History of printing

Last updated

The history of printing starts as early as 3000 BCE, when the proto-Elamite and Sumerian civilizations used cylinder seals to certify documents written in clay tablets. Other early forms include block seals, hammered coinage, pottery imprints, and cloth printing. Initially a method of printing patterns on cloth such as silk, woodblock printing for texts on paper originated in China by the 7th century during the Tang dynasty, leading to the spread of book production and woodblock printing in other parts of Asia such as Korea and Japan. The Chinese Buddhist Diamond Sutra , printed by woodblock on 11 May 868, is the earliest known printed book with a precise publishing date. Movable type was invented by Chinese artisan Bi Sheng in the 11th century during the Song dynasty, but it received limited use compared to woodblock printing. Nevertheless, the technology spread outside China, as the oldest printed book using metal movable type was the Jikji , printed in Korea in 1377 during the Goryeo era.


Woodblock printing was also used in Europe until the mid-15th century. Late medieval German inventor Johannes Gutenberg created the first printing press based on previously known mechanical presses and a process for mass-producing metal type. By the end of the 15th century his invention and widescale circulation of the Gutenberg Bible became responsible for a burgeoning economical book publishing industry across Renaissance Europe and eventually among the colonial publishers and printers that emerged in the British-American colonies. This industry enabled the communication of ideas and sharing of knowledge on an unprecedented scale, leading to the global spread of the printing press during the early modern period. Alongside the development of text printing, new and lower-cost methods of image reproduction were developed, including lithography, screen printing and photocopying.


Hands at the Cuevas de las Manos upon Rio Pinturas, near the town of Perito Moreno in Santa Cruz Province, Argentina SantaCruz-CuevaManos-P2210651b.jpg
Hands at the Cuevas de las Manos upon Río Pinturas, near the town of Perito Moreno in Santa Cruz Province, Argentina

Hand stencils, made by blowing pigment over a hand held against a wall, have been found in Asia and Europe dating from over 35,000 years ago, and later prehistoric dates in other continents. [1] [2] After that stencilling has been used as a historic painting technique on all kinds of materials. Stencils may have been used to colour cloth for a very long time; the technique probably reached its peak of sophistication in Katazome and other techniques used on silks for clothes during the Edo period in Japan. In Europe, from about 1450 AD they were commonly used to colour old master prints printed in black and white, usually woodcuts. [3] This was especially the case with playing-cards, which continued to be coloured by stencil long after most other subjects for prints were left in black and white. [4] Stencils were used for mass publications, as the type did not have to be hand-written.


The King of Na gold seal, bestowed by Emperor Guangwu of Han to Wana (Yayoi Japan) in 57 AD King of Na gold seal.jpg
The King of Na gold seal, bestowed by Emperor Guangwu of Han to Wana (Yayoi Japan) in 57 AD

In China seals were used since at least the Shang dynasty. In the Western Zhou, sets of seal stamps were encased in blocks of type and used on clay moulds for casting bronzes. By the end of the 3rd century BC seals were also used for printing on pottery. In the Northern dynasties textual sources contain references to wooden seals with up to 120 characters. [5]

The seals had a religious element to them. Daoists used seals as healing devices by impressing therapeutic characters onto the flesh of sick people. They were also used to stamp food, creating a talismanic character to ward off disease. The first evidence of these practices appeared under a Buddhist context in the mid 5th century. Centuries later seals were used to create hundreds of Buddha images. [5]

In the West the practice of sealing documents, with an impressed personal, or official insignia, typically from a worn signet ring, [6] became established under the Roman Empire, and continued through the Byzantine, and Holy Roman empires, [7] into the 19th century, when a wet signature became customary.

