Science and technology is one of Hungary's most developed sectors. [2] The country spent 1.4% of its gross domestic product (GDP) on civil research and development in 2015, which is the 25th-highest ratio in the world. [3] Hungary ranks 32nd among the most innovative countries in the Bloomberg Innovation Index, standing before Hong Kong, Iceland or Malta. [4] Hungary was ranked 36th in the Global Innovation Index in 2024. [5]
In 2014, Hungary counted 2,651 full-time-equivalent researchers per million inhabitants, steadily increasing from 2,131 in 2010 and compares with 3,984 in the US or 4,380 in Germany. [6] Hungary's high technology industry has benefited from both the country's skilled workforce and the strong presence of foreign high-tech firms and research centres. Hungary also has one of the highest rates of filed patents, the 6th highest ratio of high-tech and medium high-tech output in the total industrial output, the 12th-highest research FDI inflow, placed 14th in research talent in business enterprise and has the 17th-best overall innovation efficiency ratio in the world. [7]
The key actor of research and development in Hungary is the National Research, Development and Innovation Office (NRDI Office), which is a national strategic and funding agency for scientific research, development and innovation, the primary source of advice on RDI policy for the Hungarian government, and the primary RDI funding agency. Its role is to develop RDI policy and ensure that Hungary adequately invest in RDI by funding excellent research and supporting innovation to increase competitiveness and to prepare the RDI strategy of the Hungarian Government, to handle the National Research, Development and Innovation Fund, and represents the Hungarian Government and a Hungarian RDI community in international organizations. [8]
The Hungarian Academy of Sciences and its research network is another key player in Hungarian R&D and it is the most important and prestigious learned society of Hungary, with the main responsibilities of the cultivation of science, dissemination of scientific findings, supporting research and development and representing Hungarian science domestically and around the world. [9]
A mining school called "Berg Schola", the world's first institute of technology was founded in Selmecbánya, Kingdom of Hungary [10] (today Banská Štiavnica, Slovakia), in 1735. Its legal successor is the University of Miskolc and the University of Sopron in Hungary.
BME University is considered the world's oldest institute of technology which has university rank and structure. It was the first institute in Europe to train engineers at university level. [11]
Among Hungary's numerous research universities, the Eötvös Loránd University , founded in 1635, is one of the largest and the most prestigious [12] public higher education institutions in Hungary. The 28,000 students at ELTE are organized into eight faculties, and into research institutes located throughout Budapest. ELTE is affiliated with 5 Nobel laureates, as well as winners of the Wolf Prize, Fulkerson Prize and Abel Prize, the latest of which was Abel Prize winner Endre Szemerédi in 2012.
Semmelweis University in the recently released QS World University Rankings 2016 listed among the world's best 151–200 universities in the categories of medicine and pharmacy. According to the international ranking in the field of medicine Semmelweis University ranked first among the Hungarian universities. The "Modern Medical Technologies at Semmelweis University" project ensuring institution's place among the leading research universities in four main areas: Personalised medicine; Imaging processes and bioimaging: from molecule to the human being; Bio-engineering and nanomedicine; Molecular medicine.
Budapest University of Technology and Economics's research activities encouraged and is present on all levels from the B.Sc. through to the doctoral level. During the 1980s the BUTE was among the first in the Eastern bloc to recognise the importance of participating in research activities with institutions in Western Europe. Consequently, the university has the most well-established research relationships with Western European universities. There are many famous alumni at university: Dennis Gabor who was the inventor of holography got his Nobel Prize in Physics in 1971, George Oláh got his Nobel Prize in Chemistry in 1994. Nowadays the university has 110 departments, 1100 lecturers, 400 researchers.
University of Szeged internationally acknowledged, competitive research activities are essential parts of its educational mission, and it is particularly important to ensure the institution's position as a research university. Its research and creative activities include basic and applied research, creative arts, product and service development. University of Debrecen with a student body of about 30 thousand is one of the largest institutions of higher education in Hungary and its priority areas of research include: molecular science; physical, computational and material science; medical, health, environmental and agricultural science; linguistics, culture and bioethics. University of Pécs is one of the leading research universities in the country with a huge professional research background. The Szentágothai Research Centre of the University of Pécs is covers all aspects of education, research and innovation in the fields of biomedical, natural and environmental sciences. The infrastructure, instrumentation and expertise of the 22 research groups operating on the premises provide an excellent basis to become a well-known, leading research facility in Hungary as well as in Central Europe with an extensive and fruitful collaboration network.
Hungarian Academy of Sciences's research network also contributes significantly to research output of Hungary. It comprises 15 legally independent research institutions and more than 130 research groups at universities co-financed by the academy. This research network focusing above all on discovery research is unparalleled in Hungary, accounting for one-third of all scientific publications produced in the country. Citation indices of publications posted by the academy's researchers surpass the Hungarian average by 25.5%. The research network addresses discovery and targeted research, in cooperation with universities and corporations. The main components of the network are the MTA Szeged Research Centre for Biology, the MTA Institute for Computer Science and Control, the MTA Rényi Institute of Mathematics, the MTA Research Centre for Natural Sciences, the MTA Institute of Nuclear Research, the MTA Institute of Experimental Medicine, MTA Wigner Research Centre for Physics, the MTA Centre for Energy Research and MTA Research Centre for Astronomy and Earth Sciences (involved with Konkoly Observatory). [13]
According to the HVCA (Hungarian Venture Capital and Private Equity Association) report joint efforts of the venture capital and private equity industry and the Hungarian government, the access of Hungarian enterprises to venture capital and private equity funding could be significantly increased. During the past two decades these financial intermediaries have also played an increasingly important role in the Hungarian economy. During this period, venture capital and private equity funds invested close to 4 billion US Dollars into more than 400 Hungarian enterprises.
