Anteosaurus

Last updated

Contents

Anteosaurus
Temporal range: Capitanian,
~265–260  Ma
O
S
D
C
P
T
J
K
Pg
N
Iziko South African Museum in July, 2018 - 53 retouched.jpg
A. magnificus skull (SAM-PK-11296) on display at the Iziko Museum in Cape Town, South Africa
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Suborder: Dinocephalia
Family: Anteosauridae
Subfamily: Anteosaurinae
Clade: Anteosaurini
Genus: Anteosaurus
Watson, 1921
Species:
A. magnificus
Binomial name
Anteosaurus magnificus
Watson, 1921
Synonyms
Genus synonymy
  • Eccasaurus (?)
    Broom, 1909
  • Titanognathus
    Broili & Schröder, 1935
  • Dinosuchus
    Broom, 1936
  • Broomosuchus
    Camp, 1942
  • Micranteosaurus
    Boonstra, 1954
  • Paranteosaurus
    Boonstra, 1954
  • Pseudanteosaurus
    Boonstra, 1954
Species synonymy
  • Eccasaurus priscus (?)
    Broom, 1909
  • Anteosaurus minor
    Broom, 1929
  • Titanognathus lotzi
    Broili & Schröder, 1935
  • Dinosuchus vorsteri
    Broom, 1936
  • Broomosuchus vorsteri
    Camp, 1942
  • Anteosaurus abeli
    Boonstra, 1952
  • Anteosaurus vorsteri
    Boonstra, 1953
  • Titanosuchus lotzi
    Boonstra, 1953
  • Anteosuchus acutirostris
    Boonstra, 1954
  • Anteosaurus crassifrons
    Boonstra, 1954
  • Anteosaurus cruentus
    Boonstra, 1954
  • Anteosaurus laticeps
    Boonstra, 1954
  • Anteosaurus levops
    Boonstra, 1954
  • Anteosaurus lotzi
    Boonstra, 1954
  • Anteosaurus major
    Boonstra, 1954
  • Anteosaurus minusculus
    Boonstra, 1954
  • Paranteosaurus primus
    Boonstra, 1954
  • Pseudanteosaurus minor
    Boonstra, 1954
  • Micranteosaurus parvus
    Boonstra, 1954

Anteosaurus (meaning "Antaeus reptile") is an extinct genus of large carnivorous dinocephalian synapsid. It lived at the end of the Guadalupian (= Middle Permian) during the Capitanian stage, about 265 to 260 million years ago in what is now South Africa. It is mainly known by cranial remains and few postcranial bones. Measuring 5–6 m (16–20 ft) long and weighing about 600 kg (1,300 lb), Anteosaurus was the largest known carnivorous non-mammalian synapsid and the largest terrestrial predator of the Permian period. Occupying the top of the food chain in the Middle Permian, its skull, jaws and teeth show adaptations to capture large prey like the giants titanosuchids and tapinocephalids dinocephalians and large pareiasaurs.

As in many other dinocephalians the cranial bones of Anteosaurus are pachyostosed, but to a lesser extent than in tapinocephalid dinocephalians. In Anteosaurus, pachyostosis mainly occurs in the form of horn-shaped supraorbital protuberances. According to some paleontologists this structure would be implicated in intraspecific agonistic behaviour, including head-pushing probably during the mating season. On the contrary, other scientists believe that this pachyostosis served to reduce cranial stress on the bones of the skull when biting massive prey.

Young Anteosaurus started their life with fairly narrow and lean skulls, and as it grew up bones of the skull became progressively thickened (process known as pachyostosis), creating the characteristic robust skull roof of Anteosaurus. The study of its inner ear revealed that Anteosaurus was a largely terrestrial, agile predator with highly advanced senses of vision, balance and coordination. It was also very fast and would have been able to outrun competitors and prey alike thanks to its advanced adaptations. Its body was well-suited to projecting itself forward, both in hunting and evidently in head-butting.

Anteosaurus and all other dinocephalians became extinct about 260 million years ago in a mass extinction at the end of the Capitanian in which the large Bradysaurian pareiasaurs also disappeared. [1] The reasons of this extinction are obscure, although some research have shown a temporal association between the extinction of dinocephalian and an important volcanism event in China (known as the Emeishan Traps). [2] [1]

Etymology

Some confusion surrounds the etymology of the name Anteosaurus. It is often translated as meaning "before lizard", "previous lizard" or "primitive lizard", from the Latin prefix ante which means "before". The zoologist and paleontologist David Meredith Seares Watson gave no explanation when he named Anteosaurus in 1921. According to Ben Creisler, [3] the prefix does not come from the Latin ante, but would refer to a Giant of the Greek mythology, Antaios, which once Latinized give Antaeus or more rarely Anteus. The type specimen of Anteosaurus is an incomplete skull that Watson had initially classified in the genus Titanosuchus , named after the Titans of the Greek mythology. Once this specimen recognized as belonging to a different genus, the name dedicated to Antaeus established another connection with a giant of Greek mythology. [3]

Description

Size

Anteosaurus specimens compared in size to a 1.8 m (5.9 ft) tall human Anteosaurus size.png
Anteosaurus specimens compared in size to a 1.8 m (5.9 ft) tall human

Anteosaurus is one of the largest known carnivorous non-mammalian synapsid and anteosaurid, measuring around 5–6 m (16–20 ft) long and weighing about 600 kg (1,300 lb). [4] [5] Juvenile specimen BP/1/7074 has an estimated body mass of about 71 kg (157 lb), showing extreme disparity in size with adult Anteosaurus. [6]

Skull

The skull of Anteosaurus is large and massive, measuring between 80 and 90 centimetres (31 and 35 in) in the largest specimens (TM265 and SAM-PK-11293), [7] [8] [9] with an heavily pachyostosed skull roof showing a frontal boss more of less developed. The main features of the skull are the massively pachyostosed postfrontals that form strong horn-like bosses projected laterally. A boss, characteristically oval in shape, is also present on the angular bone of the lower jaw. The morphology of this angular boss is different between each anteosaurids species. In Anteosaurus the boss is oval in shape, roughly the same thickness throughout its length, with blunt anterior and posterior edges. Some individuals may have also a jugal boss more of less pronounced. Like other anteosaurids, the postorbital bar is strongly curved anteroventrally in such way that the temporal fenestra undercuts the orbit. An additional typical character of anteosaurs is the premaxilla oriented upwards at an angle of about 30 to 35° with respect to the ventral edge of the maxilla. However, unlike most anteosaurs in which the ventral margin of the premaxilla is directed upwards in a straight line, in Anteosaurus the anterior end of the premaxilla is curved ventrally, producing a concave alveolar border of the region preceding the canines. The skull shows also a concave dorsal snout profile. On the top of the skull, the pineal boss is exclusively formed by the parietals as is the case in other anteosaurines (and in more basal anteosaurs such as Archaeosyodon and Sinophoneus ) while this boss is made up of both frontals and parietals in the other anteosaur subgroup, the syodontines. [10] Contrary to what is observed in the latter, the frontals and the pineal boss of the anteosaurines do not participate in the attachment site of the mandibular adductor musculature. [10] On the palate, the transverse processes of pterygoids are massively enlarged at their distal end, giving them a palmate shape in ventral view, as is the case in Titanophoneus and Sinophoneus . As in other anteosaurs, two prominent palatal bosses carried several small teeth. [7] [8] [10] In Anteosaurus (and in other anteosaurines), these two palatal bosses are well separated from each other while in syodontines the two bosses are very close or interconnected. [11] [9]

Dentition

The dentition of Anteosaurus is composed of long to very long incisors, a large canine, and some small postcanines. In addition, some small teeth are present on both palatine bosses. There are five upper and four lower incisors, but even in the same skull the number in the two halves is mostly different. The incisors intermesh together. Like other anteosaurids, the first incisor of each premaxilla form together a pair that passes in between the lower pair formed by the first incisor of each dentary. The canines are well individualized. The upper canine is large and very massive, but is proportionally shorter than in some gorgonopsians of the Late Permian. The upper and lower canines did not intermesh. When the jaws were closed, the lower canines passed on the lingual side of the fifth upper incisor. Behind the canines, there are 4 to 8 small and relatively robust postcanines. Although smaller than the incisors and canines, these postcanines are proportionately more massive, with a thick base and a more conical general shape. Some postcanines of the upper jaws have a peculiar implantation. The most posterior are canted postero-laterally : the last three to four postcanine teeth are out-of-plane with the rest of the tooth row, being directed strongly backwards and somewhat outwards. Other smaller teeth were located on two prominences of the palate, the palatal bosses, which are semilunar or reniform in shape. These palatal teeth were recurved and most often implanted in a single curved row (a specimen however shows a double row). These teeth were used to hold meat during the swallowing process. [8] [12] [13] [10]

Postcranial skeleton

Reconstruction of Anteosaurus magnificus based on the skeletal proportions of the Russian anteosaur Titanophoneus potens. Anteosaurus magnificus BW lateral.png
Reconstruction of Anteosaurus magnificus based on the skeletal proportions of the Russian anteosaur Titanophoneus potens .

Postcranial material of Anteosaurus is very rare and no complete skeletons are known. Only some associated or isolated bones (girdles and limbs bones, and some vertebrae), and more rarely some articulated remains have been found. [14] [15] [16] An articulated left hand belonging to a juvenile individual shows that the manual phalangeal formula is 2-3-3-3-3 as in mammals. [16] This hand (as well as an incomplete foot) was first considered by Lieuwe Dirk Boonstra as belonging to the right side of the animal. Boonstra himself corrected this mistake later by correctly identifying these remains as the left hand and foot. He also thought that digit III had four phalanges. [14] [15] [17] Tim Rowe and J.A. van den Heever later showed that this was not the case, this digit having three phalanges. [16] The manus have a digit I (the innermost) much smaller than the others. The digits III to V are the longest, the digit V (the outermost) being the most robust. The foot is only partially known, but also has a smaller digit I. [17] [16] Based on more complete skeletons of the Russian anteosaur Titanophoneus, the limbs would be rather long with a somewhat semi-erect posture. The tail is longer than in herbivorous Tapinocephalids dinocephalians. [18] [19]

Paleobiology

Skull variations and agonistic behaviour

Holotype (BMNH R3595) skull roof of A. magnificus. In this specimen the postfrontal bosses are particularly massive. This skull was discovered near Beaufort West in the Western Cape Province. Anteosaurus magnificus holotype.jpg
Holotype (BMNH R3595) skull roof of A. magnificus. In this specimen the postfrontal bosses are particularly massive. This skull was discovered near Beaufort West in the Western Cape Province.