... there were some major diversities which led perhaps to development in different directions. Chinese seals were mostly made in a square or rectangular shape with a flat base, inscribed with characters in reverse, and used to stamp on paper. These characteristics are very close to those of block printing. Although the surface and inscriptions of most seals were small or limited, some wooden seals were as large as printing blocks and were inscribed with texts more than one hundred characters long. The seals of the West, on the other hand, were cylindrical or scaraboid, round or oval, and inscribed primarily with pictures or designs and only occasionally with writing. The cylindrical seals used to roll over clay had no potential to develop into a printing surface. [8]

Tsien Tsuen-hsuin

Stone, clay and bronze blocks

Stone and bronze blocks have been used to print fabric. Archaeological evidence of them have been unearthed at Mawangdui and in the tomb of the King of Nanyue, while block printed fabrics have been discovered at Mashan Zhuanchang in Jiangling, Hubei. [9]

Pliny the Elder described clay block printing of textiles in 1st century Egypt, [10] [11] with extant Egyptian, Roman, Byzantine, Ukrainian, and Russian examples known, dating from the 4th century CE.

In the 4th century the practice of creating paper rubbings of stone carvings such as calligraphic models and texts took hold in East Asia. Among the earliest evidence of this is a stone inscription cut in mirror image from the early 6th century. [9]

Woodblock printing

A fragment of a dharani print in Sanskrit and Chinese, c. 650-670, Tang dynasty Zhong Wen Fan Wen Zui Zao Qi Yin Ben 650-670.jpg
A fragment of a dharani print in Sanskrit and Chinese, c. 650-670, Tang dynasty
Replica of The Great Dharani Sutra, the oldest printed text in Korea, c. 704-751 Dharani sutra.jpg
Replica of The Great Dharani Sutra, the oldest printed text in Korea, c. 704-751
The Hyakumanto Darani, the oldest printed text in Japan, c. 770 Hyakumanto Darani Scrolls.jpg
The Hyakumantō Darani, the oldest printed text in Japan, c. 770
The frontispiece of the Diamond Sutra from Tang dynasty China, the earliest extant printed text bearing a date of production, AD 868 (British Library) Jingangjing.jpg
The frontispiece of the Diamond Sutra from Tang dynasty China, the earliest extant printed text bearing a date of production, AD 868 (British Library)
Piece of a Western Xia (1038-1277) wooden printing block for a Buddhist text written in Tangut script. Discovered in 1990 in the Hongfo Pagoda at Helan County, Ningxia. Hongfo Pagoda woodblock B.jpg
Piece of a Western Xia (1038–1277) wooden printing block for a Buddhist text written in Tangut script. Discovered in 1990 in the Hongfo Pagoda at Helan County, Ningxia.
Yuan Dynasty woodblocks edition of a Chinese play Yuan dynasty woodblock.jpg
Yuan Dynasty woodblocks edition of a Chinese play
Song dynasty (960-1279) bronze plate advertising print for the Liu family needle shop at Jinan. Earliest extant print advertisement. Bronze printing plate for an advertisement.jpg
Song dynasty (960–1279) bronze plate advertising print for the Liu family needle shop at Jinan. Earliest extant print advertisement.

Woodblock printing (diaoban yinshua 雕版印刷), known as xylography today, was the first method of printing applied to a paper medium. It became widely used throughout East Asia both as a method for printing on textiles and later, under the influence of Buddhism, on paper. As a method of printing on cloth, the earliest surviving examples from China date to about 220 AD. Ukiyo-e is the best known type of Japanese woodblock art print. Most European uses of the technique on paper are covered by the term woodcut (see below), except for the block-books produced mainly in the fifteenth century. [12]

Legendary origins

According to the Book of the Southern Qi, in the 480s, a man named Gong Xuanyi (龔玄宜) styled himself Gong the Sage and "said that a supernatural being had given him a 'jade seal jade block writing,' which did not require a brush: one blew on the paper and characters formed." [13] He then used his powers to mystify a local governor. Eventually he was dealt with by the governor's successor, who presumably executed Gong. [14] Timothy Hugh Barrett postulates that Gong's magical jade block was actually a printing device, and Gong was one of the first, if not the first printer. The semi-mythical record of him therefore describes his usage of the printing process to deliberately bewilder onlookers and create an image of mysticism around himself. [15]