However, so-called buyout transactions have accounted for about two thirds of the total volume of those investments, which were aimed at the acquisition of shares in mature companies that have been operating profitably for several years. The volume of investments in early and expansive stage companies was significantly lower. Only about 30% of the total volume of investments was directed at companies in the expansive stage and less than 5% at early stage companies. This is also reflected by the fact that over the last two decades slightly more than 10% of the total volume of venture capital and private equity investments came from funds focusing on early stage companies. The remaining close to 90% was invested by private equity funds focusing on more mature companies with greater economic strength. As for the number of transactions, companies in the expansive stage were targeted by the largest number of venture capital and private equity investments: such investments accounted for almost 60% of Hungarian transactions. Nearly a third of transactions involved early stage companies. Buy-out deals represented approximately 10% of transactions by number. Several factors have contributed to this growth. These include tax exemptions on Hungarian venture capital, funds established in conjunction with large international banks and financial companies and the involvement of major organizations desirous to capitalize on the strengths of Hungarian start up and high-tech companies. In recent years, the share of venture capital invested in the growth stages of enterprises has flourished at the expense of early stage investments. [14]
Since the first Hungarian won a Nobel Prize in 1905, the country has added a further 14 to its cache. [15] With scientists, writers and economists all honored in the prestigious awards:
Year | Winner | Field | Contribution |
---|---|---|---|
1905 | Philipp Lenard | Physics | "for his work on cathode rays" |
1914 | Robert Bárány | Medicine | "for his work on the physiology and pathology of the vestibular apparatus" |
1925 | Richard Adolf Zsigmondy | Chemistry | "for his demonstration of the heterogeneous nature of colloid solutions and for the methods he used, which have since become fundamental in modern colloid chemistry" |
1937 | Albert Szent-Györgyi | Medicine | "for his discoveries in connection with the biological combustion processes, with special reference to vitamin C and the catalysis of fumaric acid" |
1943 | George de Hevesy | Chemistry | "for his work on the use of isotopes as tracers in the study of chemical processes" |
1961 | Georg von Békésy | Medicine | "for his discoveries of the physical mechanism of stimulation within the cochlea" |
1963 | Eugene Wigner | Physics | "for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles" |
1971 | Dennis Gabor | Physics | "for his invention and development of the holographic method" |
1986 | John Polanyi | Chemistry | "for their contributions concerning the dynamics of chemical elementary processes" |
1994 | George Olah | Chemistry | "for his contribution to carbocation chemistry" |
1994 | John Harsanyi | Economics | "pioneering analysis of equilibria in the theory of non-cooperative games" |
2002 | Imre Kertész | Literature | "for writing that upholds the fragile experience of the individual against the barbaric arbitrariness of history" |
2004 | Avram Hershko | Chemistry | "for the discovery of ubiquitin-mediated protein degradation" |
2023 | Katalin Karikó | Medicine | "for the development of mRNA-based vaccine" |
2023 | Ferenc Krausz [16] | Physics | "for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter" |
Hungary has excelled at the scientific Olympiads, ever since the beginnings. Best result is in maths with absolute cumulative 4th place until 2019, behind China, Russia and US. Per capita result is a world leader. [17] Results in physics is just somewhat weaker. 9th place (3rd best in Europe). Per capita result is also a world leader. Chemistry (1968–2019) results give 8th place and 4th place in Europe. This is also a world leader per capita. However the results have weakened lately.
In August 1939, Szilárd approached his old friend and collaborator Albert Einstein and convinced him to sign the Einstein–Szilárd letter, lending the weight of Einstein's fame to the proposal. The letter led directly to the establishment of research into nuclear fission by the U.S. government and ultimately to the creation of the Manhattan Project. (Szilárd, with Enrico Fermi, patented the nuclear reactor).