The numerous skulls of Anteosaurus show a wide range of variation in cranial proportions and extent of pachyostosis. Most specifically the development of the postfrontal "horns" and the frontal boss is particularly variable between specimens. Some have both the "horns" and the boss massively pachyostosed, others have well-developed "horns" but a weak or nonexistent boss, and some others have a very weakly developed "horns" and boss. Even the heavily pachyostosed specimens show between them some variations. Some have "horns" relatively small compared to the boss, while others have postfrontal "horns" very massive. Some of these variations can be attributed to ontogenetic changes. In adults specimens the variations of the development of the frontal boss (to very weak to very strong) can be a sexually dimorphic feature, because in dinocephalians the frontal bosses have been implicated in head-butting and pushing behaviour. [20] [10]

Various authors have suggested the existence of agonistic behavior in Anteosaurus based on head-butting and/or demonstration involving canines. According to Herbert H. Barghusen, Anteosaurus does not use its teeth during intraspecific combat because both animals were able of doing severe damage to each other with their massive canines and incisors. The alternative head pushing strategy reduced the risk of fatal injuries in both combatants. The contact area of the skull roof during head combat included the most posterior part of the nasal bones, part of the prefrontal, and the entire frontal and postfrontal on either side. The thickened and laterally extended postfrontals horn-like bosses reduced the chance of the head of one opponent slipping past the head of the other. [20]

Skull of A. magnificus (SAM-PK-K360) with strong postfrontal bosses but no frontal boss. This specimen, exhibited in the Iziko South African Museum of Cape Town, comes from Nuwelande, near Fraserburg in Northern Cape province. Anteosaurus SAM-PK-K360 skull.jpg
Skull of A. magnificus (SAM-PK-K360) with strong postfrontal bosses but no frontal boss. This specimen, exhibited in the Iziko South African Museum of Cape Town, comes from Nuwelande, near Fraserburg in Northern Cape province.

More recently, Julien Benoit and colleagues have shown that the head of Anteosaurus had a natural posture that was less tilted downwards than that of the tapinocephalids and that, unlike the latter, it does not line up ideally with the vertebral column to optimize a head-to-head combat. This peculiarity associated with the presence of a pachyostosis less developed than that of the tapinocephalids and the retention of a large canine led these authors to suggest an agonistic behavior in which Anteosaurus more likely used its large canines for displays and/or during confrontation involving bites. [6]


According to Christian Kammerer, the pachyostosis of Anteosaurus would have mainly allowed the skull to resist the cranial stress generated by the powerful external adductor muscles during the bite on a large prey, as has been suggested in other macropredators with a thickened supraorbital region such as rubidgeine gorgonopsians, mosasaurs, some thalattosuchians, sebecosuchians, rauisuchians and various large carnivorous dinosaurs. [10] [9]

All these authors, however, do not exclude a multiple use of this pachyostosis and the existence in Anteosaurus of a head-butting behaviour requiring however less energy than that of the Tapinocephalidae. [10] [6]

Ontogeny

Ashley Kruger and team in 2016 described a juvenile specimen of Anteosaurus (BP/1/7074), providing details into the ontogeny of this anteosaurid. Analyzed allometry between this specimen and others suggests that the cranial ontogeny of Anteosaurus was characterized by a rapid growth in the temporal region, a significant difference in the development of the postorbital bar and suborbital bar between juveniles and adults, as well as a notorious pachyostosis (bone thickening) during development, which ultimately modified the skull roof of adults. Consequently, pachyostosis was responsible for thickening important skull bones such as the frontal and postfrontal which were of great importance in the overall paleobiology and behavior of Anteosaurus. Kruger and team noted that these differences, when compared, are extreme between juvenile and mature Anteosaurus individuals. [21]

In 2021 Mohd Shafi Bhat histologically studied several skeletal remains of specimens referred to Anteosaurus, finding three growth stages. The first growth stage is characterized by the predominance of highly vascularized, uninterrupted fibrolamellar bone tissue in the inner bone cortex, which suggests rapid formation of new bone during early ontogeny. A second stage of growth in Anteosaurus is represented by periodic/seasonal interruptions in the bone formation, indicated by the deposition of lines of arrested growth. Third and last reported growth stage by the team features the development of lamellar bone tissue with rest lines in the peripheral part of the bone cortex, which indicates that Anteosaurus slowed down growth at advanced age. [22]

Habitat preference and diet

Semi-transparent 3D reconstructions (based on X-ray micro-computed tomography) of the skulls of dinocephalians Anteosaurus magnificus (A, BP/1/7074) and Moschognathus whaitsi (B, AM4950) from the middle Permian of South Africa, aligned on the plane of their lateral semicircular canal. The black arrow indicates the tilting of the long axis of the skull compared to the plane of the lateral semicircular canal. Anteosaurus & Moschognathus.png
Semi-transparent 3D reconstructions (based on X-ray micro-computed tomography) of the skulls of dinocephalians Anteosaurus magnificus (A, BP/1/7074) and Moschognathus whaitsi (B, AM4950) from the middle Permian of South Africa, aligned on the plane of their lateral semicircular canal. The black arrow indicates the tilting of the long axis of the skull compared to the plane of the lateral semicircular canal.

Boonstra in 1954 indicated that the overall dentition of Anteosaurus—characterized by prominent canines, elongated incisors, and relatively weak postcanines—reflects a specialized carnivore, and that this anteosaurid did not rely on chewing and shearing when feeding, but rather it was well-adapted for tearing flesh chunks from prey. In addition, Boonstra noted that some of the flesh material was likely held and/or teared by the recurved palatal dentition. [8] Later in 1955, Boonstra indicated that anteosaurids had a crawling locomotion similar to crocodiles, based mostly on their hip joint and femur morphology, useful in a semiaquatic setting. [23]

In 2008 Mivah F. Ivakhnenko analyzed a vast majority of Permian therapsid skulls, and suggested that anteosaurs, such as Anteosaurus, were strict semiaquatic piscivorous (fish-eater) synapsids, mostly similar to modern-day otters. [24] Christian F. Kammerer in 2011 questioned this proposal, given that numerous anatomical traits of anteosaurs make this life-style unlikely. The typical dentition of piscivore animals include elongate, numerous, strongly recurved, and very sharp teeth in order to hold and kill fast-moving fish prey. In addition, the jaws of piscivores are commonly elongated and narrow for quick snatchs and minimize water resistance when shaking prey. Unlike these traits, the skull morphology of most anteosaurs—specifically anteosaurids—is extremely robust with deep jaws, and the teeth are bulbous and blunt, with only the canine being the recurved-most tooth. Kammerer instead indicated that anteosaurids like Anteosaurus likely preyed on large terrestrial dinocephalians, such as the gigantic titanosuchids and tapinocephalids. He also noted that anteosaurid teeth are mostly similar to that of large tyrannosaurids (postcanines robust bases, faceted surfaces, and obliquely angled serrations), whose dentition is interpreted as bone-crunching. Accordingly, bone-crunching may also have been employed by anteosaurids and an important component in their diet. [10]

Reconstruction of Anteosaurus in terrestrial paleoenvironment Anteosaurus in landscape.jpg
Reconstruction of Anteosaurus in terrestrial paleoenvironment

In 2020 Kévin Rey with colleagues analyzed stable oxygen isotope compositions of phosphate from teeth and bones from pareiasaurs and Anteosaurus, in order to estimate their affinity for water dependence. Obtained results showed similar δ18Op values between pareiasaurs, Anteosaurus, and therocephalians, with a wide range of extant terrestrial species, which indicated a terrestrial preference for these synapsids. However, it was noted that the δ18Op values were slightly lower in Anteosaurus, casting doubt for this interpretation. Nevertheless, Rey with colleagues concluded that a larger sample size may result in a more robust conclusion for Anteosaurus. [25]

Bhat and team in 2021 noted that most skeletal elements of Anteoaurus are characterized by relatively thickened bone walls, extensive secondary bone reconstruction and the complete infilling of the medullary cavity. Combined, these traits indicate that Anteosaurus was mostly adapted for a terrestrial life-style. However a radius and femur have open medullary cavities with struts of bony trabeculae. The team suggested that it is conceable that Anteosaurus may have also occasionally inhabited shallow and short-lived pools, in a similar manner to modern-day hippopotamuses. [22]

An in-depth study of the brain of juvenile Anteosaurus specimen BP/1/7074 published in 2021 disproves the idea that this dinocephalian was a sluggish, crocodilian-like predator. Studies by Benoit et al. using x-ray imaging and 3-D reconstructions showcase that Anteosaurus was a fast, agile animal in spite of its great size. Its inner ears were larger than those of its closest relatives and competitors, showcasing that it was well-suited to the role of an apex predator that could outrun both its rivals and prey alike. It was also determined that the area of the brain of Anteosaurus that was responsible for coordinating the movements of the eyes with the head was exceptionally large; an important feature in ensuring it could track its prey accurately. As a result, Anteosaurus was well-adapted to swift hunting and fast attacking strikes on land. [6]

Geographic and stratigraphic range

South Africa

Hill with stratra of the Abrahamskrall and Teekloof formations in the Karoo National Park near Beaufort West, Western Cape Province. Hill at Karoo National Park.png
Hill with stratra of the Abrahamskrall and Teekloof formations in the Karoo National Park near Beaufort West, Western Cape Province.