In the Sinosphere

The rise of printing was greatly influenced by Mahayana Buddhism. According to Mahayana beliefs, religious texts hold intrinsic value for carrying the Buddha's word and act as talismanic objects containing sacred power capable of warding off evil spirits. By copying and preserving these texts, Buddhists could accrue personal merit. As a consequence the idea of printing and its advantages in replicating texts quickly became apparent to Buddhists, who by the 7th century, were using woodblocks to create apotropaic documents. These Buddhist texts were printed specifically as ritual items and were not widely circulated or meant for public consumption. Instead they were buried in consecrated ground. The earliest extant example of this type of printed matter is a fragment of a dhāraṇī (Buddhist spell) miniature scroll written in Sanskrit unearthed in a tomb in Xi'an. It is called the Great spell of unsullied pure light (Wugou jingguang da tuoluoni jing 無垢淨光大陀羅尼經) and was printed using woodblock during the Tang dynasty, c. 650–670 AD. [9] Radiocarbon dating by the University of Arizona confirmed that the material was likely produced sometime between 618-770. A similar piece, the Saddharma pundarika sutra, was also discovered and dated to 690 to 699. [16] This coincides with the reign of Wu Zetian, under which the Longer Sukhāvatīvyūha Sūtra, which advocates the practice of printing apotropaic and merit making texts and images, was translated by Chinese monks. [9] From 658-663, Xuanzang printed one million copies of the image of Puxian Pusa to distribute to Buddhist devotees. [17]

Evidence of woodblock printing appeared in Korea and Japan soon afterward. The Great Dharani Sutra (Korean : 무구정광대다라니경, romanized: Muggujeonggwang Daedharanigyeong Hanja: 無垢淨光大陀羅尼經) was discovered at Bulguksa, South Korea in 1966 and dated between 704 and 751 in the era of Later Silla. The document is printed on a 8 cm × 630 cm (3.1 in × 248.0 in) mulberry paper scroll. [18] [19] A dhāraṇī sutra was printed in Japan around AD 770. One million copies of the sutra, along with other prayers, were ordered to be produced by Empress Shōtoku. As each copy was then stored in a tiny wooden pagoda, the copies are together known as the Hyakumantō Darani (百万塔陀羅尼, "1,000,000 towers/pagodas Darani"). [9]

The oldest extant evidence of woodblock prints created for the purpose of reading are portions of the Lotus Sutra discovered at Turpan in 1906. They have been dated to the reign of Wu Zetian using character form recognition. The oldest text containing a specific date of printing was discovered in the Mogao Caves of Dunhuang in 1907 by Aurel Stein. This copy of the Diamond Sutra is 14 feet long and contains a colophon at the inner end, which reads: Reverently [caused to be] made for universal free distribution by Wang Jie on behalf of his two parents on the 13th of the 4th moon of the 9th year of Xiantong [i.e. 11 May, AD 868 ]. It is considered the world's oldest securely-dated woodblock scroll. The Diamond sutra was closely followed by the earliest extant printed almanac, the Qianfu sinian lishu (乾符四年曆書), dated to 877. From 932 to 955 the Twelve Classics and an assortment of other texts were printed. During the Song dynasty, the Directorate of education and other agencies used these block prints to disseminate their standardized versions of the Classics. Other disseminated works include the Histories, philosophical works, encyclopedias, collections, and books on medicine and the art of war. In 971 work began on the complete Tripiṭaka Buddhist Canon (Kaibao zangshu 開寶藏書) in Chengdu. It took 10 years to finish the 130,000 blocks needed to print the text. The finished product, the Sichuan edition of the Kaibao canon, also known as the Kaibao Tripitaka, was printed in 983. [9] During the Song dynasty, the three major centers of printing were Hangzhou, Jianyang, and Chengdu. [20]