Important names in the 18th century are Maximilian Hell (astronomer), János Sajnovics (linguist), Matthias Bel (polyhistor), Sámuel Mikoviny (engineer) and Wolfgang von Kempelen (polyhistor and co-founder of comparative linguistics). Physicist and engineer Ányos Jedlik invented the first electric motor (1828), the dynamo, self-excitation, the impulse generator, and the cascade connection of capacitors. An important name in 19th-century physics is Joseph Petzval, one of the founders of modern optics. The invention of the transformer (by Ottó Bláthy, Miksa Déri and Károly Zipernowsky), the AC electricity meter, and electricity distribution systems with parallel-connected power sources decided the future of electrification in the war of the currents, which resulted in the global triumph of alternating current systems over the earlier direct current systems. Roland von Eötvös discovered the weak equivalence principle (one of the cornerstones in Einsteinian relativity). Radó von Kövesligethy discovered laws of black-body radiation before Planck and Wien. [28] [29]
Hungary is famous for its excellent mathematics education, which has trained numerous outstanding scientists. Famous Hungarian mathematicians include father Farkas Bolyai and son János Bolyai, designer of modern geometry (non-Euclidean geometry) 1820–1823. Together with John von Neumann, János Bolyai is considered to be the greatest Hungarian mathematician ever. The most prestigious Hungarian scientific award is named in honor of János Bolyai. John von Neumann was a pioneer in quantum theory, game theory and digital computing, and he was the key mathematician on the Manhattan Project. Mathematician Paul Erdős is famed for publishing in over forty languages, and his Erdős numbers are still tracked. [30]
Many Hungarian scientists, including Zoltán Bay, Victor Szebehely (practical solution to the three-body problem; Newton the two-body problem), Mária Telkes, Imre Izsak, Louis W. Parker, Erdős, von Neumann, Leó Szilárd, Eugene Wigner, Theodore von Kármán and Edward Teller, emigrated to the United States and made valuable contributions there. (Some Hungarian scientists went to Germany instead: engineer/scientist István Szabó (1906–1980), for example. [31] (Some went to Soviet Union:Robert Bartini). István Juhász, inventor of one of the earliest electro-mechanical computers, Gamma-Juhász, [32] [33] stayed at home and was ostracized) An influential cause of scientist emigration was the 1920 Treaty of Trianon after World War I, by which Hungary, diminished by the treaty, became unable to support large-scale, costly scientific research. At least fifteen (15–20) Hungarian or Hungarian-born scientists received the Nobel Prize: von Lenárd, Bárány, Zsigmondy, von Szent-Györgyi, de Hevesy, von Békésy, Wigner, Gábor, Polányi, Oláh, Harsányi, Herskó and in 2023: Katalin Karikó and Ferenc Krausz. Most of them had emigrated, mostly because of persecution by communist and/or fascist regimes.[ citation needed ] A significant group of Hungarian dissident scientists of Jewish descent who settled in the United States in the first half of the 20th century were called The Martians . [34]
Béla Gáspár patented the first one-strip fullcolor film: Gasparcolor. Names in psychology are János Selye founder of Stress-theory and Csikszentmihalyi founder of Flow- theory. Tamás Roska is co-inventor of CNN (cellular neural network).
Some internationally well-known figures of today include: mathematician László Lovász, physicist Albert-László Barabási, physicist Ferenc Krausz, chemist Julius Rebek, chemist Árpád Furka, biochemist Árpád Pusztai and the highly controversial former NASA-physicist Ferenc Miskolczi, who denies the green-house effect. [35] According to Science Watch: In Hadron research Hungary has most citations per paper in the world. [36] In 2011 neuroscientists György Buzsáki, Tamás Freund and Peter Somogyi were awarded with The Brain Prize ("Danish Nobel Prize" in neurology)" for "brain circuits involved in memory". [37] Péter Horváth, [38] in Szeged, is a biophysicist, explaining minimal changes in a cell.
After the fall of the communist dictatorship (1989), a new scientific prize, the János Bolyai Creative Award (Bolyai János alkotói díj), was established (1997), politically unbiased and of the highest international standard. Tibor Gánti got full recognition first after his death for his Chemoton-theory which explains how life started.
This section may require copy editing for grammar, style, cohesion, tone, or spelling.(November 2024) |
Year | Events | |||
---|---|---|---|---|
2001 | chemist Csaba Horváth | Separation Science and Technology Award | "father of HPLC" | |
2001 | chemist | National Medal of Science As 11th hungarian | 1st Theodore von Kármán (1962) 2nd Eugene Wigner (1968) 3rd Edward Teller (1984) | |
2002 | chemist Julius Rebek | Chemical Pioneer Award | as 1st hungarian | |
2002 | physicist | Wittgenstein Prize | ||
2003 | chemist Tibor Gánti | Chemoton | The Principles of Life (Oxford pUniversity Press – 2003) | |
2004 | chemist Zoltan Nusser | Lieben Prize Austrian prize to former Austro-Hungarian lands. | as 1st hungarian since 2004 | |
2004 | chemist | Nobel Prize | chemistry: as 7th hungarian | |
2005 | mathematician Peter Lax (US) | Abel prize 1st hungarian | ||
2006/7 | chemistry | Wolf Prize | hungarian-jewish born in CZ | |
2006 | mathematician Gábor Domokos and Péter Várkonyi | created a new geometrical shape: Gömböc | ||
2008 | mathematician | C&C prize. [39] [ circular reference ] | ||
2008 | physicist | National Medal of Science (US) As 11th? hungarian | 5th: Paul Gyorgyi 75 6th:Peter C. Goldmark 76 7th:Lax 86 8th:Bott 87 9th:Stigler 87 10th: Friedman 88 | |