The fossils of Anteosaurus magnificus come mainly from the Abrahamskraal Formation as well as from the basal part of the Teekloof Formation of the Beaufort Group in the Karoo Basin, South Africa. The species appears in the middle part of the Abrahamskraal Formation (Kornplaats member) and continues in the rest of the formation (Swaerskraal, Moordenaars, and Kareskraal members). Its last representatives come from the base of the Teekloof formation (in the lower strata of the Poortjie member). [26] [1] More than 30 localities are known, most of them being localized in the Western Cape province (Beaufort West, Prince Albert and Laingsburg). Some localities are also known near the towns of Sutherland and Fraserburg in the southern end of the Northern Cape province (Karoo Hoogland). [8] [27] [10] and at least one specimen (BP/1/7061) was found near Grahamstown in the Eastern Cape Province (Makana). [28] [nb 1] A skull discovered in the same province in 2001 was also tentatively ascribed to a juvenile specimen of Anteosaurus. [29] [30] However, the complete preparation of this skull, made later, revealed that it belonged to a tapinocephalid dinocephalian. [31] [nb 2]

The Middle Permian Abrahamskraal Formation is biostratigraphically subdivided in two faunal zone : the Eodicynodon Assemblage Zone which is the oldest one with an essentially Wordian age, and the Tapinocephalus Assemblage Zone, which is mainly Capitanian in age. Anteosaurus belongs to the Tapinocephalus Assemblage Zone which is characterized by the abundance and the diversification of the dinocephalians therapsids. Since 2020, this zone is divided into two subzones : a lower Eosimops - Glanosuchus subzone and an upper Diictodon - Styracocephalus subzone, both of which contain Anteosaurus fossils. [26] Like all other South African dinocephalians, Anteosaurus was presumed extinct at the top of the Abrahamskraal Formation. However, remains of Anteosaurus and two other dinocephalian genera ( Titanosuchus and Criocephalosaurus ) have been found in the basal portion of the Poortjie Member of the overlying Teekloof Formation. These discoveries greatly expanded both the stratigraphic range of these three dinocephalian genera and the upper limit of the Tapinocephalus Assemblage Zone that reaches the base of the Teekloof Formation. [32] [1] In the latter, the remains of these three dinocephalians were found in an interval of 30 metres (98 ft) above a level dated to 260.259 ± 0.081 million years ago, representing the Upper Capitanian. [1] Other radiometric dating have constrained the base of the Tapinocephalus Assemblage Zone (Leeuvlei Member in the middle part of the Abrahamskraal Formation) to be older than 264.382 ± 0.073 Ma and placed the boundary between the two subzones at 262.03 ± 0.15 Ma. [33] The upper part of the Abrahamskraal Formation (top of the Karelskraal Member) gave an age of 260.226 ± 0.069 Ma which is consistent with the age of 260.259 ± 0.081 of the base of the Teekloof Formation. [33] These datings show that the age of the Tapinocephalus Assemblage Zone extends from Late Wordian to Late Capitanian (based on Guadalupian radiometric ages obtained in 2020 from the type locality of the Guadalupe Mountains in west Texas). [33] [34]

Russia ?

The genus Anteosaurus is possibly present in Russia based on a fragmentary cranial remain found in the 19th century in the Republic of Tatarstan (Alexeyevsky District). This specimen, firstly interpreted as a snout boss of a dicynodont (named Oudenodon rugosus), was later correctly identified by Ivan Efremov as an angular boss of an anteosaurid. The shape of this boss clearly differs from those of others Russian anteosaurids, so this specimen was attributed to a new species of the genus Titanophoneus (and named Titanophoneus rugosus). More recently, Christian Kammerer showed that the shape of this boss differs markedly from the lenticular bosses of the Russian anteosaurs T. potens and T. adamanteus. In contrast the angular boss of T. rugosus is very similar to the Anteosaurus morphotype, so this specimen can be the first representative of the genus Anteosaurus in Russia. The dermal sculpturing of the boss, with prominent furrows, is different from that observed in few well preserved A. magnificus specimens. According to Kammerer, as the range of variation in dermal sculpturing between Anteosaurus individuals is no well known, it is more reasonable to consider provisionally Titanophoneus rugosus as a nomen dubium (maybe an Anteosaurus sp.). Only the discovery of more complete Russians specimens with the rugosus morphotype will clarify the relationship of this taxon with Anteosaurus. [10]

Paleoenvironment

Paleogeography and paleoclimate

Map of Earth during Guadalupian time showing the paleogeographic distribution of the genus Anteosaurus. Anteosaurus distribution.jpg
Map of Earth during Guadalupian time showing the paleogeographic distribution of the genus Anteosaurus.

At the time of Anteosaurus, most of the landmasses were united in one supercontinent, Pangaea. It was roughly C-shaped: its northern (Laurasia) and southern (Gondwana) parts were connected to the west, but separated to the east by a very large oceanic bay - the Tethys Sea. [35] A long string of microcontinents, grouped under the name of Cimmeria, divided the Tethys in two : the Paleo-Tethys in the north, and the Neo-Tethys in the south. [36] The territory that would become the South African Karoo was located much further south than today, at the level of the 60th parallel south. [37] Although located close to the Antarctic Circle, the climate prevailing at this latitude during most of the Permian was temperate with distinct seasons. [38] [39] [40] There are uncertainties about the temperatures that prevailed in South Africa during the Middle Permian. Previously, this region of the world had undergone significant glaciation during the Upper Carboniferous. [41] Subsequently, the Lower Permian had first seen the retreat of glaciers and the emergence of subpolar tundra and taiga-like vegetation (dominated by Botrychiopsis and Gangamopteris ), [42] then the introduction of warmer and wetter climatic conditions that allowed the development of the Mesosaurus fauna and the Glossopteris flora. [41] The scientists who studied the climate of that time found very different results on the thermal ranges that existed in the ancient Karoo. At the end of the 1950s, Edna Plumstead compared the Karoo to today's Siberia or Canada, with a highly seasonal climate including very cold winters and temperate summers supporting the Glossopteris flora, which would have been restricted to sheltered basins. [43] Later, other studies, mainly based on climate models, also suggested a cold temperate climate with high thermal amplitude between summer (+15 to +20 °C) and winter (-20 to -25 °C). [44] [45] More recent studies also indicate a temperate climate, but with much less severe winters than those previously suggested. Keddy Yemane thus suggested that the vast river system and the many giant lakes present at the time throughout southern Africa must have significantly moderated the continentality of the Karoo climate during most of the Permian. [46] Paleobotanical studies focusing on the characteristic morphology of plant leaves and the growth rings of fossil woods also indicate a seasonal climate [39] [37] with summer temperatures of up to 30 °C and free-frost winters. [39] According to Richard Rayner, the high southern latitudes experienced very hot and humid summers, with an average of 18 hours of light per day for more than four months during which precipitation was comparable to the annual amount falling in the present-day tropics. These conditions were extremely conducive to rapid growth in plants such as Glossopteris. [39] The habit in Glossopteris of losing its leaves at the beginning of the bad season would be linked to a shorter duration of daylight rather than the existence of very cold winter temperatures. [39] From the geochemical study of sediments from several Karoo sites, Kay Scheffler also obtains a temperate climate (with mean annual temperatures of about 15 to 20 °C), with free-frost winter, but with an increase in aridity during the Middle Permian. [41]

Paleoecology

Glossopteris leaves from Permian sediments of the Dunedoo area, New South Wales, Australia. Glossopteris was widespread in the Gondwanan part of the Pangea. Glossopteris sp., seed ferns, Permian - Triassic - Houston Museum of Natural Science - DSC01765.JPG
Glossopteris leaves from Permian sediments of the Dunedoo area, New South Wales, Australia. Glossopteris was widespread in the Gondwanan part of the Pangea.

The sediments of the Abrahamskraal Formation consists of a succession of sandstones, and versicolor siltstones and mudstones, deposited by large rivers that flowed from south to north from the Gondwanide mountain range. These large rivers of variable sinuosity drained a vast alluvial plain that sloped gently down to the northeast toward the Ecca sea (a former landlocked sea), while in receding phase. [47] [48] [49] [50] The landscape was composed of marshy land, interrupted by rivers, lakes, woods and forests. Many fossil traces (footprints, ripple marks, mudcracks) indicate that swampy areas, which were the most extensive habitat, were frequently exposed to the open air and should not often be deeply flooded. [38] The vegetation was dominated by the deciduous pteridosperm Glossopteris , which formed woodlands and large forests concentrated along the streams and on the uplands. [38] [39] Large horsetails (2–3 m (6.6–9.8 ft) high), such as Schizoneura and Paraschizoneura , formed bamboo-like stands that grew in and around swamps. Herbaceous horsetails ( Phyllotheca ) and ferns carpeted the undergrowth and small lycopods occupied the wetter areas. [38] [39]

Aquatic fauna included the lamellibranch Palaeomutela , the palaeonisciformes fishes Atherstonia , Bethesdaichthys , Blourugia , Namaichthys and Westlepis , and large freshwater predators, the temnospondyl amphibians Rhinesuchoides and Rhinesuchus . [51] [52] The terrestrial fauna was particularly diverse and dominated by the therapsids. [nb 3] Anteosaurus occupied the top of the food chain there. It shared its environment with many other carnivorous tetrapods. Other large predatory animals included the lion-sized Lycosuchid therocephalians Lycosuchus and Simorhinella , [53] and the Scylacosaurid therocephalian Glanosuchus . [54] Medium-sized carnivorous were represented by the basal biarmosuchian Hipposaurus , [55] the more derived biarmosuchian Bullacephalus , [56] the scylacosaurids Ictidosaurus , [54] Scylacosaurus , [57] and Pristerognathus , [26] and the small and basal gorgonopsian Eriphostoma . [58] [59] The small predator guild (mainly insectivorous forms) included the therocephalians Alopecodon , [26] and Pardosuchus , [26] the small monitor-like varanopids Elliotsmithia , [60] [57] Heleosaurus , [61] [62] [63] and Microvaranops , [64] the millerettid Broomia , [26] the procolophonomorph Australothyris , [65] and the lizard-like Eunotosaurus [66] of uncertain affinities (variously considered as a parareptile, [67] a pantestudine [68] [69] or a caseid synapsid [70] ).

Moschops capensis, a large Tapinocephalidae that coexisted with Anteosaurus. Moschops11DB.jpg
Moschops capensis , a large Tapinocephalidae that coexisted with Anteosaurus.

