Begomovirus

Last updated

Begomovirus
Abutilon pictum serres du Luxembourg.jpg
Abutilon mosaic virus
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Monodnaviria
Kingdom: Shotokuvirae
Phylum: Cressdnaviricota
Class: Repensiviricetes
Order: Geplafuvirales
Family: Geminiviridae
Genus:Begomovirus
Species

See text

Begomovirus is a genus of viruses, in the family Geminiviridae . [1] They are plant viruses that as a group have a very wide host range, infecting dicotyledonous plants. Worldwide they are responsible for a considerable amount of economic damage to many important crops such as tomatoes, beans, squash, cassava and cotton. [2] There are 445 species in this genus. [1]

Contents

Morphology

Virus particles are non-enveloped. The nucleocapsid is 38 nanometers (nm) long and 15–22 nm in diameter. While particles have basic icosahedral symmetry, they consist of two incomplete icosahedra—missing one vertex—joined together. There are 22 capsomeres per nucleocapsid.

Genome

Single stranded closed circular DNA. Many begomoviruses have a bipartite genome: this means that the genome is segmented into two segments (referred to as DNA A and DNA B) that are packaged into separate particles. Both segments are generally required for successful symptomatic infection in a host cell but DNA B is dependent for its replication upon DNA A, which can in some begomoviruses apparently cause normal infections on its own.

Begomovirus Begomovirus (6260190377).jpg
Begomovirus

The DNA A segment typically encodes five to six proteins including replication protein Rep, coat protein and transport and/or regulatory proteins. This component is homologous to the genomes of all other geminiviruses. The proteins encoded on it are required for replication (Rep), control of gene expression, overcoming host defenses, encapsidation (coat protein) and insect transmission. The DNA B segment encodes two different movement proteins. These proteins have functions in intra- and intercellular movement in host plants.

The A and B components share little sequence identity with the exception of a ~200 nucleotide sequence with typically >85% identity known as the common region. This region includes an absolutely conserved (among geminiviruses) hairpin structure and repeated sequences (known as 'iterons') that are the recognition sequences for binding of the replication protein (Rep). Within this loop there is a nonanucleotide sequence (TAATATTAC) that acts as the origin (ori) of virion strand DNA replication.

Component exchange (pseudorecombination) occurs in this genus. [3] The usual mechanism of pseudorecombination is by a process known as 'regulon grafting': the A component donates its common region by recombination to the B component being captured. This results in a new dependent interaction between two components.

The proteins in this genus may lie either on the sense strand (positive orientation) or its complement (negative orientation).

Genes

Virology

Smaller than unit length virus components—deletion mutants—are common in infections. These are known as defective interfering (di) DNAs due to their capacity to interfere with virus infection. They reduce virus DNA levels and symptom severity.

Phylogenetics

The two components of the genome have very distinct molecular evolutionary histories and likely to be under very different evolutionary pressures. The DNA B genome originated as a satellite that was captured by the monopartite progenitor of all extant bipartite begomoviruses and has subsequently evolved to become an essential genome component.

More than 133 begomovirus species having monopartite genomes are known: all originate from the Old World. No monopartite begomoviruses native to the New World have yet been identified.

Phylogenetic analysis is based on the A component. B components may be exchanged between species and may result in new species.

Analysis of the genus reveals a number of clades. [4] The main division is between the Old and New World strains. The Old World strains can be divided into African, Indian, Japanese and other Asian clades with a small number of strains grouping outside these. The New World strains divide into Central and Southern America strains.

Along with these main groupings are a number of smaller clades. One group infecting a range of legumes originating from India and Southeast Asia (informally 'Legumovirus') and a set of viruses isolated from Ipomoea species originating from America, Asia and Europe (informally 'Sweepovirus') appear to be basal to all the other species. Two species isolated from Corchorus from Vietnam (informally 'Corchovirus') somewhat unexpectedly group with the New World species.

Transmission

Symptom of pepper yellow leaf curl virus Kuning cabai.JPG
Symptom of pepper yellow leaf curl virus

The virus is obligately transmitted by an insect vector, which can be the whitefly Bemisia tabaci or can be other whiteflies. [5] This vector allows rapid and efficient propagation of the virus because it is an indiscriminate feeder. The vector transmits in a persistent, circulative, non-propagative manner.