2009 | physicist (US) | James Clerk Maxwell Prize for Plasma Physics 1st hungarian | ||
2009 | neuroscientist Peter Somogyi | Feldberg Foundation 2nd hungarian 1st György Radda | ||
2009 | chemist Csaba Pal | Lieben Prize | as 2nd hungarian since 2004 | |
2010 | mathematician | Kyoto Prize | as 3rd hungarian 1st Rudolf Kálmán 2nd György Ligeti | |
2011 | chemist Veronica Vaida (Transylvanian-hungarian) | E. Bright Wilson Award (2011) | ||
2011 | chemist Julius Rebek (US) | William H. Nichols Medal 1st hung. | ||
2011 | neuroscientists György Buzsáki (US), Peter Somogyi (UK) & Tamas Freund | Inaugural European Brain Award (Dk) | ||
2012 | mathematician | Abel prize | 2nd hung. | |
2012 | mathematician László Lovász won the | Fulkersson prize | (2nd time) | |
2013 | physicist Miklos Porkolab (US) | Hannes Alfvén Prize | 1st hung. | |
2013 | physicist | Otto Hahn Prize | ||
2013 | mathematician | Claude E. Shannon Award | 2nd hung. 1st:Imre Cziszár | |
2019 | mathematician | Claude E. Shannon Award | 3rd hung. | |
2015 | physicist | Thomson Reuters Citation Laureate | ||
2015 | physicist Attila Krasznahorkay | might have found the Fifth force | ||
2015 | chemist | William H. Nichols Medal | 2nd hung. | |
2016 | mathematician Illes Farkas | Lieben Prize | as 4th hungarian since 2004 | |
2017 | mathematician | Shaw prize | ||
2017 | mathematician | Bôcher prize | 2nd hung. 1st: John von Neumann | |
2018 | mathematician | Leibniz Award | 3rd hungarian 1st Géza Alföldy | |
2018 | physicist | Humboldt researc award. [41] | ||
2018 | neuroscientist | W. Alden Spencer Award | ||
2018 | neuroscientist | Bressler Prize, [42] | ||
2019 | physicist | Videodiagnostics for fusionenergy [43] | ||
2019 | mathematician | EPS Statistical and Nonlinear Physics Prize | ||
2019 | neuroscientist | Cloëtta Prize | 1st hungarian | |
2019 | neuroscientist | Louis-Jeantet Prize for Medicin | 1st hung. | |
2020 | neuroscientist | Körber European Science Prize | 4th hung. 1st: Paul Rácz/Jánossy 2nd: Dudits | |
2020 | mathematician Gábor Domokos et al. | Plato: Earth is made up of cubes proved | ||
2020 | physicist | Lars Onsager Prize (US) [44] | 1st hungarian | |
2020 | neuroscientistì György Buzsáki (US) | Ralph W. Gerard Prize | as 2nd hungarian | |
2020 | biochemist | Rosenstiel Award [45] the scientist behind the Covid-vaccine [46] | ||
2020 | physicists Tamás Csörgö, Tamás Novák, András Ster, István Szanyi et al. [47] et al. [48] [49] [50] | Odderon discovery | ||
2021 chemist | Veronica Vaida | Chemical Pioneer Award | As 4th hungarian | |
2021 | mathematician | Abel Prize | 3rd hung. | |
2021 | physicist | EPS Statistical and Nonlinear Physics Prize | 1st hungarian | |
2021 | István Peták | Future Unicorn Award [51] | ||
2021 | Örs Legeza physicist | Hans Fischer Senior Award and Fellowship TUM-IAS (2021) | ||
2021 | biochemist | BBVA Foundation Frontiers of Knowledge Awards gives HUN 1st place/capita | 4th hung. & gives HUN 1st place/capita 1st: Gàbor Somorjai 2nd György Kurtág 3rd: Péter Eötvös | |
2022 | physicist | Wolf Prize in physics | (12/13th hung. Wolf-winner) (2nd Wolf in physics) | |
2022 | mathematician George Lusztig (US) | Wolf Prize in mathematics | 5th Wolf in maths | |
2022 | mathematician | Research.com Best Scientist Award 2022 - Research.com Best Scientist Award | ||
2022 | biochemist | Louis-Jeantet Prize for Medicin | 2nd hung. | |
2022 | biochemist | Lasker Award | As 3rd hungarian 1st Szent-Györgyi 2nd Hersko | |
2022 | physicist | BBVA Foundation Frontiers of Knowledge Awards | 5th HUN & gives 1st place/capita to Hungary | |
2022 | neuroscientist György Buzsáki ( US) | Research.com Best Scientist Award [52] | ⁹ | |
2022 | physicist | Gothenburg Lise Meitner award as 1st hungarian | Neutron supermirror, Neutron spin echo | |
2023 | mathematician/physicist | Lilienfeld Prize | 2nd hungarian. | |
2023 | biochemist | induced in the | as 3rd hungarian woman after Maria Telkes & 1/2-hung. Hedy Lamarr | |
2023 | chemist Gabor A. Somorjai (US) | Enrico Fermi Award as 4th hung. | 1st: John von Neumann 2nd: Eugene J. Wigner 1958 3rd: Edward Teller 1962 | |
2023 | mathematician | 2023 - Research.com Computer Science in United States Leader Award | ||
2023 | biochemist | German National Academy of Sciences Leopoldina | membership (as 13th Hungarian) | |
2023 | biochemist | Meyenburg Award (D) | Personalized Cancer Immunotherapy | |
2023 | neuroscientist Botond Roska (SCH/HUN) | Int. translational award [54] | ||
2023 | mathematician | Frontiers of Science Award (CHN) | as 1st hungarian | |
2023 | computer scientist László Végh [55] | Frontiers of Science Award (CHN) | as 1st hungarian | |
2023 | computer scientists:ö | Hojjat Adel Award (since 2010) [56] | 1st hungarians awarded | |
2023 | relativity András Vasy (US) | Frontiers of Science Award (CHN) | as 1st hungarian | |
2023 | biochemist | Nobel prize (S) in medicine for Groundbreaking Work on mRNA | 1st hungarian woman & 5th hungarian in medicine category | |
2023 | physicist | Nobel prize (S) in physics | 4th(−6th) hungarian in physics category. Krausz and Karikó gives HUN 1st place:Nobel in natural sciences/capita | |
2023 | Marta Kutas (US) | Revell medal [57] | ||
2023 | Int team/hungarian leadership | Aeroelastic flutter problem in aviation solved [58] | ||
2023 | biochemist Antal Csámpai et. al. [59] | High efficient cancer-drug. [60] | ||
2023 | mathematician | Knuth Prize | 5th hungarian 4th:László Babai 3rd Ajtai 2nd:László Lovász 1st: Leslie Valiant | |
2024 | mathematician | Leroy P. Steele Prize for Seminal Contribution to Research]] | 6th HUN 1st: Halmos 2nd:Rudolf Kálmán (Kyoto p.) 3rd: Raoul Bott (Wolf p.) 4th:Peter Lax (Abel p.) 5th:Endre Szemeredi (Abel p.) | |