Carvers tended to congregate in centers of book production. By the mid-thirteenth century, thus, they worked in at least ninety-one prefectures in south China, but mainly in Hangzhou, Jianyang in northern Fujian, and Chengdu in Sichuan. In the Jin and Yuan dynasties, the centers of production were Pingyang prefecture in southern Shanxi Province and, once again for southeast China, Hangzhou and Jianyang. By the late Ming, the lower Yangzi delta, mainly Suzhou and Nanjing, would dominate along with Jianyang. By the early seventeenth century, carvers would also have found their way to provinces that, in the Song and Yuan, had produced only a few books (e.g., Hunan, Shaanxi, and Guangdong) but had recently started to print a fair number of imprints for the book market. [21]

Joseph P. McDermott

In 989 Seongjong of Goryeo sent the monk Yeoga to request from the Song a copy of the complete Buddhist canon. The request was granted in 991 when Seongjong's official Han Eongong visited the Song court. [22] In 1011, Hyeonjong of Goryeo issued the carving of their own set of the Buddhist canon, which would come to be known as the Goryeo Daejanggyeong . The project was suspended in 1031 after Heyongjong's death, but work resumed again in 1046 after Munjong's accession to the throne. The completed work, amounting to some 6,000 volumes, was finished in 1087. Unfortunately the original set of woodblocks was destroyed in a conflagration during the Mongol invasion of 1232. King Gojong ordered another set to be created and work began in 1237, this time only taking 12 years to complete. In 1248 the complete Goryeo Daejanggyeong numbered 81,258 printing blocks, 52,330,152 characters, 1496 titles, and 6568 volumes. Due to the stringent editing process that went into the Goryeo Daejanggyeong and its surprisingly enduring nature, having survived completely intact over 760 years, it is considered the most accurate of Buddhist canons written in Classical Chinese as well as a standard edition for East Asian Buddhist scholarship. [23]

Under the Wave off Kanagawa by Hokusai, a ukiyo-e artist The Great Wave off Kanagawa.jpg
Under the Wave off Kanagawa by Hokusai, a ukiyo-e artist

In Japan, from the Edo period in the 1600s, books and illustrations were mass-produced by woodblock printing and spread among the common people. This is due to economic development and a very high literacy rate for the time. The literacy rate of the Japanese in the Edo period was almost 100% for the samurai class and 50% to 60% for the chōnin and nōmin (farmer) class due to the spread of private schools terakoya . There were more than 600 rental bookstores in Edo, and people lent woodblock-printed illustrated books of various genres. The content of these books varied widely, including travel guides, gardening books, cookbooks, kibyōshi (satirical novels), sharebon (books on urban culture), kokkeibon (comical books), ninjōbon (romance novel), yomihon , kusazōshi , art books, play scripts for the kabuki and jōruri (puppet) theatre, etc. The best-selling books of this period were Kōshoku Ichidai Otoko (Life of an Amorous Man) by Ihara Saikaku, Nansō Satomi Hakkenden by Takizawa Bakin, and Tōkaidōchū Hizakurige by Jippensha Ikku, and these books were reprinted many times. [24] [25] [26] [27] [28]

From the 17th century to the 19th century, ukiyo-e depicting secular subjects became very popular among the Japanese common people and were mass-produced. ukiyo-e is based on kabuki actors, sumo wrestlers, beautiful women, landscapes of sightseeing spots, historical tales, and so on, and Hokusai and Hiroshige are the most famous artists. In the 18th century, Suzuki Harunobu established the technique of multicolor woodblock printing called nishiki-e and greatly developed Japanese woodblock printing culture such as ukiyo-e. Ukiyo-e influenced European Japonism and Impressionism. In the early 20th century, shin-hanga that fused the tradition of ukiyo-e with the techniques of Western paintings became popular, and the works of Hasui Kawase and Hiroshi Yoshida gained international popularity. [24] [25] [29] [30]

Impact of woodblock printing

Prior to the introduction of printing, the size of private collections in China had already seen an increase since the invention of paper. Fan Ping (215–84) had in his collection 7,000 rolls (juan), or a few hundred titles. Two centuries later, Zhang Mian owned 10,000 juan, Shen Yue (441–513) 20,000 juan, and Xiao Tong and his cousin Xiao Mai both had collections of 30,000 juan. Emperor Yuan of Liang (508–555) was said to have had a collection of 80,000 juan. The combined total of all known private book collectors prior to the Song dynasty number around 200, with the Tang alone accounting for 60 of them. [31]