This USDA document describes a 5-year plan starting in 1992 to mitigate whiteflies. [6]

Diseases

Several begomoviruses cause severe diseases all over the world. Those begomovirus species infecting tomato such as Tomato yellow leaf curl virus (TYLCV) and Tomato yellow mosaic virus (ToYMV), first identified in the late 1980s, cause significant economic losses worldwide. [7] In countries where these viruses have become widespread such as Trinidad, the Dominican Republic, Mexico and much of Central America, Israel, as well as across Southeast Asia including Thailand, Cambodia, Indonesia, and India, these diseases in tomato and other crops including pepper, and eggplant, can cause an estimated yield loss of 50–60%. Begomoviruses infecting pepper ( Capsicum spp.) such as Pepper leaf curl virus and Chilli leaf curl virus also cause significant losses worldwide. Disease is typically manifested in the infected plant as chlorosis, leaf distortion, flower bud absicion and crinkling and stunting. In countries where these viruses have become widespread across Southeast Asia including Thailand, Cambodia, Indonesia, Sri Lanka, and India, these diseases in pepper and other crops including tomato, cucumber, pumpkin, melon, and eggplant, can cause an estimated yield loss of 40–70%. Bean golden yellow mosaic virus (BGYMV) causes a serious disease in bean species within Central America, the Caribbean and southern Florida.

Species

[1]

Related Research Articles

<span class="mw-page-title-main">Whitefly</span> Family of insects

Whiteflies are Hemipterans that typically feed on the undersides of plant leaves. They comprise the family Aleyrodidae, the only family in the superfamily Aleyrodoidea. More than 1550 species have been described.

<i>Tobamovirus</i> Genus of viruses

Tobamovirus is a genus of positive-strand RNA viruses in the family Virgaviridae. Many plants, including tobacco, potato, tomato, and squash, serve as natural hosts. Diseases associated with this genus include: necrotic lesions on leaves. The name Tobamovirus comes from the host and symptoms of the first virus discovered.

<i>Potyvirus</i> Genus of positive-strand RNA viruses in the family Potyviridae

Potyvirus is a genus of positive-strand RNA viruses in the family Potyviridae. Plants serve as natural hosts. Like begomoviruses, members of this genus may cause significant losses in agricultural, pastoral, horticultural, and ornamental crops. More than 200 species of aphids spread potyviruses, and most are from the subfamily Aphidinae. The genus contains 190 species and potyviruses account for about thirty percent of all currently known plant viruses.

<i>Cowpea chlorotic mottle virus</i> Species of virus

Cowpea chlorotic mottle virus, known by the abbreviation CCMV, is a virus that specifically infects the cowpea plant, or black-eyed pea. The leaves of infected plants develop yellow spots, hence the name "chlorotic". Similar to its "brother" virus, Cowpea mosaic virus (CPMV), CCMV is produced in high yield in plants. In the natural host, viral particles can be produced at 1–2 mg per gram of infected leaf tissue. Belonging to the bromovirus genus, cowpea chlorotic mottle virus (CCMV) is a small spherical plant virus. Other members of this genus include the brome mosaic virus (BMV) and the broad bean mottle virus (BBMV).

<i>Nepovirus</i> Genus of viruses

Nepovirus is a genus of viruses in the order Picornavirales, in the family Secoviridae, in the subfamily Comovirinae. Plants serve as natural hosts. There are 40 species in this genus. Nepoviruses, unlike the other two genera in the subfamily Comovirinae, are transmitted by nematodes.

<span class="mw-page-title-main">Cassava mosaic virus</span> Genus of viruses

Cassava mosaic virus is the common name used to refer to any of eleven different species of plant pathogenic virus in the genus Begomovirus. African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), and South African cassava mosaic virus (SACMV) are distinct species of circular single-stranded DNA viruses which are transmitted by whiteflies and primarily infect cassava plants; these have thus far only been reported from Africa. Related species of viruses are found in India and neighbouring islands, though cassava is cultivated in Latin America as well as Southeast Asia. Nine species of cassava-infecting geminiviruses have been identified between Africa and India based on genomic sequencing and phylogenetic analysis. This number is likely to grow due to a high rate of natural transformation associated with CMV.