2024 | neuroscientist Botond Roska (SCH/HUN) | Wolf Prize | 14/15th hungarian, with György Kurtág. (HUN has 2nd most Wolf/capita) 2nd in medicine. 1st Hersko,(Nobelprize) | |
2024 | physicist Albert-László Barabási, [61] Szekler-Hungarian [62] | Gothenburg Lise Meitner Award | as 2nd hungarian after Ferenc Mezei | |
2024 | physicist Tünde Fülöp (S), Szekler-Hungarian | Hannes Alfvén Prize | as 2nd hungarian after Miklos Porkolab (US) | |
2024 | geneticists | Breakthrough in aging research:Discovery of a hidden epigenetic clock in mitochondria reveals a 'lifespan limit line [63] | ||
2024 | Gabor Domokos, Ákos G. Horváth and Krisztina Regős | New geometrical form:"Soft Cells" [64] [65] [66] | ||
2024 | Örs Legeza & Andor Menczer | Calculation speed record with quantum-computing [67] [68] [69] | ||
2024 | Endre Szemerédi | The Laszlo Fejes Toth Prize [70] | ||
2024 | Edit Wéber et al | proteomimetic engineering [71] |
The first steam engines of continental Europe was built in Újbánya – Köngisberg, Kingdom of Hungary (Today Nová Baňa Slovakia) in 1722. They were similar to the Newcomen engines, it served on pumping water from mines. [72] [73] [74] [75]
The first Hungarian steam-locomotive railway line was opened on 15 July 1846, between Pest and Vác. [76] By 1910, the total length of the rail networks of the Hungarian Kingdom had reached 22,869 km (14,210 mi); the Hungarian network linked more than 1,490 settlements. This has ranked Hungarian railways as the sixth-most dense in the world (ahead of countries as Germany or France). [77]
Locomotive engine and railway vehicle manufacturers before World War One (engines and wagons, bridge and iron structures) were the MÁVAG company in Budapest (steam engines and wagons) and the Ganz company in Budapest (steam engines, wagons, the production of electric locomotives and electric trams started from 1894). [78] and the RÁBA Company in Győr.
The Ganz Works identified the significance of induction motors and synchronous motors commissioned Kálmán Kandó (1869–1931) to develop it. In 1894, Kálmán Kandó developed high-voltage three-phase AC motors and generators for electric locomotives. The first-ever electric rail vehicle manufactured by Ganz Works was a 6 HP pit locomotive with direct current traction system. The first Ganz made asynchronous rail vehicles (altogether 2 pieces) were supplied in 1898 to Évian-les-Bains (Switzerland), with a 37-horsepower (28 kW), asynchronous-traction system. The Ganz Works won the tender of electrification of railway of Valtellina Railways in Italy in 1897. Italian railways were the first in the world to introduce electric traction for the entire length of a main line, rather than just a short stretch. The 106-kilometre (66 mi) Valtellina line was opened on 4 September 1902, designed by Kandó and a team from the Ganz works. [79] The electrical system was three-phase at 3 kV 15 Hz. The voltage was significantly higher than used earlier, and it required new designs for electric motors and switching devices. [80] [81] In 1918, [82] Kandó invented and developed the rotary phase converter, enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency (50 Hz) single phase AC of the high voltage national networks. [83]
The first electric tramway was built in Budapest in 1887, which was the first tramway in Austria-Hungary. By the turn of the 20th century, 22 Hungarian cities had electrified tramway lines in Kingdom of Hungary.
Date of electrification of tramway lines in the Kingdom of Hungary:
The Budapest metro Line 1 (originally the "Franz Joseph Underground Electric Railway Company") is the second oldest underground railway in the world [92] (the first being the London Underground's Metropolitan Line), and the first on the European mainland. It was built from 1894 to 1896 and opened in Budapest on 2 May 1896. [93] Since 2002, the M1 line was listed as a UNESCO World Heritage Site. [94] [95] The M1 line became an IEEE Milestone due to the radically new innovations in its era: "Among the railway’s innovative elements were bidirectional tram cars; electric lighting in the subway stations and tram cars; and an overhead wire structure instead of a third-rail system for power." [96]
The spread of the Industrial Revolution in Hungary, along with the technological changes brought about by progress, made it clear by the end of the 19th century that the end of horse-drawn transport was approaching. Around 1818, Farkas Bolyai and Péter Bodor presented their steam carriage in Marosvásárhely, in 1819, József Horti-Horváth showcased the flywheel omnibus, Ányos Jedlik stirred the interest with his electric-powered vehicle model and carriage. Developments continued in the latter half of the century: in 1876, György Wessely received a patent for a self-propelled steam carriage, and Ferenc Preiner also demonstrated a steam-powered carriage. By 1890, Ferenc Korda had created the first battery-operated electric car in Hungary. János Csonka had a significant impact on further development in the industrial sector of petrol engines; in addition to inventing the carburetor, he designed a petrol engine driven mail collection car for the Hungarian Post. The vehicle was manufactured by the Ganz company and was put into circulation in November 1900. [97]
---
Prior to World War I, the Kingdom of Hungary had four car manufacturer companies; Hungarian car production started in 1900. Automotive factories in the Kingdom of Hungary manufactured motorcycles, cars, taxicabs, trucks and buses. These were: the Ganz company [98] [99] in Budapest, RÁBA Automobile [100] in Győr, MÁG (later Magomobil) [101] [102] in Budapest, and MARTA (Hungarian Automobile Joint-stock Company Arad) [103] in Arad.