Herbivorous were also numerous and diversified. Large-sized vegetarians were mainly represented by numerous dinocephalians including the tapinocephalids Agnosaurus , [26] [71] Criocephalosaurus , [72] [73] [32] [71] Mormosaurus , [26] [71] Moschognathus , [26] [71] Moschops , [74] [75] [76] [71] Riebeeckosaurus , [75] [77] Struthiocephalus [78] [79] [76] [80] Struthionops , [26] and Tapinocephalus , [72] [81] [76] [71] the Styracocephalid Styracocephalus , [82] [83] [84] and the huge titanosuchids Jonkeria and Titanosuchus . [85] [7] [57] [26] Other large herbivores that were not synapsids included the large bradysaurian pareiasaurs represented by Bradysaurus , Embrithosaurus and Nochelesaurus , whose dentition very different from that of herbivorous dinocephalians indicates that the two groups occupied clearly distinct ecological niches. [86] [87] [88] [89] [90] The small to medium-sized forms included basal anomodonts (the non-dicynodonts Anomocephalus , [91] [92] Galechirus , Galeops and Galepus [93] [57] [26] ) and numerous dicynodonts ( Brachyprosopus , [94] Colobodectes , [95] [96] Pristerodon , [57] and the Pylaecephalids Diictodon , [97] [57] Eosimops , [98] Prosictodon , [99] and Robertia , [57] ).

Classification and phylogeny

Named by Watson in 1921, Anteosaurus was longtime classified as a ‘Titanosuchian Deinocephalian’, and it is only in 1954 that Boonstra separated the Titanosuchians in two families : Jonkeridae (a junior synonym of Titanosuchidae) and Anteosauridae. [100] [8] At about the same time, Efremov erected the family Brithopodidae in which he includes the fragmentary Brithopus and the better known forms Syodon and Titanophoneus. [101] Much later, Hopson and Barghusen argued that Brithopodidae should be discontinued and that the Russian taxa Syodon, Titanophoneus and Doliosauriscus should be placed with Anteosaurus in Anteosauridae. These authors placed also Anteosauridae in the new group Anteosauria for distinguished them of the other major dinocephalian group the Tapinocephalia in which they included the titanosuchids and the tapinocephalids. They also created the taxa Anteosaurinae, containing Anteosaurus and the Russian forms Titanophoneus and Doliosauriscus, and the Anteosaurini containing only the giant forms Anteosaurus and Doliosauriscus. [102] Gilian King retained the incorrectly spelled ‘Brithopidae’ (including the subfamilies ‘Brithopinae’ and Anteosaurinae) and placed both Brithopidae and Titanosuchidae (including Titanosuchinae and Tapinocephalinae) in the superfamily Anteosauroidea. [103] Later Ivakhnenko considered Brithopodidae as invalid and united Anteosauridae and Deuterosauridae (only known by the Russian Deuterosaurus ) in the superfamily Deuterosauroidea. [104] [105] More recently Kammerer in its systematic revision of the anteosaurs (in which Doliosauriscus become a junior synonym of Titanophoneus) demonstrated that the wastebasket genus Brithopus is a nomen dubium composed both of remains of indeterminate estemmenosuchid-like tapinocephalian and indeterminate anteosaurian, so invalidating the Brithopodidae. He proposed also the first phylogenetic analysis including all anteosaurid taxa. This and other modern phylogenetic analysis of anteosaurs recovers a monophyletic Anteosauridae containing two major clades, Syodontinae and Anteosaurinae. In the Kammerer analysis, the Chinese Sinophoneus is the most basal anteosaurine and the sister-group of an unresolved trichotomy including Titanophoneus potens, T. adamanteus and Anteosaurus. [10]

Below the cladogramm of Kammerer published in 2011 :

Therapsida

In describing the new Brazilian anteosaur Pampaphoneus , Cisneros et al. presented another cladogram confirming the recognition of the clades Anteosaurinae and Syodontinae. In the cladogram of the Fig. 2. of the main paper, which does not include the genus Microsyodon, Titanophoneus adamanteus is recovered as the sister taxon of a clade composed of Titanophoneus potens and Anteosaurus. However, in the four cladograms of the Fig. S1, presented in the Supporting Information of the same article, and including Microsyodon, Anteosaurus is recovered as the sister taxon of both species of Titanophoneus. These four cladograms differ only by the position of Microsyodon. [11]

The cladogram of Cisneros et al. published in the main paper and excluding the genus Microsyodon. T. adamanteus is here the sister taxon of a clade composed of T. potens and Anteosaurus : [11]

Therapsida

One of the four cladograms of Cisneros et al. published in the Supporting Information of the same article, and including Microsyodon. In all these cladogram, Anteosaurus is recovered as the sister taxon of both species of Titanophoneus : [11]

Therapsida

In resdescribing the Chinese anteosaur Sinophoneus , Jun Lui presented a new cladogram in which Sinophoneus is recovered as the most basal Anteosauridae and so excluded of the Anteosaurinae. Anteosaurus being also positioned as the sister-taxon of Titanophoneus potens and T. adamanteus.

The cladogramm of Jun Liu in 2013: [106]

Therapsida

Genus synonymy

As defined by Lieuwe Dirk Boonstra, Anteosaurus is “a genus of anteosaurids in which the postfrontal forms a boss of variable size overhanging the dorso-posterior border of the orbit.” On this basis he synonymised six of the seven genera named from the Tapinocephalus zone: Eccasaurus, Anteosaurus, Titanognathus, Dinosuchus, Micranteosaurus, and Pseudanteosaurus. Of these, he says, Dinosuchus and Titanognathus can safely be considered synonyms of Anteosaurus. Eccasaurus, with a holotype of which the cranial material consists of only few typical anteosaurid incisors, appears to be only determinable as to family. The skull fragment forming the holotype of Pseudanteosaurus can best be considered as an immature specimen of Anteosaurus. Micranteosaurus, the holotype of which contains a small snout, was previously considered a new genus on account of its small size but is better be interpreted as a young specimen of Anteosaurus. And likewise, the large number of species attributed to the genus Anteosaurus can also be considered synonyms. Boonstra still considers as valid the genus Paranteosaurus, which is defined as a genus of anteosaurids in which the postfrontal is not developed to form a boss. This is probably an example of individual variation and hence another synonym of Anteosaurus. [55]

Species synonymy

Anteosaurus was once known by a large number of species, but the current thinking on this is that they merely represent different growth stages of the same type species, A. magnificus. [55] [10]

We have 32 skulls of Anteosaurus, of which 16 are reasonably well preserved and on them ten species have been named. To differentiate between the species the following main characters have. been used: the number, size and shape of the teeth, skull size, shape and the nature of the pachyostosis. On re-examination it has become clear that the crowns of the teeth are seldom well preserved; basing the count for the dental formula on the preserved roots is unreliable. as this is affected by age and tooth generation; size of skull is a function of age and also possibly sex; skull shape is greatly affected by post-mortem deformation, and the variability in the pachyostosis, which may be specific in some respects, can just as well be the result of...physiological processes. Specific diagnosis consisting of the enumeration of differences of degree in features such as the above can hardly be considered as sufficient indication of the existence of discrete species....A. magnificus thus has the following synonyms: abeli, acutirostrus, crassifrons, cruentus, laticeps, levops, lotzi, major, minor, minusculus, parvus, priscus and vorsteri.

Boonstra. [55]

Possible synonyms

Archaeosuchus

Archaeosuchus cairncrossi is a dubious species of anteosaur from the Tapinocephalus Assemblage Zone. It was named by Broom in 1905 on the basis of a partial maxilla. It was interpreted as a titanosuchid by Boonstra, but Kammerer determined it was an anteosaur indistinguishable from Anteosaurus and Titanophoneus. As Anteosaurus magnificus appears to be the only valid large anteosaur in the Tapinocephalus Assemblage Zone, Archaeosaurus cairncrossi is very likely to be based on a specimen of it, but due to poor preservation, the specimen lacks any features that would allow the synonymy to be proven. [10]

Eccasaurus

Eccasaurus priscus is a dubious species of anteosaur from the Tapinocephalus Assemblage Zone. It was named by Robert Broom in 1909 on the basis of a fragmentary skeleton, of which Broom only described the humerus. As with Archaeosuchus cairncrossi, Eccasaurus priscus is very likely to be synonymous with Anteosaurus magnificus. As Eccasaurus was named before Anteosaurus, a petition to the ICZN would be needed to preserve the name Anteosaurus magnificus if the synonymy were to be proven. [10]

See also

Notes

  1. This specimen was originally discovered in the Koonap Formation which was considered a lateral equivalent of the Abrahamskraal Formation east of the 24th meridian east. The two formations were amalgamated in 2016 because lithologically indistinguishable (cf. references Cole & al. 2016).
  2. This skull was first attributed to Moschops capensis before being reassigned to Moschognathus whaitsi in 2020 by Saniye Neumann in a thesis work (cf. references).
  3. Several taxa from the lower part of the Tapinocephalus zone, such as the biarmosuchian Pachydectes , the dicynodont Lanthanostegus , and the gorgonopsian Phorcys , have been found in strata located several hundred meters below the oldest known specimens of Anteosaurus. This particular fauna could represent a new zone or sub-zone not yet recognized as such and located between the Eodicynodon and Tapinocephalus Assemblage Zones (Day & Rubidge 2020, Rubidge & al. 2021).

Related Research Articles

<span class="mw-page-title-main">Dinocephalia</span> Extinct clade of stem-mammals

Dinocephalians are a clade of large-bodied early therapsids that flourished in the Early and Middle Permian between 279.5 and 260 million years ago (Ma), but became extinct during the Capitanian mass extinction event. Dinocephalians included herbivorous, carnivorous, and omnivorous forms. Many species had thickened skulls with many knobs and bony projections. Dinocephalians were the first non-mammalian therapsids to be scientifically described and their fossils are known from Russia, China, Brazil, South Africa, Zimbabwe, and Tanzania.

<i>Moschops</i> Extinct genus of therapsids that lived in the Guadalupian epoch

Moschops is an extinct genus of therapsids that lived in the Guadalupian epoch, around 265–260 million years ago. They were heavily built plant eaters, and they may have lived partly in water, as hippopotamuses do. They had short, thick heads and might have competed by head-butting each other. Their elbow joints allowed them to walk with a more mammal-like gait rather than crawling. Their remains were found in the Karoo region of South Africa, belonging to the Tapinocephalus Assemblage Zone. Therapsids, such as Moschops, are synapsids, the dominant land animals in the Permian period, which ended 252 million years ago.