Following the maturation of woodblock printing, official, commercial, and private publishing businesses emerged while the size and number of collections grew exponentially. The Song dynasty alone accounts for some 700 known private collections, more than triple the number of all the preceding centuries combined. Private libraries of 10–20,000 juan became commonplace while six individuals owned collections of over 30,000 juan. The earliest extant private Song library catalogue lists 1,937 titles in 24,501 juan. Zhou Mi's collection numbered 42,000 juan, Chen Zhensun's collection lists 3,096 titles in 51,180 juan, and Ye Mengde (1077–1148) as well as one other individual owned libraries of 6,000 titles in 100,000 juan. The majority of which were secular in nature. Texts contained material such as medicinal instruction or came in the form of a leishu (類書), a type of encyclopedic reference book used to help examination candidates. [9] [31]

Imperial establishments such as the Three Institutes: Zhaowen Institute, History Institute, and Jixian Institute also followed suit. At the start of the dynasty the Three Institutes' holdings numbered 13,000 juan, by the year 1023 39,142 juan, by 1068 47,588 juan, and by 1127 73,877 juan. The Three Institutes were one of several imperial libraries, with eight other major palace libraries, not including imperial academies. [32] According to Weng Tongwen, by the 11th century, central government offices were saving tenfold by substituting earlier manuscripts with printed versions. [33] The impact of woodblock printing on Song society is illustrated in the following exchange between Emperor Zhenzong and Xing Bing in the year 1005:

The emperor went to the Directorate of Education to inspect the Publications Office. He asked Xing Bing how many woodblocks were kept there. Bing replied, "At the start of our dynasty, there were fewer than four thousand. Today, there are more than one hundred thousand. The classics and histories, together with standard commentaries, are all fully represented. When I was young and devoted myself to learning, there were only one or two scholars in every hundred who possessed copies of all the classics and commentaries. There was no way to copy so many works. Today, printed editions of these works are abundant, and officials and commoners alike have them in their homes. Scholars are fortunate indeed to have been born in such an era as ours! [34]

In 1076, the 39 year old Su Shi remarked upon the unforeseen effect an abundance of books had on examination candidates:

I can recall meeting older scholars, long ago, who said that when they were young they had a hard time getting their hands on a copy of Shiji or Han shu. If they were lucky enough to get one, they thought nothing of copying the entire text out by hand, so they could recite it day and night. In recent years merchants engrave and print all manner of books belonging to the hundred schools, and produce ten thousand pages a day. With books so readily available, you would think that students' writing and scholarship would be many times better than what they were in earlier generations. Yet, to the contrary, young men and examination candidates leave their books tied shut and never look at them, preferring to amuse themselves with baseless chatter. Why is this? [35]

Woodblock printing also changed the shape and structure of books. Scrolls were gradually replaced by concertina binding (經摺裝) from the Tang period onward. The advantage was that it was now possible to flip to a reference without unfolding the entire document. The next development known as whirlwind binding (xuanfeng zhuang 旋風裝) was to secure the first and last leaves to a single large sheet, so that the book could be opened like an accordion. [36]

Around the year 1000, butterfly binding was developed. Woodblock prints allowed two mirror images to be easily replicated on a single sheet. Thus two pages were printed on a sheet, which was then folded inwards. The sheets were then pasted together at the fold to make a codex with alternate openings of printed and blank pairs of pages. In the 14th century the folding was reversed outwards to give continuous printed pages, each backed by a blank hidden page. Later the sewn bindings were preferred rather than pasted bindings. [37] Only relatively small volumes ( juan 卷 ) were bound up, and several of these would be enclosed in a cover called a tao, with wooden boards at front and back, and loops and pegs to close up the book when not in use. For example, one complete Tripitaka had over 6,400 juan in 595 tao. [38]