The first Hungarian hydrogen-filled experimental balloons were built by István Szabik and József Domin in 1784. The first Hungarian designed and produced airplane to be powered by a Hungarian aero engine was flown in 1909 at Rákosmező. [104] The International Air-race was organized in Budapest, Rákosmező in June 1910. The earliest Hungarian radial engine powered airplane was built in 1913. Between 1913 and 1918, the Hungarian aircraft industry began developing. The three mist significant were UFAG Hungarian Aircraft Factory (1912), Hungarian General Aircraft Factory (1916) and the Hungarian Lloyd Aircraft engine factory (at Aszód (1916), [105] and Marta in Arad (1914). [106] During the WW I, fighter planes, bombers and reconnaissance planes were produced in these factories. The most important aero engine factories of the period were Weiss Manfred Works, Ganz Works, and Hungarian Automobile Joint-stock Company Arad.[ citation needed ]
During the interwar and WWII periods, Hungarian designs continued to be developed and flown, however for the most part German types were modified and/or manufactured under license. Examples include those developed or manufactured by Weiss Manfred and the RMI (Repülo Muszaki Intézet, or Aviation Technical Institute).
Power plants, generators and transformers
In 1878, the Ganz company's general manager András Mechwart (1853–1942) founded the Department of Electrical Engineering headed by Károly Zipernowsky (1860–1939). Engineers Miksa Déri (1854–1938) and Ottó Bláthy (1860–1939) also worked at the department producing direct-current machines and arc lamps.
In autumn 1884, Károly Zipernowsky, Ottó Bláthy and Miksa Déri (ZBD), three engineers associated with the Ganz factory, had determined that open-core devices were impracticable, as they were incapable of reliably regulating voltage. [107] In their joint 1885 patent applications for novel transformers (later called ZBD transformers), they described two designs with closed magnetic circuits where copper windings were either a) wound around iron wire ring core or b) surrounded by iron wire core. [108] The two designs were the first application of the two basic transformer constructions in common use to this day, which can as a class all be termed as either core form or shell form (or alternatively, core type or shell type), as in a) or b), respectively (see images). [109] [110] [111] [112] The Ganz factory had also in the autumn of 1884 made delivery of the world's first five high-efficiency AC transformers, the first of these units having been shipped on September 16, 1884. [113] This first unit had been manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V, 11.6:19.4 A, ratio 1.67:1, one-phase, shell form. [113] In both designs, the magnetic flux linking the primary and secondary windings traveled almost entirely within the confines of the iron core, with no intentional path through air (see Toroidal cores below). The new transformers were 3.4 times more efficient than the open-core bipolar devices of Gaulard and Gibbs. [114]
The ZBD patents included two other major interrelated innovations: one concerning the use of parallel connected, instead of series connected, utilization loads, the other concerning the ability to have high turns ratio transformers such that the supply network voltage could be much higher (initially 1,400 to 2,000 V) than the voltage of utilization loads (100 V initially preferred). [115] [116] When employed in parallel connected electric distribution systems, closed-core transformers finally made it technically and economically feasible to provide electric power for lighting in homes, businesses and public spaces. [117] [118] Bláthy had suggested the use of closed cores, Zipernowsky had suggested the use of parallel shunt connections, and Déri had performed the experiments; [119] The other essential milestone was the introduction of 'voltage source, voltage intensive' (VSVI) systems' [120] by the invention of constant voltage generators in 1885. [121] Ottó Bláthy also invented the first AC electricity meter. [122] [123] [124] [125] Transformers today are designed on the principles discovered by the three engineers. They also popularized the word 'transformer' to describe a device for altering the emf of an electric current, [117] [126] although the term had already been in use by 1882. [127] [128] In 1886, the ZBD engineers designed, and the Ganz factory supplied electrical equipment for, the world's first power station that used AC generators to power a parallel connected common electrical network, the steam-powered Rome-Cerchi power plant. [129] The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886. [129]
Turbines and Turbogenerators
The first turbo-generators were water turbines which propelled electric generators. The first Hungarian water turbine was designed by the engineers of the Ganz Works in 1866, the mass production with dynamo generators started in 1883. [130] The manufacturing of steam turbo generators started in the Ganz Works in 1903.
In 1905, the Láng Machine Factory company also started the production of steam turbines for alternators. [131]
Light bulbs, radio tubes and X-ray
Tungsram is a Hungarian manufacturer of light bulbs and vacuum tubes since 1896. On 13 December 1904, Hungarian Sándor Just and Croatian Franjo Hanaman were granted a Hungarian patent (No. 34541) for the world's first tungsten filament lamp. The tungsten filament lasted longer and gave brighter light than the traditional carbon filament. Tungsten filament lamps were first marketed by the Hungarian company Tungsram in 1904. This type is often called Tungsram-bulbs in many European countries. [132] Their experiments also showed that the luminosity of bulbs filled with an inert gas was higher than in vacuum. The tungsten filament outlasted all other types (especially the former carbon filaments). The British Tungsram Radio Works was a subsidiary of the Hungarian Tungsram in pre-WW2 days.