Cotton leaf curl viruses (CLCuV) are a number of plant pathogenic virus species of the family Geminiviridae.

Tomato yellow leaf curl virus (TYLCV) is a DNA virus from the genus Begomovirus and the family Geminiviridae. TYLCV causes the most destructive disease of tomato, and it can be found in tropical and subtropical regions causing severe economic losses. This virus is transmitted by an insect vector from the family Aleyrodidae and order Hemiptera, the whitefly Bemisia tabaci, commonly known as the silverleaf whitefly or the sweet potato whitefly. The primary host for TYLCV is the tomato plant, and other plant hosts where TYLCV infection has been found include eggplants, potatoes, tobacco, beans, and peppers. Due to the rapid spread of TYLCV in the last few decades, there is an increased focus in research trying to understand and control this damaging pathogen. Some interesting findings include the virus being sexually transmitted from infected males to non-infected females, and an evidence that TYLCV is transovarially transmitted to offspring for two generations.

Alphasatellites are a single-stranded DNA family of satellite viruses that depend on the presence of another virus to replicate their genomes. As such, they have minimal genomes with very low genomic redundancy. The genome is a single circular single strand DNA molecule. The first alphasatellites were described in 1999 and were associated with cotton leaf curl disease and Ageratum yellow vein disease. As begomoviruses are being characterised at the molecular level an increasing number of alphasatellites are being described.

Ipomovirus is a genus of positive-strand RNA viruses in the family Potyviridae. Member viruses infect plants and are transmitted by whiteflies. The name of the genus is derived from Ipomoea – the generic name of sweet potato. There are seven species in this genus.

Bean calico mosaic virus is a plant virus transmitted by whiteflies that infects bean genera and species within the families Fabaceae, Malvaceae, and Solanaceae. Like other New World begomoviruses, its genome is bipartite, or having two parts. Phylogenetic analysis of its two genome segments, DNA-A and DNA-B, indicate the virus is from Sonora, Mexico, and shares a most recent common ancestor with the Leaf curl virus-E strain and the Texas pepper virus, both also found in the Sonora desert, and the Cabbage leaf curl virus from Florida.

Badnavirus is a genus of viruses, in the family Caulimoviridae order Ortervirales. Plants serve as natural hosts. There are 67 species in this genus. Diseases associated with this genus include: CSSV: leaf chlorosis, root necrosis, red vein banding in young leaves, small mottled pods, and stem/root swelling followed by die-back. Infection decreases yield by 25% within one year, 50% within two years and usually kills trees within 3–4 years.

Mastrevirus is a genus of ssDNA viruses, in the family Geminiviridae. Mostly monocotyledonous plants serve as natural hosts. They are vectored by planthoppers. There are 45 species in this genus. Diseases associated with this genus include: maize streak virus: maize streak disease (MSD).

<i>Pepper leaf curl virus</i> Species of virus

Pepper leaf curl virus(PepLCV) is a DNA virus from the genus Begomovirus and the family Geminiviridae. PepLCV causes severe disease especially in pepper (Capsicum spp.). It can be found in tropical and subtropical regions such as Thailand and India, but has also been detected in countries such as the United States and Nigeria. This virus is transmitted by an insect vector from the family Aleyrodidae and order Hemiptera, the whitefly Bemisia tabaci. The primary host for PepLCV are several Capsicum spp.. PepLCV has been responsible for several epidemics and causes severe economic losses. It is the focus of research trying to understand the genetic basis of resistance. Currently, a source of resistance to the virus has been identified in the Bhut Jolokia pepper.

Papaya leaf curl virus(PaLCuV) is a DNA virus from the genus Begomovirus and the family Geminiviridae. PaLCuV causes severe disease in papaya (Carica papaya), but can sometimes infect other crops such as tobacco or tomato. It can be found in tropical and subtropical regions primarily in India, but closely related species have also been detected in countries such as China, Malaysia, Nigeria and South Korea. This virus is transmitted by an insect vector from the family Aleyrodidae and order Hemiptera, the whitefly Bemisia tabaci. PaLCuV has been responsible for several epidemics and causes severe economic losses. Because of the broad diversity of these viruses, their characterization and control remains difficult.

