovered that the energy (speed) of the electrons ejected from a cathode depends only on the frequency, and not the intensity, of the incident light.
The annus mirabilis papers are the four that Albert Einstein published in the scientific journal Annalen der Physik in 1905. As major contributions to the foundation of modern physics, these scientific publications were the ones for which he gained fame among physicists. They revolutionized science's understanding of the fundamental concepts of space, time, mass, and energy. Because Einstein published all four of these papers in a single year, 1905 is called his annus mirabilis.
This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process. Multiple discovery sometimes occurs when multiple research groups discover the same phenomenon at about the same time, and scientific priority is often disputed. The listings below include some of the most significant people and ideas by date of publication or experiment.
In science, priority is the credit given to the individual or group of individuals who first made the discovery or proposed the theory. Fame and honours usually go to the first person or group to publish a new finding, even if several researchers arrived at the same conclusion independently and at the same time. Thus, between two or more independent discoverers, the first to publish is the legitimate winner. Hence, the tradition is often referred to as the priority rule, the procedure of which is nicely summed up in a phrase "publish or perish", because there are no second prizes. In a way, the race to be first inspires risk-taking that can lead to scientific breakthroughs which is beneficial to the society. On the other hand, it can create unhealthy competition and incentives to publish low-quality findings, which can lead to an unreliable published literature and harm scientific progress.
This article discusses women who have made an important contribution to the field of physics.
Science and technology in Germany has a long and illustrious history, and research and development efforts form an integral part of the country's economy. Germany has been the home of some of the most prominent researchers in various scientific disciplines, notably physics, mathematics, chemistry and engineering. Before World War II, Germany had produced more Nobel laureates in scientific fields than any other nation, and was the preeminent country in the natural sciences. Germany is currently the nation with the 3rd most Nobel Prize winners, 115.
This timeline of chemistry lists important works, discoveries, ideas, inventions, and experiments that significantly changed humanity's understanding of the modern science known as chemistry, defined as the scientific study of the composition of matter and of its interactions.
The concept of multiple discovery is the hypothesis that most scientific discoveries and inventions are made independently and more or less simultaneously by multiple scientists and inventors. The concept of multiple discovery opposes a traditional view—the "heroic theory" of invention and discovery. Multiple discovery is analogous to convergent evolution in biological evolution.
The timeline of quantum mechanics is a list of key events in the history of quantum mechanics, quantum field theories and quantum chemistry.
Logology is the study of all things related to science and its practitioners—philosophical, biological, psychological, societal, historical, political, institutional, financial. The term "logology" is back-formed from the suffix "-logy", as in "geology", "anthropology", etc., in the sense of the "study of science". The word "logology" provides grammatical variants not available with the earlier terms "science of science" and "sociology of science", such as "logologist", "logologize", "logological", and "logologically". The emerging field of metascience is a subfield of logology.
The following outline is provided as an overview of and topical guide to Albert Einstein:
This ocean we designate by the name 'Tethys', after the sister and consort of Oceanus. The latest successor of the Tethyan Sea is the present Mediterranean.