Despite the long experimentation with vacuum tubes at Tungsram company, the mass production of radio tubes begun during WW1, [133] and the production of X-ray tubes started also during the WW1 in Tungsram Company. [134]
signal generators, oscilloscopes and pulse generators
The signal generators, oscilloscopes and pulse generators manufactured by Orion's instrumentation class have done a good job for the domestic industry as well as for export.
Home appliances
The Orion Electronics was founded in 1913. Its main profiles were the production of electrical switches, sockets, wires, incandescent lamps, electric fans, electric kettles, and various household electronics.
Industrial Refrigerators
In 1894, Hungarian inventor and industrialist István Röck started to manufacture an industrial ammonia refrigerator which was powered by electric compressors (together with the Esslingen Machine Works). At the 1896 Millennium Exhibition, Röck and the Esslingen Machine Works presented a 6-tonne capacity artificial ice producing plant. Until nationalisation after the Second World War, large-scale refrigerator production in Hungary was in the hands of Röck and Ganz Works. In 1906, the first Hungarian cold store (with a capacity of 3,000 tonnes, the largest in Europe) opened in Tóth Kálmán Street, Budapest. [135]
The first telegraph station on Hungarian territory was opened in December 1847 in Pressburg/ Pozsony /Bratislava/. In 1848, – during the Hungarian Revolution – another telegraph centre was built in Buda to connect the most important governmental centres. The first telegraph connection between Vienna and Pest – Buda (later Budapest) was constructed in 1850. [136] In 1884, 2,406 telegraph post offices operated in the Kingdom of Hungary. [137] By 1914 the number of telegraph offices reached 3,000 in post offices, and a further 2,400 were installed in the railway stations of the Kingdom of Hungary. [138]
The first Hungarian telephone exchange was opened in Budapest (May 1, 1881). [139] All telephone exchanges of the cities and towns in the Kingdom of Hungary were linked in 1893. [136] By 1914, more than 2,000 settlements had telephone exchange in the Kingdom of Hungary. [138]
The Telefon Hírmondó (Telephone Herald) service was established in 1893. Two decades before the introduction of radio broadcasting, residents of Budapest could listen to news, cabaret, music and opera at home and in public spaces daily. It operated over a special type of telephone exchange system and its own separate network. The technology was later licensed in Italy and the United States. (see: telephone newspaper).
The first Hungarian telephone factory (Factory for Telephone Apparatuses) was founded by János Neuhold in Budapest in 1879, which produced telephones microphones, telegraphs, and telephone exchanges. [140] [141] [142]
In 1884, the Tungsram company also started to produce microphones, telephone apparatuses, telephone switchboards and cables. [143]
The Ericsson company also established a factory for telephones and switchboards in Budapest in 1911. [144]
The first Hungarian steamship was built by Antal Bernhard in 1817, called S.S. Carolina. It was also the first steamship in Habsburg-ruled states. [145] The daily passenger traffic between the two sides of the Danube by the Carolina started in 1820. [146] The regular cargo and passenger transports between Pest and Vienna began in 1831. [145] However, it was Count István Széchenyi (with the help of Austrian ship's company Erste Donaudampfschiffahrtsgesellschaft (DDSG) ), who established the Óbuda Shipyard on the Hungarian Hajógyári Island in 1835, which was the first industrial scale steamship building company in the Habsburg Empire. [147] The most important seaport for the Hungarian part of the k.u.k. was Fiume (Rijeka, today part of Croatia), where the Hungarian shipping companies, such as the Adria, operated. The largest Hungarian shipbuilding company was the Ganz-Danubius. In 1911, The Ganz Company merged with the Danubius shipbuilding company, which largest shipbuilding company in Hungary. Since 1911, the unified company adopted the "Ganz – Danubius" brand name. As Ganz Danubius, the company became involved in shipbuilding before, and during, World War I. Ganz was responsible for building the dreadnought Szent István, supplied the machinery for the cruiser Novara.
Diesel-electric military submarines:
The Ganz-Danubius company started to build U-boats at its shipyard in Budapest, for final assembly at Fiume. Several U-boats of the U-XXIX class, U-XXX class, U-XXXI class and U-XXXII class were completed, [148] and a number of other types were laid down, remaining incomplete at the war's end. [149] The company built some ocean liners too.
In 1915, the Whitehead company established one of its largest enterprise, the Hungarian Submarine Building Corporation (or in its German name: Ungarische Unterseebotsbau AG (UBAG)), in Fiume, Kingdom of Hungary (Now Rijeka, Croatia). [150] [151] SM U-XX, SM U-XXI, SM U-XXII and SM U-XXIII Type diesel-electric submarines were produced by the UBAG Corporation in Fiume. [152] [153]
In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.
The 1880s was a decade of the Gregorian calendar that began on January 1, 1880, and ended on December 31, 1889.
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.
Ottó Titusz Bláthy was a Hungarian electrical engineer. During his career he became the co-inventor of the modern electric transformer, the voltage regulator, the AC watt-hour meter, the turbo generator, the high-efficiency turbo generator and the motor capacitor for the single-phase (AC) electric motor.