<i>Diictodon</i> Extinct genus of dicynodonts

Diictodon is an extinct genus of pylaecephalid dicynodont that lived during the Late Permian period, approximately 255 million years ago. Fossils have been found in the Cistecephalus Assemblage Zone of the Madumabisa Mudstone of the Luangwa Basin in Zambia and the Tropidostoma Assemblage Zone of the Teekloof Formation, Tapinocephalus Assemblage Zone of the Abrahamskraal Formation, Dicynodon Assemblage Zone of the Balfour Formation, Cistecephalus Assemblage Zone of the Middleton or Balfour Formation of South Africa and the Guodikeng Formation of China. Roughly half of all Permian vertebrate specimens found in South Africa are those of Diictodon. This small herbivorous animal was one of the most successful synapsids in the Permian period.

<span class="mw-page-title-main">Beaufort Group</span> Third of the main subdivisions of the Karoo Supergroup in South Africa

The Beaufort Group is the third of the main subdivisions of the Karoo Supergroup in South Africa. It is composed of a lower Adelaide Subgroup and an upper Tarkastad Subgroup. It follows conformably after the Ecca Group and unconformably underlies the Stormberg Group. Based on stratigraphic position, lithostratigraphic and biostratigraphic correlations, palynological analyses, and other means of geological dating, the Beaufort Group rocks are considered to range between Middle Permian (Wordian) to Early Triassic (Anisian) in age.

<span class="mw-page-title-main">Anteosaur</span> Extinct clade of therapsids

Anteosaurs are a group of large, primitive carnivorous dinocephalian therapsids with large canines and incisors and short limbs, that are known from the Middle Permian of South Africa, Russia, China, and Brazil. Some grew very large, with skulls 50–80 centimetres (20–31 in) long, and were the largest predators of their time. They died out at the end of the Middle Permian, possibly as a result of the extinction of the herbivorous Tapinocephalia on which they may have fed.

<span class="mw-page-title-main">Anteosauridae</span> Extinct family of therapsids

Anteosauridae is an extinct family of large carnivorous dinocephalian therapsids that are known from the Middle Permian of Asia, Africa, and South America.These animals were by far the largest predators of the Permian period, with skulls reaching 80 cm in length in adult individuals, far larger than the biggest gorgonopsian.

<i>Tapinocephalus</i> Assemblage Zone

The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

<i>Australosyodon</i> Extinct genus of therapsids

Australosyodon is an extinct genus of dinocephalian therapsids from the middle Permian of South Africa. The first fossil was discovered in the 1980s near the village of Prince Albert Road in the Karoo region of South Africa.

<i>Styracocephalus</i>

Styracocephalus platyrhynchus is an extinct genus of dinocephalian therapsid that existed during the mid-Permian throughout South Africa, but mainly in the Karoo Basin. It is often referred to by its single known species Styracocephalus platyrhynchus. The Dinocephalia clade consisted of the largest land vertebrates and herbivores during the early to mid-Permian. This period is often also referred to as the Guadalupian epoch, approximately 270 to 260 million years ago.

Brachyprosopus is an extinct genus of dicynodont therapsid from the middle Permian Tapinocephalus Assemblage Zone in the Abrahamskraal Formation belonging to the Beaufort Group of the Karoo Basin, South Africa.

Koupia is a dubious extinct genus of non-mammalian synapsid. The type species, K. koupensis, was coined by Lieuwe Dirk Boonstra in 1948, with a well-preserved skull from the Tapinocephalus Assemblage Zone of South Africa, SAM-PK-11796, designated the holotype. This specimen has since been lost, and K. koupensis is currently considered a nomen dubium or a possible junior synonym of Brachyprosopus broomi.

<i>Moschognathus</i> Extinct genus of therapsids that lived in the Guadalupian epoch

Moschognathus is an extinct genus of dinocephalian therapsid in the family Tapinocephalidae. The genus includes only the type species M. whaitsi, named by palaeontologist Robert Broom in 1914. It was a short-snouted tapinocephalid, closely related to and resembling the well-known genus Moschops, but its skull is less thickened overall has a relatively longer and shallower snout by comparison. Indeed, Moschognathus has typically been regarded as a junior synonym of Moschops since 1969 after Lieuwe Dirk Boonstra sunk Moschognathus into Moschops, albeit retained as its own doubtfully valid species. However, researchers in the 21st century have expressed doubt over this synonymy and suggested that Moschognathus is a distinct taxon after all, including first by Christian Kammerer in a 2009 Ph.D. thesis and formally in 2015 by Alessandra D. S. Boos and colleagues in 2015. Moschognathus has since began to re-enter scientific literature of dinocephalians as a valid name and treated distinct from Moschops.

<i>Scymnosaurus</i> Extinct genus of therapsids from middle Permian South Africa

Scymnosaurus is a dubious genus of therocephalian therapsids based upon various fossils of large early therocephalians. The genus was described by Robert Broom in 1903 with S. ferox, followed by S. watsoni in 1915 and a third, S. major, by Lieuwe Dirk Boonstra in 1954. Each of these species are considered nomen dubia today and based upon specimens belonging to two separate families of therocephalians. S. ferox and S. major represent specimens of Lycosuchidae incertae sedis, while S. watsoni is Scylacosauridae incertae sedis. Broom named a fourth species in 1907 from KwaZulu-Natal, S. warreni, though he later referred it to Moschorhinus as a valid species in 1932 but now is recognised as being synonymous with M. kitchingi.

<i>Criocephalosaurus</i> Extinct genus of therapsids

Criocephalosaurus is an extinct genus of tapinocephalian therapsids that lived in Southern Africa during the Guadalupian epoch of the Permian. They are the latest surviving dinocephalians, extending past the Abrahamskraal Formation into the lowermost Poortjie Member of the Teekloof Formation in South Africa. They are also regarded as the most derived of the dinocephalians, alongside Tapinocephalus, and the most abundant in the fossil record.

<span class="mw-page-title-main">Abrahamskraal Formation</span> Geological formation of the Beaufort Group in South Africa

The Abrahamskraal Formation is a geological formation and is found in numerous localities in the Northern Cape, Western Cape, and the Eastern Cape of South Africa. It is the lowermost formation of the Adelaide Subgroup of the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup. It represents the first fully terrestrial geological deposits of the Karoo Basin. Outcrops of the Abrahamskraal Formation are found from the small town Middelpos in its westernmost localities, then around Sutherland, the Moordenaarskaroo north of Laingsburg, Williston, Fraserburg, Leeu-Gamka, Loxton, and Victoria West in the Western Cape and Northern Cape. In the Eastern Cape outcrops are known from Rietbron, north of Klipplaat and Grahamstown, and also southwest of East London.

<i>Pampaphoneus</i> Extinct genus of therapsids

Pampaphoneus is an extinct genus of carnivorous dinocephalian therapsid belonging to the family Anteosauridae. It lived 268 to 265 million years ago during the Wordian age of the Guadalupian period in what is now Brazil. Pampaphoneus is known by an almost complete skull with the lower jaw still articulated, discovered on the lands of the Boqueirão Farm, near the city of São Gabriel, in the state of Rio Grande do Sul. A second specimen from the same locality was reported in 2019 and 2020 but has not yet been described. It is composed of a skull associated with postcranial remains. It is the first South American species of dinocephalian to have been described. The group was previously known in South America only by a few isolated teeth and a jaw fragment reported in 2000 in the same region of Brazil. Phylogenetic analysis conducted by Cisneros and colleagues reveals that Pampaphoneus is closely related to anteosaurs from European Russia, indicating a closer faunal relationship between South America and Eastern Europe than previously thought, thus promoting a Pangea B continental reconstruction.

<span class="mw-page-title-main">Anteosaurinae</span> Extinct subfamily of therapsids

Anteosaurinae is an extinct subfamily of dinocephalian therapsids. It is one of two subfamilies in the family Anteosauridae, the other being Syodontinae.

<i>Sinophoneus</i> Extinct genus of therapsids

Sinophoneus is an extinct genus of carnivorous dinocephalian therapsid belonging to the family Anteosauridae. It lived 272 to 270 million years ago at the beginning of the Middle Permian in what is now the Gansu Province in northern China. It is known by a skull of an adult individual, as well as by many skulls of juvenile specimens. The latter were first considered as belonging to a different animal, named Stenocybus, before being reinterpreted as immature Sinophoneus. Sinophoneus shows a combination of characters present in other anteosaurs. Its bulbous profile snout and external nostrils located in front of the canine are reminiscent of the basal anteosaur Archaeosyodon, while its massive transverse pterygoids processes with enlarged distal ends are more similar to the more derived anteosaurs Anteosaurus and Titanophoneus. First phylogenetic analyzes identified Sinophoneus as the most basal Anteosaurinae. A more recent analysis positioned it outside the Anteosaurinae and Syodontinae subclades, and recovers it as the most basal Anteosauridae.

Phorcys is an extinct genus of gorgonopsian that lived during the Middle Permian period (Guadalupian) of what is now South Africa. It is known from two specimens, both portions from the back of the skull, that were described and named in 2022 as a new genus and species P. dubei by Christian Kammerer and Bruce Rubidge. The generic name is from Phorcys of Greek mythology, the father of the Gorgons from which the gorgonopsians are named after, and refers to its status as one of the oldest representatives of the group in the fossil record. Phorcys was recovered from the lowest strata of the Tapinocephalus Assemblage Zone (AZ) of the Beaufort Group, making it one of the oldest known gorgonopsians in the fossil record—second only to fragmentary remains of an indeterminate gorgonopsian from the older underlying Eodicynodon Assemblage Zone.