The rise of woodblock printing technology led to a decline in book prices by about one tenth what they had been before the 11th century. Not all areas experienced the same price reductions, which was also dependent on other factors besides the technology, resulting in regional variations in the price of print works by as high as 600 percent during the 12th century. [20] Woodblock printing did not replace manuscripts either, which continued to remain commercially viable through substantially reducing their prices. According to the Ming dynasty author Hu Yinglin, "if no printed edition were available on the market, the hand-copied manuscript of a book would cost ten times as much as the printed work," [39] also "once a printed edition appeared, the transcribed copy could no longer be sold and would be discarded." [39] The result is that despite the mutual co-existence of hand-copied manuscripts and printed texts, the cost of the book had declined by about 90 percent by the end of the 16th century. [39] As a result, literacy increased. In 1488, the Korean Choe Bu observed during his trip to China that "even village children, ferrymen, and sailors" could read, although this applied mainly to the south while northern China remained largely illiterate. [40] Manuscripts also gained new cultural value as imprints became more common, and were even preferred by elite scholars and collectors. The age of printing gave the act of copying by hand a new dimension of cultural reverence. Those who considered themselves real scholars and true connoisseurs of the book did not consider imprints to be real books. Under the elitist attitudes of the time, "printed books were for those who did not truly care about books." [41] [42]

In India

In Buddhism, great merit is thought to accrue from copying and preserving texts. Asanga, the 4th-century master listed the copying of scripture as the first of ten essential religious practices. The importance of perpetuating texts is set out with special force in the longer Sukhāvatīvyūha Sūtra, which urges the devout not only to hear, learn, remember and study the text but to obtain a good copy and to preserve it. This "cult of the book" led to techniques for reproducing texts in great numbers, especially the short prayers or charms known as dhāraṇīs. Stamps were carved for printing these prayers on clay tablets from at least the 7th century, the date of the oldest surviving examples. [43]

In the Islamic world

The Golden Age of Islam witnessed text printing, including passages from the Quran and hadith, embracing the Chinese craft of paper making, developed it and adopted it widely in the Muslim world, which led to a major increase in the production of manuscript texts. The printing technique in Egypt was adopted reproducing texts on paper strips and supplying them in various copies to meet the demand. [44] [45] Block printing, known as tarsh in Arabic, was also developed during the ninth and tenth centuries, mostly for prayers and amulets. Evidences tell that the print blocks made from non-wood materials, possibly tin, lead, or clay. Europe adopted woodblock printing from the Islamic world, at first for fabric, the method of metal block printing remained unknown in the West. Block printing later went out of use in the Muslim Timurid Renaissance. [46]

In Europe

Printing with a press was practiced in Christian Europe as a method for printing on cloth, where it was common by 1300. Images printed on cloth for religious purposes could be quite large and elaborate, and when paper became relatively easily available, around 1400, the medium transferred very quickly to small woodcut religious images and playing cards printed on paper. These prints were produced in very large numbers from about 1425 onwards. [47] [ page needed ]

Around the mid-century, block-books, woodcut books with both text and images, usually carved in the same block, emerged as a cheaper alternative to manuscripts and books printed with movable type. These were all short heavily illustrated works, the bestsellers of the day, repeated in many different block-book versions: the Ars moriendi and the Biblia pauperum were the most common. There is still some controversy among scholars as to whether their introduction preceded or, the majority view, followed the introduction of movable type, with the range of estimated dates being between about 1440–1460. [48] [ verification needed ]

Movable type (1041)

Ceramic movable type print from Western Xia. Found in Wuwei, Gansu. Beijing printing museum.12th century.Xixia argile movable type print.jpg
Ceramic movable type print from Western Xia. Found in Wuwei, Gansu.
A revolving typecase for wooden type in China, from Wang Zhen's book published in 1313 Chinese movable type 1313-ce.png
A revolving typecase for wooden type in China, from Wang Zhen's book published in 1313
Wooden movable type for Old Uyghur alphabet, dated to the 12th-13th centuries. Discovered in the Mogao caves. Beijing printing museum.Caracteres mobiles en ancien Ouighour.jpg
Wooden movable type for Old Uyghur alphabet, dated to the 12th–13th centuries. Discovered in the Mogao caves.