Miksa Déri was a Hungarian electrical engineer, inventor, power plant builder. He contributed with his partners Károly Zipernowsky and Ottó Bláthy, in the development of the closed iron core transformer and the ZBD model. His other important invention was the constant voltage AC electrical generator in the Ganz Works in 1883. The missing link of a full Voltage sensitive - voltage intensive (VSVI) system was the reliable AC Constant Voltage generator. Therefore, the invention of the constant voltage generator at the Ganz Works had crucial role in the beginnings of the industrial scale AC power generating, because only these type of generators can produce a stated output voltage, regardless of the value of the actual load.
Károly Zipernowsky was an Austrian-born Hungarian electrical engineer. He invented the transformer with his colleagues at the famous Hungarian manufacturing company Ganz Works and he contributed significantly with his works also to other AC technologies.
Kálmán Kandó de Egerfarmos et Sztregova was a Hungarian engineer, the inventor of phase converter and a pioneer in the development of AC electric railway traction.
The Ganz Machinery Works Holding is a Hungarian holding company. Its products are related to rail transport, power generation, and water supply, among other industries.
Tungsram was a manufacturing company located in Hungary and known for their light bulbs and electronics. Established in Újpest in 1896, it initially produced telephones, wires and switchboards. The name "Tungsram" is a portmanteau of tungsten and wolfram, the two common names of the metal used for making light bulb filaments. Before becoming nationalized by the Communist government in 1945, the company was the world's third largest manufacturer of light bulbs and radiotubes, after the American General Electric and RCA companies.
Kerepesi Cemetery is the most famous cemetery in Budapest. It is one of the oldest cemeteries in Hungary, and has been almost completely preserved.
Hungarian State Railways is the Hungarian national railway company and the MÁV Zrt. is the railway infrastructure manager, with subsidiaries "MÁV-START Zrt.", and "Utasellátó".
Ábrahám Ganz was a Swiss-born iron manufacturer, machine and technical engineer, entrepreneur, father of Ganz Works. He was the founder and the manager of the company that he made the flagship of the Hungarian economy in the 19th century. Despite his early death in 1867 the company remained one of the strongest manufacturing enterprise in Austria-Hungary. Many famous engineers worked at Ganz Works inter alia Károly Zipernowsky, Ottó Bláthy, Miksa Déri, András Mechwart, Kálmán Kandó, Donát Bánki, János Csonka and Theodore von Kármán and several world-famous inventions were done there, like the first railway electric traction, or the invention of the roller mill, the carburetor, the transformer and the Bánki-Csonka engine.
Orion Electronics Ltd is a consumer electronics company headquartered in Budapest, Hungary. Orion supplies a wide range of brown and white goods including televisions, DVD players/recorders/with HDD, home theatre systems, Navigation Systems, Portable DVD Players, active speaker systems, computer monitors, MP3/MP4 players, washing machines, dishwashers, cooking ranges, microwave ovens and the full range of small domestic appliances. The company is owned and managed by the Thakral Corporation of Singapore.
Electric power transmission, the tools and means of moving electricity far from where it is generated, date back to the late 19th century. They include the movement of electricity in bulk and the delivery of electricity to individual customers ("distribution"). In the beginning, the two terms were used interchangeably.
The economy of Austria-Hungary changed slowly during the existence of the Dual Monarchy, 1867–1918. The capitalist way of production spread throughout the Empire during its 50-year existence replacing medieval institutions. In 1873, the old capital Buda and Óbuda merged with the third city, Pest, thus creating the new metropolis of Budapest. The dynamic Pest grew into Hungary's administrative, political, economic, trade and cultural hub. Many of the state institutions and the modern administrative system of Hungary were established during this period.
John Dixon Gibbs (1834–1912) was a British engineer and financier who, together with Lucien Gaulard, is often credited as the co-inventor of the AC step-down transformer. The transformer was first demonstrated in 1883 at London's Royal Aquarium. At the time the term "transformer" had not yet been invented, so instead it was referred to as a "secondary generator". Although he is usually credited equally with Gaulard, Gibb's role in the invention appears to have been more that of a financial backer and businessman.
András Mechwart de Belecska was a German-born Hungarian-German mechanical engineer, chief executive of the Ganz Works, and a pioneer in the Hungarian mechanical and electrical engineering. As an inventor and as a businessman he contributed to the development of the Hungarian transport manufacturing industry, and made the Ganz Works a flagship of the Hungarian economy of the 19th century.
Ernő Wilczek was a Hungarian engineer. He graduated from the Budapest University of Art and Design in 1905 and then worked for several companies, in France and England, as a distributor of electric generators. From 1910 to 1933, he worked at the Ganz Works, first as a machine engineer, later as the head of the engineering department. He was an associate of Titus Bláthy. In 1920, he won the Zipernowsky jubilee award for his scientific and technical activities. He specialized in standardization. From 1938 he was chairman of the Standards Committee and from 1949 he was deputy director of the Hungarian Standards Institute. He was editor of the journal Elektrotechnika from 1919 and later became editor-in-chief. His studies were published in domestic and foreign journals.
Hungary ranks 35th in the world for quality research output, according to Nature Index's 2015–2016 data
{{cite book}}
: |website=
ignored (help)CS1 maint: location missing publisher (link)ZBD transformer.
{{cite web}}
: CS1 maint: archived copy as title (link)