References

  1. 1 2 3 4 5 Day, M.O.; Rubidge, B.S. (2021). "The Late Capitanian Mass Extinction of Terrestrial Vertebrates in the Karoo Basin of South Africa". Frontiers in Earth Science. 9: 15. Bibcode:2021FrEaS...9...15D. doi: 10.3389/feart.2021.631198 .
  2. Day, M.O.; Ramezani, J.; Bowring, S.A.; Sadler, P.M.; Erwin, D.H.; Abdala, F.; Rubidge, B.S. (2015). "When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa". Proceedings of the Royal Society B. 282 (1811): 20150834. doi:10.1098/rspb.2015.0834. PMC   4528552 . PMID   26156768.
  3. 1 2 "Misunderstood Giants: Geosaurus, Anteosaurus, Otozoum". Archives of the Dinosaur Mailing List. Ben Kreisler. Retrieved 30 October 2014.
  4. van Valkenburgh, Blaire; Jenkins, Ian (2002). "Evolutionary Patterns in the History of Permo-Triassic and Cenozoic synapsid predators". Paleontological Society Papers. 8: 267–288. doi:10.1017/S1089332600001121.
  5. Prothero, Donald R. (18 April 2022). "20. Synapsids: The Origin of Mammals". Vertebrate Evolution: From Origins to Dinosaurs and Beyond. Boca Raton: CRC Press. doi:10.1201/9781003128205-4. ISBN   978-0-36-747316-7. S2CID   246318785.
  6. 1 2 3 4 Benoit, J.; Kruger, A.; Jirah, S.; Fernandez, V.; Rubidge, B. S. (2021). "Palaeoneurology and palaeobiology of the dinocephalian therapsid Anteosaurus magnificus" (PDF). Acta Palaeontologica Polonica. 66. doi: 10.4202/app.00800.2020 .
  7. 1 2 3 Boonstra, L.D. (1953). "A suggested clarification of the taxonomic status of the South African titanosuchians". Annals of the South African Museum. 42: 19–28.
  8. 1 2 3 4 5 6 Boonstra, L.D. (1954). "The cranial structure of the titanosuchian: Anteosaurus". Annals of the South African Museum. 42: 108–148.
  9. 1 2 3 Angielczyk, K.D.; Kammerer, C.F. (2018). "Non-Mammalian synapsids : the deep roots of the mammalian family tree". In Zachos, F.E.; Asher, R.J. (eds.). Handbook of Zoology : Mammalian Evolution, Diversity and Systematics. Berlin: de Gruyter. p. 178. ISBN   978-3-11-027590-2.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Kammerer, C. F. (2011). "Systematics of the Anteosauria (Therapsida: Dinocephalia)". Journal of Systematic Palaeontology. 9 (2): 261–304. Bibcode:2011JSPal...9..261K. doi:10.1080/14772019.2010.492645. S2CID   84799772.
  11. 1 2 3 4 Cisneros, J.C.; Abdala, F.; Atayman-Güven, S.; Rubidge, B.S.; Şengör, A.M.C.; Schultz, C.L. (2012). "Carnivorous dinocephalian from the Middle Permian of Brazil and tetrapod dispersal in Pangaea" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 109 (5): 1584–1588. Bibcode:2012PNAS..109.1584C. doi: 10.1073/pnas.1115975109 . PMC   3277192 . PMID   22307615.
  12. Rubidge, B.S. (1991). "A new primitive dinocephalian mammal-like reptile from the Permian of Southern Africa". 34 (3): 547–559.{{cite journal}}: Cite journal requires |journal= (help)
  13. van Valkenburgh, B.; Jenkins, I. (2002). "Evolutionary Patterns in the History of Permo-Triassic and Cenozoic Synapsid Predators". Paleontological Society Papers. 8: 267–288. CiteSeerX   10.1.1.729.1135 . doi:10.1017/S1089332600001121.
  14. 1 2 Boonstra, L.D. (1954). "The smallest titanosuchid yet recovered from the Karroo". Annals of the South African Museum. 42: 149–156.
  15. 1 2 Boonstra, L.D. (1955). "The girdles and limbs of the South African Deinocephalia". Annals of the South African Museum. 42: 185–326.
  16. 1 2 3 4 Rowe, T.; van den Heever, J. (1986). "The hand of Anteosaurus magnificus (Therapsida, Dinocephalia) and Its bearing on the origin of the mammalian manual phalangeal formula" (PDF). South African Journal of Science. 82 (11): 641–645.
  17. 1 2 Boonstra, L.D. (1966). "The dinocephalian manus and pes". Annals of the South African Museum. 50: 13–26.
  18. Orlov, J.A. (1956). "Les deinocéphales des couches permiennes supérieures de la moyenne Volga". Colloques Internationaux, Centre National de la Recherche Scientifique, Paris. 60: 67–69.
  19. Orlov, J.A. (1958). "[Predatory dinocephalians from the Isheevo Fauna (titanosuchians)]". Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR. 72: 1-114 [in Russian].
  20. 1 2 Barghusen, H.R. (1975). "A review of fighting adaptations in dinocephalians (Reptilia, Therapsida)". Paleobiology. 1 (3): 295–311. Bibcode:1975Pbio....1..295B. doi:10.1017/S0094837300002542. JSTOR   2400370. S2CID   87163815.
  21. Kruger, A.; Rubidge, B. S.; Abdala, F. (2016). "A juvenile specimen of Anteosaurus magnificus Watson, 1921 (Therapsida: Dinocephalia) from the South African Karoo, and its implications for understanding dinocephalian ontogeny". Journal of Systematic Palaeontology. 16 (2): 139–158. doi:10.1080/14772019.2016.1276106. S2CID   90346300.
  22. 1 2 Bhat, M. S.; Shelton, C. D.; Chinsamy, A. (2021). "Inter-element variation in the bone histology of Anteosaurus (Dinocephalia, Anteosauridae) from the Tapinocephalus Assemblage Zone of the Karoo Basin of South Africa". PeerJ. 9: e12082. doi: 10.7717/peerj.12082 . PMC   8434808 . PMID   34589298.
  23. Boonstra, L. D. (1955). "The girdles and limbs of South African dinocephalians". Annals of the South African Museum. 42: 185−327.
  24. Ivakhnenko, M. F. (2008). "Cranial morphology and evolution of Permian Dinomorpha (Eotherapsida) of eastern Europe". Paleontological Journal. 42 (9): 859−995. Bibcode:2008PalJ...42..859I. doi:10.1134/S0031030108090013. S2CID   85114195.
  25. Rey, K.; Day, M. O.; Amiot, R.; Fourel, F.; Luyt, J.; Van den Brandt, M. J.; Lécuyer, C.; Rubidge, B. S. (2020). "Oxygen isotopes and ecological inferences of Permian (Guadalupian) tetrapods from the main Karoo Basin of South Africa" (PDF). Palaeogeography, Palaeoclimatology, Palaeoecology. 538: 109485. Bibcode:2020PPP...53809485R. doi:10.1016/j.palaeo.2019.109485. S2CID   214085715.
  26. 1 2 3 4 5 6 7 8 9 10 11 12 Day, M.O.; Rubidge, B.S. (2020). "Biostratigraphy of the Tapinocephalus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa". South African Journal of Geology. 123 (2): 149–164. Bibcode:2020SAJG..123..149D. doi:10.25131/sajg.123.0012. S2CID   225815517.
  27. Kitching, J.W. (1977). "The distribution of the Karroo vertebrate fauna". Bernard Price Institute for Palaeontological Research Memoir (1, 131pp).
  28. Day, M.O. (2013). Middle Permian continental biodiversity changes as reflected in the Beaufort Group of South Africa: A bio- and lithostratigraphic review of the Eodicynodon, Tapinocephalus and Pristerognathus Assemblage Zones (Ph.D. thesis). Johannesburg: University of the Witwatersrand. pp. 1–387.
  29. Modesto, S.P.; Rubidge, B.S.; de Klerk, W.J.; Welman, J. (2001). "A dinocephalian therapsid fauna on the Ecca-Beaufort contact in Eastern Cape Province, South Africa". South African Journal of Science. 97: 161–163.
  30. Mason, R.; Rubidge, B.; Hancox, J. (2015). "Terrestrial Vertebrate Colonisation and the Ecca-Beaufort Boundary in the Southeastern Main Karoo Basin, South Africa: Implications for Permian Basin Evolution". Geological Society of South Africa. 118 (2): 145–156. Bibcode:2015SAJG..118..145M. doi:10.2113/gssajg.118.2.145.
  31. Benoit, J.; Manger, P.R.; Norton, L.; Fernandez, V.; Rubidge, B.S. (2017). "Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia)". PeerJ. 5: e3496. doi: 10.7717/peerj.3496 . PMC   5554600 . PMID   28828230.
  32. 1 2 Day, M.O.; Güven, S.; Abdala, F.; Jirah, S.; Rubidge, B.S.; Almond, J. (2015). "Youngest dinocephalian fossils extend the Tapinocephalus Zone, Karoo Basin, South Africa" (PDF). South African Journal of Science. 111 (3–4): 1–5. doi:10.17159/sajs.2015/20140309. Archived from the original (PDF) on 2017-12-02. Retrieved 2022-10-31.
  33. 1 2 3 Day, M.O.; Ramezani, J.; Frazer, R.E.; Rubidge, B.S. (2022). "U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa". Journal of African Earth Sciences. 186: 104435. Bibcode:2022JAfES.18604435D. doi:10.1016/j.jafrearsci.2021.104435. S2CID   245086992.
  34. Wu, Q.; Ramezani, J.; Zhang, H.; Yuan, D-x; Erwin, D.H.; Henderson, C.M.; Lambert, L.L.; Zhang, Y-c; Shen, S-z (2020). "High-precision U-Pb age constraints on the Guadalupian in west Texas, USA". Palaeogeography, Palaeoclimatology, Palaeoecology. 548: 109668. doi:10.1016/j.palaeo.2020.109668. S2CID   214342275.
  35. McLoughlin, S. (2001). "The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism". Australian Journal of Botany. 49 (3): 271–300. doi:10.1071/BT00023.
  36. Şengör, A.M.C. (1987). "Tectonics of the Tethysides: orogenic collage development in a collisional setting". Annual Review of Earth and Planetary Sciences. 15: 214–244. Bibcode:1987AREPS..15..213C. doi:10.1146/annurev.ea.15.050187.001241.