<i>Sweet potato leaf curl virus</i> Species of virus

Sweet potato leaf curl virus is commonly abbreviated SPLCV. Select isolates are referred to as SPLCV followed by an abbreviation of where they were isolated. For example, the Brazilian isolate is referred to as SPLCV-Br.

Elijah Miinda Ateka is a Professor of Plant Virology at the Jomo Kenyatta University of Agriculture and Technology. He is involved with the diagnosis and characterisation of the sweet potato virus and the cassava virus, and is part of the Cassava Virus Action Project (CVAP).

Tomato yellow leaf curl China virus (TYLCCNV) is a virus which contains 25 isolates. It infects plants as different as tobacco and tomato, as well as genetically modified plants. Petunias can be infected, but show no symptoms. The microbiology of the virus has been studied in the Chinese province of Yunnan. Tomato yellow leaf curl China virus belongs to the genus Begomovirus, which also contains the tomato leaf curl China virus.

Tolecusatellitidae is a incertae sedis ssDNA/ssDNA(+) family of biological satellites. The family contains two genera and 131 species. This family of viruses depend on the presence of another virus to replicate their genomes, as such they have minimal genomes with very low genomic redundancy.

References

  1. 1 2 3 "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). March 2021. Retrieved 13 May 2021.
  2. "Viral Zone". ExPASy. Retrieved 15 June 2015.
  3. Pita JS, Fondong VN, Sangaré A, Otim-Nape GW, Ogwal S, Fauquet CM (2001). "Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda". J Gen Virol. 82 (3): 655–65. doi: 10.1099/0022-1317-82-3-655 . PMID   11172108.
  4. Briddon RW, Patil BL, Bagewadi B, Nawaz-ul-Rehman MS, Fauquet CM (2010). "Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses". BMC Evol Biol. 10: 97. doi:10.1186/1471-2148-10-97. PMC   2858149 . PMID   20377896.
  5. Funayama, Sachiko; Terashima, I; Yahara, T (2001). "Effects of Virus Infection and Light Environment on Population Dynamics of Eupatorium makinoi (Asteraceae)". American Journal of Botany. 88 (4): 616–622. doi: 10.2307/2657060 . JSTOR   2657060. PMID   11302846.
  6. DeQuattro, Jim, and Dennis Senft, and Marcia Wood. "The Whitefly Plan: A five-year Update." 06 Feb 2007. United States Department of Agriculture: Agricultural Research Service. 14 Apr 2009 <http://www.ars.usda.gov/is/AR/archive/feb97/fly0297.htm>.
  7. Kil, Eui-Joon; Kim, Sunhoo; Lee, Ye-Ji; Byun, Hee-Seong; Park, Jungho; Seo, Haneul; Kim, Chang-Seok; Shim, Jae-Kyoung; Lee, Jung-Hwan (8 January 2016). "Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes". Scientific Reports. 6 (1): 19013. Bibcode:2016NatSR...619013K. doi:10.1038/srep19013. ISSN   2045-2322. PMC   4705557 . PMID   26743765.

Further reading

Mansoor S, Briddon RW, Zafar Y, Stanley J (March 2003). "Geminivirus disease complexes: an emerging threat". Trends Plant Sci. 8 (3): 128–34. doi:10.1016/S1360-1385(03)00007-4. PMID   12663223.

Briddon RW, Stanley J (January 2006). "Subviral agents associated with plant single-stranded DNA viruses". Virology. 344 (1): 198–210. doi:10.1016/j.virol.2005.09.042. PMID   16364750.

Sinisterra XH, McKenzie CL, Hunter WB, Powell CA, Shatters RG (May 2005). "Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae)". J. Gen. Virol. 86 (Pt 5): 1525–32. doi: 10.1099/vir.0.80665-0 . PMID   15831966.

Hunter WB, Hiebert E, Webb SE, Tsai JH, Polston JE (1998). "Location of geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleyrodidae". Plant Disease. 82 (10): 1147–51. doi:10.1094/PDIS.1998.82.10.1147. PMID   30856777.