Candoluminescence

Last updated

Candoluminescence is the light given off by certain materials at elevated temperatures (usually when exposed to a flame) that has an intensity at some wavelengths which can, through chemical action in flames, be higher than the blackbody emission expected from incandescence at the same temperature. [1] The phenomenon is notable in certain transition-metal and rare-earth oxide materials (ceramics) such as zinc oxide, cerium(IV) oxide and thorium dioxide.

Contents

History

The existence of the candoluminescence phenomenon and the underlying mechanism have been the subject of extensive research and debate since the first reports of it in the 1800s. The topic was of particular interest before the introduction of electric lighting, when most artificial light was produced by fuel combustion. The main alternative explanation for candoluminescence is that it is simply "selective" thermal emission in which the material has a very high emissivity in the visible spectrum and a very weak emissivity in the part of the spectrum where the blackbody thermal emission would be highest; in such a system, the emitting material will tend to retain a higher temperature because of the lack of invisible radiative cooling. In this scenario, observations of candoluminescence would simply have been underestimating the temperature of the emitting material. Several authors in the 1950s came to the view that candoluminescence was simply an instance of selective thermal emission, and one of the most prominent researchers in the field, V. A. Sokolov, once advocated eliminating the term from the literature in his noted 1952 review article, [2] only to revise his view several years later. [1] The modern scientific consensus is that candoluminescence does occur, that it is not always simply due to selective thermal emission, but the mechanisms vary depending on the materials involved and the method of heating, particularly the type of flame and the position of the material relative to the flame. [1]

Mechanism

When the fuel in a flame combusts, the energy released by the combustion process is deposited in combustion products, usually molecular fragments called free radicals. The combustion products are excited to a very high temperature called the adiabatic flame temperature (that is, the temperature before any heat has been transferred away from the combustion products). This temperature is usually much higher than the temperature of the air in the flame or which an object inserted into the flame can reach. When the combustion products lose this energy by radiative emission, the radiation can thus be more intense than that of a lower-temperature blackbody inserted into the flame. The exact emission process involved varies with the material, the type of fuels and oxidizers, and the type of flame, though in many cases it is well established that the free radicals undergo radiative recombination. [3] This energetic light emitted directly from the combustion products may be observed directly (as with a blue gas flame), depending on the wavelength, or it may then cause fluorescence in the candoluminescent material. Some free-radical recombinations emit ultraviolet light, which is only observable through fluorescence.

One important candoluminescence mechanism is that the candoluminescent material catalyzes the recombination, enhancing the intensity of the emission. [1] Extremely narrow-wavelength emission by the combustion products is often an important feature in this process, because it reduces the rate at which the free radicals lose heat to radiation at invisible or non-fluorescence-exciting wavelengths. In other cases, the excited combustion products are thought to directly transfer their energy to luminescent species in the solid material. In any case, the key feature of candoluminescence is that the combustion products lose their energy to radiation without becoming thermalized with the environment, which allows the effective temperature of their radiation to be much higher than that of thermal emission from materials in thermal equilibrium with the environment.

Welsbach lights

Early in the 20th century, there was vigorous debate over whether candoluminescence is required to explain the behavior of Welsbach gas mantles or limelight. One counterargument was that since thorium oxide (for example) has much lower emissivity in the near infrared region than the shorter wavelength parts of the visible spectrum, it should not be strongly cooled by infrared radiation, and thus a thorium-oxide mantle can get closer to the flame temperature than can a blackbody material. The higher temperature would then lead to higher emission levels in the visible portion of the spectrum, without invoking candoluminescence as an explanation. [4]

Another argument was that the oxides in the mantle might be actively absorbing the combustion products and thus being selectively raised to combustion-product temperatures. [5] Some more recent authors seem to have concluded that neither Welsbach mantles nor limelight involve candoluminescence (e.g. Mason [3] ), but Ivey, in an extensive review of 254 sources, [1] concluded that catalysis of free-radical recombination does enhance the emission of Welsbach mantles, such that they are candoluminescent.

See also

Related Research Articles

<span class="mw-page-title-main">Fluorescence</span> Emission of light by a substance that has absorbed light

Fluorescence is one of two kinds of emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colored visible light. The color of the light emitted depends on the chemical composition of the substance. Fluorescent materials generally cease to glow nearly immediately when the radiation source stops. This distinguishes them from the other type of light emission, phosphorescence. Phosphorescent materials continue to emit light for some time after the radiation stops.

<span class="mw-page-title-main">Radiation</span> Waves or particles moving through space

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:

<span class="mw-page-title-main">Spectroscopy</span> Study involving matter and electromagnetic radiation

Spectroscopy is the field of study that measures and interprets electromagnetic spectrum. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.

<span class="mw-page-title-main">Black body</span> Idealized physical body that absorbs all incident electromagnetic radiation

A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light. In contrast, a white body is one with a "rough surface that reflects all incident rays completely and uniformly in all directions."

<span class="mw-page-title-main">Thermal radiation</span> Electromagnetic radiation generated by the thermal motion of particles

Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared (IR) spectrum, though above around 525 °C (977 °F) enough of it becomes visible for the matter to visibly glow. This visible glow is called incandescence. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.