  37. 1 2 Bamford, M.K. (2016). "Fossil woods from the Upper Carboniferous to Lower Jurassic Karoo Basin and their environmental interpretation". In Linol, B.; de Wit, M.J. (eds.). Origin and evolution of the Cape Mountains and Karoo Basin. Cham: Regional Geology Reviews, Springer. pp. 159–167. ISBN   978-3-319-40858-3.
  38. 1 2 3 4 King, G. (1990). "The environment of the Tapinocephalus zone". In King, G. (ed.). The dicynodonts. A study in palaeobiology. London and New York: Chapman and Hall. pp. 107–111. ISBN   0-412-33080-6.
  39. 1 2 3 4 5 6 7 Rayner, R.J. (1996). "The palaeoclimate of the Karoo: evidence from plant fossils". Palaeogeography, Palaeoclimatology, Palaeoecology. 119 (3–4): 385–394. Bibcode:1996PPP...119..385R. doi:10.1016/0031-0182(95)00021-6.
  40. Chumakov, N.M.; Zharkov, M.A. (2003). "Climate during the Permian-Triassic Biosphere Reorganizations. Article 2. Climate of the Late Permian and Early Triassic : General Inferences". Stratigraphy and Geological Correlation. 11 (4): 361–376.
  41. 1 2 3 Scheffler, K.; Buehmann, D.; Schwark, L. (2006). "Analysis of Late Palaeozoic glacial to potglacial sedimentary successions in South Africa by geochemical proxies- Response to climate evolution and sedimentary environment". Palaeogeography, Palaeoclimatology, Palaeoecology. 240 (1–2): 184–203. Bibcode:2006PPP...240..184S. doi:10.1016/j.palaeo.2006.03.059.
  42. Jasper, A.; Guerra-Sommer, M.; Cazzulo-Klepzig, M.; Iannuzzi, R. (2007). "Biostratigraphic and paleoclimatic significance of Botrychiopsis fronds in the Gondwana realm". In Wong, Th.E. (ed.). Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, 10-16 August 2003 (PDF). Amsterdam : Royal Netherlands Academy of Arts and Sciences: Edita KNAW. pp. 379–388. ISBN   978-9069844794. Archived from the original (PDF) on 31 October 2022. Retrieved 31 October 2022.
  43. Plumstead, E. (1957). Plumstead, E. (ed.). Coal in southern Africa. Johannesburg: Witwatersrand University Press.
  44. Kutzbach, J. E.; Gallimore, R.G. (1989). "Pangean climates: megamonsoons of the megacontinent". Journal of Geophysical Research. 94 (D3): 3341–3357. Bibcode:1989JGR....94.3341K. doi:10.1029/JD094iD03p03341.
  45. Crowley, T. J.; Hyde, W.T.; Short, D.A. (1989). "Seasonal cycle variations on the supercontinent of Pangaea". Geology. 17 (5): 457–460. Bibcode:1989Geo....17..457C. doi:10.1130/0091-7613(1989)017<0457:SCVOTS>2.3.CO;2.
  46. Yemane, K. (1993). "Contribution of the Late Permian palaeogeography in maintaining a temperate climate in Gondwana". Nature. 3651 (6407): 51–54. Bibcode:1993Natur.361...51Y. doi:10.1038/361051a0. S2CID   4245546.
  47. Turner, B.R. (1978). "Sedimentary patterns of uranium mineralization in the Beaufort Group of the southern Karoo (Gondwana) Basin, South Africa". In Miall, A.D. (ed.). Fluvial Sedimentology. Canadian Association of Petroleum Geologists, Memoir 5. pp. 831–848.
  48. Smith, R.M.H. (1990). "A review of the stratigraphy and sedimentary environments of the Karoo basin of South Africa". Journal of African Earth Sciences. 10 (1): 117–137. Bibcode:1990JAfES..10..117S. doi:10.1016/0899-5362(90)90050-O.
  49. Jirah, S.; Rubidge, B.S. (2014). "Refined stratigraphy of the Middle Permian Abrahamskraal Formation (Beaufort Group) in the southern Karoo Basin". Journal of African Earth Sciences. 100: 121–135. Bibcode:2014JAfES.100..121J. doi:10.1016/j.jafrearsci.2014.06.014.
  50. Cole, D.I.; Johnson, M.R.; Day, M.O. (2016). "Lithostratigraphy of the Abrahamskraal Formation (Karoo Supergroup), South Africa". South African Journal of Geology. 119 (2): 415–424. Bibcode:2016SAJG..119..415C. doi:10.2113/gssajg.119.2.415.
  51. Damiani, R.J.; Rubidge, B.S. (2003). "A review of the South African temnospondyl amphibian record". Palaeontologia Africana. 39: 21–36.
  52. Marsicano, C.A.; Latimer, E.; Rubidge, B.; Smith, R.M.H. (2017). "The Rhinesuchidae and early history of the Stereospondyli (Amphibia: Temnospondyli) at the end of the Palaeozoic". Journal of Vertebrate Paleontology. 181 (2): 1–28. doi:10.1093/zoolinnean/zlw032.
  53. Abdala, F.; Kammerer, C.F.; Day, M.O.; Rubidge, B.S. (2014). "Adult morphology of the therocephalian Simorhinella baini from the middle Permian of South Africa and the taxonomy, paleobiogeography, and temporal distribution of the Lycosuchidae". Journal of Paleontology. 88 (6): 1139–1153. Bibcode:2014JPal...88.1139A. doi:10.1666/13-186. S2CID   129323281.
  54. 1 2 Abdala, F.; Rubidge, B.S.; van den Heever, J. (2008). "The oldest Therocephalians (Therapsida, Eutheriodontia) and the early diversification of Therapsida". Palaeontology. 51 (4): 1011–1024. Bibcode:2008Palgy..51.1011A. doi: 10.1111/j.1475-4983.2008.00784.x . S2CID   129791548.
  55. 1 2 3 4 Boonstra, L. D. (1969). "The Fauna of the Tapinocephalus Zone (Beaufort Beds of the Karoo)". Annals of the South African Museum. 56 (1): 1−73.
  56. Rubidge, B.S.; Kitching, J.W. (2003). "A new burnetiamorph (Therapsida: Biarmosuchia) from the Lower Beaufort Group of South Africa". Palaeontology. 46 (1): 199–210. Bibcode:2003Palgy..46..199R. doi:10.1111/1475-4983.00294. S2CID   129213631.
  57. 1 2 3 4 5 6 7 Smith, R.; Rubidge, B.; van de Walt, M. (2012). "Therapsid biodiversity patterns and paleoenvironments of the Karoo Basin, South Africa.". In Chinsamy-Turan, A. (ed.). Forerunners of Mammals : Radiation histology biology. Bloomington and Indianapolis: Indiana University Press. pp. 31–62. ISBN   978-0-253-35697-0.
  58. Kammerer, C.F. (2013). "A redescription of Eriphostoma microdon Broom, 1911 (Therapsida, Gorgonopsia) from the Tapinocephalus Assemblage Zone of South Africa and a review of Middle Permian gorgonopsians". In Kammerer, C.F.; Angielszyk, K.D.; Fröbisch, J. (eds.). The early evolutionary history of the Synapsida. Dordrecht: Springer. pp. 171–184. ISBN   978-9400768406.
  59. Kammerer, C.F.; Smith, R.M.H.; Day, M.O.; Rubidge, B.S. (2015). "New information on the morphology and stratigraphic range of the mid-Permian gorgonopsian Eriphostoma microdon Broom, 1911". Papers in Palaeontology. 1 (2): 201–221. Bibcode:2015PPal....1..201K. doi:10.1002/spp2.1012. S2CID   128762256.
  60. Reisz, R.R.; Dilkes, D.W.; Berman, D.S. (1998). "Anatomy and relationships of Elliotsmithia longiceps Broom, a small synapsid (Eupelycosauria, Varanopseidae) from the Late Permian of South Africa". Journal of Vertebrate Paleontology. 18 (3): 602–611. Bibcode:1998JVPal..18..602R. doi:10.1080/02724634.1998.10011087.
  61. Botha-Brink, J.; Modesto, S.P. (2007). "A mixed-age classed "pelycosaur" aggregation from South Africa: earliest evidence of parental care in amniotes?". Proceedings of the Royal Society B: Biological Sciences. 274 (1627): 2829–2834. doi:10.1098/rspb.2007.0803. PMC   2288685 . PMID   17848370.
  62. Reisz, R.R.; Modesto, S.P. (2007). "Heleosaurus sholtzi from the Permian of South Africa: A Varanopid Synapsid, Not a Diapsid Reptile". Journal of Vertebrate Paleontology. 27 (3): 734–739. doi:10.1671/0272-4634(2007)27[734:HSFTPO]2.0.CO;2. S2CID   86246959.
  63. Botha-Brink, J.; Modesto, S.P. (2009). "Anatomy and relationships of the Middle Permian Varanopid Heleosaurus scholtzi based on a social aggregation from the Karoo basin of South Africa". Journal of Vertebrate Paleontology. 29 (2): 389–400. Bibcode:2009JVPal..29..389B. doi:10.1671/039.029.0209. S2CID   84703110.
  64. Spindler, F.; Werneburg, R.; Schneider, J.W.; Luthardt, L.; Annacker, V.; Rößler, R. (2018). "First arboreal 'pelycosaur' (Synapsida : Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny". PalZ. 92 (2): 315–364. Bibcode:2018PalZ...92..315S. doi:10.1007/s12542-018-0405-9. S2CID   133846070.
  65. Modesto, S.P.; Scott, D.M.; Reisz, R.R. (2009). "A new parareptile with temporal fenestration from the Middle Permian of South Africa". Canadian Journal of Earth Sciences. 46 (1): 9–20. Bibcode:2009CaJES..46....9M. doi:10.1139/E09-001.
  66. Rubidge, B.S.; Modesto, S.; Sidor, C.; Welman, J. (1999). "Eunotosaurus africanus from the Ecca–Beaufort contact in Northern Cape Province, South Africa — implications for Karoo Basin development" (PDF). South African Journal of Science. 95: 553–555. Archived from the original (PDF) on 2011-07-16. Retrieved 2022-10-31.
  67. Modesto, S.P. (2000). "Eunotosaurus africanus and the Gondwanan ancestry of anapsid reptiles". Palaeontologia Africana. 36: 15–20.
  68. Bever, G.S.; Lyson, T.R.; Field, D.J.; Bhullar, B-A.S. (2015). "Evolutionary origin of the turtle skull". Nature. 525 (7568): 239–242. Bibcode:2015Natur.525..239B. doi:10.1038/nature14900. PMID   26331544. S2CID   4401555.
  69. Lyson, T.R; Rubidge, B.S.; Scheyer, T.M.; de Queiroz, K.; Schachner, E.R.; Smith, R.M.H.; Botha-Brink, J.; Bever, G.S. (2016). "Fossorial origin of the turtle shell". Current Biology. 26 (14): 1887–1894. Bibcode:2016CBio...26.1887L. doi: 10.1016/j.cub.2016.05.020 . PMID   27426515. S2CID   3935231.
  70. Lichtig, A.J.; Lucas, S.G. (2021). "Chinlechelys from the Upper Triassic of New Mexico, USA, and the oigin of turtles". Palaeontologia Electronica. 24 (1): a13. doi: 10.26879/886 . S2CID   233454789.
  71. 1 2 3 4 5 6 Neumann, S. (2020). Taxonomic Revision of the Short-Snouted Tapinocephalid Dinocephalia (Amniota-Therapsida) The Key to Understanding Middle Permian Tetrapod Biodiversity (Ph.D. thesis). Johannesburg: University of the Witwatersrand. pp. 1–411.
  72. 1 2 Broom, R. (1928). "On Tapinocephalus and two other dinocephalians". Annals of the South African Museum. 22: 427–438.
  73. Kammerer, C.; Sidor, C.A. (2002). "Replacement names for the therapsid genera Criocephalus Boom 1928 and Oliviera Brink 1965". Palaeontologia Africana. 38: 71–72.
  74. Gregory, W.K. (1926). "The skeleton of Moschops capensis Broom, a Dinocephalian Reptile from the Permian of South Africa". Bulletin of the American Museum of Natural History. 56 (3): 179–251. hdl:2246/1323.
  75. 1 2 Boonstra, L.D. (1957). "The moschopid skulls in the South African Museum". Annals of the South African Museum. 44: 15–38.
  76. 1 2 3 Boonstra, L.D. (1963). "Diversity within the South African Dinocephalia". South African Journal of Science. 59: 196–207.
  77. Güven, S.; Rubidge, B.S.; Abdala, F. (2013). "Cranial morphology and taxonomy of South African Tapinocephalidae (Therapsida, Dinocephalia): the case of Avenantia and Riebeeckosaurus". Palaeontologia Africana. 48: 24–33.
  78. Boonstra, L.D. (1953). "The cranial morphology and taxonomy of the tapinocephalid genus Struthiocephalus". Annals of the South African Museum. 42: 32–53. Archived from the original on 2022-10-31. Retrieved 2022-10-31.
  79. Brink, A.S. (1959). "Struthiocephalus kitchingi sp. nov" (PDF). Palaeontologia Africana. 5: 39–56.[ permanent dead link ]
  80. Boonstra, L.D. (1965). "The skull of Struthiocephalus kitchingi". Annals of the South African Museum. 48 (14): 251–265.
  81. Boonstra, L.D. (1956). "The skull of Tapinocephalus and its near relatives". Annals of the South African Museum. 42: 137–169.
  82. Haughton, S.H. (1929). "On some new therapsid genera". Annals of the South African Museum. 28: 55–78.
  83. Rubidge, B.S.; van den Heever, J.A. (1997). "Morphology and systematic position of the dinocephalian Styracocephalus platyrhynchus". Lethaia. 30 (2): 157–168. Bibcode:1997Letha..30..157R. doi:10.1111/j.1502-3931.1997.tb00457.x.
  84. Fraser-King, S.W.; Benoit, J.; Day, M.O.; Rubidge, B.S. (2019). "Cranial morphology and phylogenetic relationship of the enigmatic dinocephalian Styracocephalus platyrhynchus from the Karoo Supergroup, South Africa". Palaeontologia Africana. 54: 14–29. hdl:10539/28128.
  85. Broom, R. (1929). "On the carnivorous mammal-like reptiles of the family Titanosuchidae". Annals of the Transvaal Museum. 13: 9–36.
  86. Lee, M.S.Y (1997). "A taxonomic revision of pareiasaurian reptiles: implications for Permian terrestrial palaeoecology". Modern Geology. 21 (1): 231–298. doi:10.1111/j.1096-3642.1997.tb01279.x. S2CID   84459755.
  87. Van den Brandt, M.J.; Abdala, F.; Rubidge, B.S. (2020). "Cranial morphology and phylogenetic relationships of the Middle Permian pareiasaur Embrithosaurus schwarzi from the Karoo Basin of South Africa". Zoological Journal of the Linnean Society. 188: 202–241. doi:10.1093/zoolinnean/zlz064.
  88. Van den Brandt, M.J.; Rubidge, B.S.; Benoit, J.; Abdala, F. (2021). "Cranial morphology of the middle Permian pareiasaur Nochelesaurus alexandri from the Karoo Basin of South Africa". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 112 (1): 29–49. Bibcode:2021EESTR.112...29V. doi: 10.1017/S1755691021000049 . S2CID   233839915.
  89. Van den Brandt, M.J.; Benoit, J.; Abdala, F.; Rubidge, B.S. (2021). "Postcranial morphology of the South African middle Permian pareiasaurs from the Karoo Basin of South Africa". Palaeontologia Africana. 55: 1–91.
  90. Van den Brandt, M.J.; Abdala, F.; Benoit, J.; Day, M.O.; Groenewald, D.P.; Rubidge, B.S. (2022). "Taxonomy, phylogeny and stratigraphical ranges of middle Permian pareiasaurs from the Karoo Basin of South Africa". Journal of Systematic Palaeontology. 19 (19): 1367–1393. doi:10.1080/14772019.2022.2035440. S2CID   247889546.
  91. Modesto, S.P.; Rubidge, B.S.; Welman, J. (1999). "The most basal anomodont therapsid and the primacy of Gondwana in the evolution of the anomodonts". Proceedings of the Royal Society B: Biological Sciences. 266 (1417): 331–337. doi:10.1098/rspb.1999.0642. PMC   1689688 .
  92. Cisneros, Juan Carlos; Abdala, Fernando; Jashashvili, Tea; de Oliveira Bueno, Ana; Dentzien-Dias, Paula (2015). "Tiarajudens eccentricus and Anomocephalus africanus, two bizarre anomodonts (Synapsida, Therapsida) with dental occlusion from the Permian of Gondwana". Royal Society Open Science. 2 (150090): 150090. Bibcode:2015RSOS....250090C. doi:10.1098/rsos.150090. PMC   4632579 . PMID   26587266. S2CID   25503025.
  93. Brinkman, D. (1981). "The structure and relationships of the dromasaurs (Reptila: Therapsida)". Breviora. 465: 1–34.
  94. Angielczyk, K.D.; Rubidge, B.S.; Day, M.O.; Lin, F. (2016). "A reevaluation of Brachyprosopus broomi and Chelydontops altidentalis, dicynodonts (Therapsida, Anomodontia) from the middle Permian Tapinocephalus Assemblage Zone of the Karoo Basin, South Africa". Journal of Vertebrate Paleontology. 36 (2): e1078342. Bibcode:2016JVPal..36E8342A. doi:10.1080/02724634.2016.1078342. S2CID   130520407.
  95. Modesto, S.; Rubidge, B.; Visser, I.; Welman, J. (2003). "A new basal dicynodont from the Upper Permian of South Africa". Palaeontology. 46 (Part 1): 211–223. Bibcode:2003Palgy..46..211M. doi: 10.1111/1475-4983.00295 . S2CID   128620351.
  96. Angielczyk, K.D.; Rubidge, B.S. (2009). "The Permian Dicynodont Colobodectes cluveri (Therapsida, Anomodontia), with notes on Its Ontogeny and Stratigraphic Range in the Karoo Basin, South Africa". Journal of Vertebrate Paleontology. 29 (4): 1162–1173. Bibcode:2009JVPal..29.1162A. doi:10.1671/039.029.0431. S2CID   128771787.
  97. King, G.M. (1993). "How many species of Diictodon were there ?". Annals of the South African Museum. 102: 303–325.
  98. Angielczyk, K.D.; Rubidge, B.S. (2012). "Skeletal morphology, phylogenetic relationships and stratigraphic range of Eosimops newtoni Broom, 1921, a pylaecephalid dicynodont (Therapsida, Anomodontia) from the Middle Permian of South Africa". Journal of Systematic Palaeontology. 11 (2): 191–231. doi:10.1080/14772019.2011.623723. S2CID   129393393.
  99. Kenneth D. Angielczyk; Bruce S. Rubidge (2010). "A new pylaecephalid dicynodont (Therapsida, Anomodontia) from the Tapinocephalus Assemblage Zone, Karoo Basin, Middle Permian of South Africa". Journal of Vertebrate Paleontology. 30 (5): 1396–1409. Bibcode:2010JVPal..30.1396A. doi:10.1080/02724634.2010.501447. S2CID   129846697.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  100. Watson, D.M.S. (1921). "The Bases of Classification of the Theriodontia". Proceedings of the Zoological Society of London. 91: 35–98. doi:10.1111/j.1096-3642.1921.tb03250.x.
  101. Efremov, I.A. (1954). "[The terrestrial vertebrate fauna from the Permian copper sandstones of the western Fore-Urals]". Trudy Paleontologicheskogo Instituta, Akademiya Nauk SSSR. 54: 1-416 [in Russian].
  102. Hopson, J.A.; Barghusen, H.R. (1986). "An analysis of therapsid relationships". In Hotton III, N.; MacLean, P.D.; Roth, J.J.; Roth, E.C. (eds.). The Ecology and Biology of the Mammal-Like Reptiles. Washington, D.C.: Smithsonian Institution Press. pp. 83–106. ISBN   978-0874745245.
  103. King, G. (1988). Anomodontia (Handbuch der Paläoherpetologie, 17C). Stuttgart: Gustav Fischer. pp. 1–174. ISBN   978-0895742506.
  104. Ivakhnenko, M.F. (1995). "Primitive Late Permian dinocephalian-titanosuchids of Eastern Europe". Paleontological Journal. 29: 120–129.
  105. Ivakhnenko, M.F. (2003). "Eotherapsids from the East European Placket (Late Permian)". Paleontological Journal. 37: 339–465.
  106. Liu, J. (2013). "Osteology, Ontogeny, and Phylogenetic Position of Sinophoneus yumenensis (Therapsida, Dinocephalia) from the Middle Permian Dashankou Fauna of China". Journal of Vertebrate Paleontology. 33 (6): 1394–1407. Bibcode:2013JVPal..33.1394L. doi:10.1080/02724634.2013.781505. S2CID   85577626.