<span class="mw-page-title-main">Flame</span> Visible, gaseous part of a fire

A flame is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction made in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density, they are then considered plasma.

<span class="mw-page-title-main">Emission spectrum</span> Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state. The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

<span class="mw-page-title-main">Phosphorescence</span> Process in which energy absorbed by a substance is released relatively slowly in the form of light

Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs. Instead, a phosphorescent material absorbs some of the radiation energy and reemits it for a much longer time after the radiation source is removed.

<span class="mw-page-title-main">Gas mantle</span> Device for generating bright light when heated by a flame

An incandescent gas mantle, gas mantle or Welsbach mantle is a device for generating incandescent bright white light when heated by a flame. The name refers to its original heat source in gas lights which illuminated the streets of Europe and North America in the late 19th century. Mantle refers to the way it hangs like a cloak above the flame. Gas mantles were also used in portable camping lanterns, pressure lanterns and some oil lamps.

<span class="mw-page-title-main">Kirchhoff's law of thermal radiation</span> Law of wavelength-specific emission and absorption

In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium. It is a special case of Onsager reciprocal relations as a consequence of the time reversibility of microscopic dynamics, also known as microscopic reversibility.

<span class="mw-page-title-main">Thorium dioxide</span> Chemical compound

Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is mainly a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.

<span class="mw-page-title-main">Black-body radiation</span> Thermal electromagnetic radiation

Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body. It has a specific, continuous spectrum of wavelengths, inversely related to intensity, that depend only on the body's temperature, which is assumed, for the sake of calculations and theory, to be uniform and constant.

<span class="mw-page-title-main">Emissivity</span> Capacity of an object to radiate electromagnetic energy

The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation that most commonly includes both visible radiation (light) and infrared radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects is easily visible to the eye.

<span class="mw-page-title-main">Stokes shift</span> Difference between absorption and emission peak maxima

Stokes shift is the difference between positions of the band maxima of the absorption and emission spectra of the same electronic transition. It is named after Irish physicist George Gabriel Stokes.

Low emissivity refers to a surface condition that emits low levels of radiant thermal (heat) energy. All materials absorb, reflect, and emit radiant energy according to Planck's law but here, the primary concern is a special wavelength interval of radiant energy, namely thermal radiation of materials. In common use, especially building applications, the temperature range of approximately -40 to +80 degrees Celsius is the focus, but in aerospace and industrial process engineering, much broader ranges are of practical concern.

Thermophotovoltaic (TPV) energy conversion is a direct conversion process from heat to electricity via photons. A basic thermophotovoltaic system consists of a hot object emitting thermal radiation and a photovoltaic cell similar to a solar cell but tuned to the spectrum being emitted from the hot object.

<span class="mw-page-title-main">Outgoing longwave radiation</span> Energy transfer mechanism which enables planetary cooling

In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It is also referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.

<span class="mw-page-title-main">Infrared heater</span> Device designed to create radiative heat

An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

<span class="mw-page-title-main">Flare (countermeasure)</span> Aerial defence against heat-seeking missiles

A flare or decoy flare is an aerial infrared countermeasure used by an aircraft to counter an infrared homing ("heat-seeking") surface-to-air missile or air-to-air missile. Flares are commonly composed of a pyrotechnic composition based on magnesium or another hot-burning metal, with burning temperature equal to or hotter than engine exhaust. The aim is to make the infrared-guided missile seek out the heat signature from the flare rather than the aircraft's engines.

<span class="mw-page-title-main">Shockley–Queisser limit</span> Maximum theoretical efficiency of a solar cell

In physics, the radiative efficiency limit is the maximum theoretical efficiency of a solar cell using a single p–n junction to collect power from the cell where the only loss mechanism is radiative recombination in the solar cell. It was first calculated by William Shockley and Hans-Joachim Queisser at Shockley Semiconductor in 1961, giving a maximum efficiency of 30% at 1.1 eV. The limit is one of the most fundamental to solar energy production with photovoltaic cells, and is one of the field's most important contributions.

References

  1. 1 2 3 4 5 H.F. Ivey, "Candoluminescence and radical-excited luminescence," Journal of Luminescence 8:4, pp. 271–307 (1974)
  2. Соколов В. А. (1952). "Кандолюминесценция (Candoluminescence)" (PDF). Успехи физических наук (Russian Journal of Physics). XLVII (4): 537–560. doi:10.3367/UFNr.0047.195208c.0537. ISSN   0042-1294.
  3. 1 2 D. M. Mason, "Candoluminescence" Archived 2013-02-28 at the Wayback Machine in Proc. Am. Chem. Soc., Div. Fuel Chem., V. 11:2, pp. 540–554, (1967).
  4. us 4539505,A. Riseberg, Leslie,"Candoluminescent electric light source",issued 3 Sep 1985 (Note, however, that patents are not peer-reviewed sources.)
  5. Comment by C. P. Steinmetz to H. E. Ives and W. W. Coblentz, "The Light of the Firefly" in Transactions of the Illuminating Engineering Society V. 4, p. 677–679, (1909).