Movable type is the system of printing and typography using individual pieces of type.

Ceramic movable type

Movable type was invented in the Northern Song dynasty around the year 1041 by the commoner Bi Sheng. Bi Sheng's movable type was fired in porcelain. After his death, the ceramic movable-type passed onto his descendants. The next mention of movable type occurred in 1193 when a Southern Song chief counselor, Zhou Bida (周必大), attributed the movable-type method of printing to Shen Kuo. However Shen Kuo did not invent the movable type but credited it to Bi Sheng in his Dream Pool Essays . The ceramic movable type was also mentioned by Kublai Khan's councilor Yao Shu, who convinced his pupil Yang Gu to print language primers using this method. [49]

The ceramic type did not hold the water-based Chinese calligraphic ink well, and had the additional disadvantage of the size of the type sometimes changing during the baking process, resulting in uneven matching of the type, and preventing it from becoming popular. [50] [51]

Wooden movable type

Bi Sheng also developed wooden movable type, but it was abandoned in favor of ceramic types due to the presence of wood grains and the unevenness of the wooden type after being soaked in ink. [52] [53] However wooden movable type had evidently reached the Tangut Western Xia to the west by the 12th century. There, the Tanguts printed the Auspicious Tantra of All-Reaching Union, a 449-page text considered to be the earliest extant example of a text printed using the wooden movable type. [54] The Uyghurs too seem to have used wooden movable type although it is unknown where they got the technology. In 1908, more than a thousand pieces of Uyghur type made of wood, engraved in Sogdian script, were discovered in Dunhuang. They are believed to date to the 12th century when the Uyghurs also made use of woodblock printing. To date no manuscripts or fragments of Uyghur movable type have been found. [55]

Wang Zhen, who lived in the Yuan dynasty, also described the wooden movable type in his Book of Agriculture (Nongshu 農書) of 1313. [49]

Now, however, there is another method [beyond earthenware type] that is both more exact and more convenient. A compositor's form is made of wood, strips of bamboo are used to mark the lines and a block is engraved with characters. The block is then cut into squares with a small fine saw till each character forms a separate piece. These separate characters are finished off with a knife on all four sides, and compared and tested till they are exactly the same height and size. Then the types are placed in the columns [of the form] and bamboo strips which have been prepared are pressed in between them. After the types have all been set in the form, the spaces are filled in with wooden plugs, so that the type is perfectly firm and will not move. When the type is absolutely firm, the ink is smeared on and printing begins. [56]

Wang Zhen

Wang Zhen used two rotating circular tables as trays for laying out his type. The first table was separated into 24 trays in which each movable type was categorized based on a number corresponding with a rhyming pattern. The second table contained miscellaneous characters. [49]

Using more than 30,000 wooden movable types, Wang Zhen printed a hundred copies of his county gazetteer, Records of Jingde County (Jingde xianzhi 旌德縣志), a text containing more than 60,000 characters. [49]

Wooden movable type printing became relatively common during the Ming dynasty and became widespread during the Qing era. [49]

Metal movable type

Copperplate of 1215-1216 5000-cash Jin dynasty (1115-1234) paper money with bronze movable type counterfeit markers Wu Guan Bao Juan .jpg
Copperplate of 1215–1216 5000-cash Jin dynasty (1115–1234) paper money with bronze movable type counterfeit markers
Jikji: Selected Teachings of Buddhist Sages and Seon Masters, the earliest known book printed with movable metal type, 1377. Bibliotheque Nationale de France, Paris SelectedTeachingsofBuddhistSagesandSonMasters1377.jpg
Jikji: Selected Teachings of Buddhist Sages and Seon Masters, the earliest known book printed with movable metal type, 1377. Bibliothèque Nationale de France, Paris
Movable type used in the creation of the earliest extant book printed using movable type, Jikji (1377) JikjiType.gif
Movable type used in the creation of the earliest extant book printed using movable type, Jikji (1377)
Models of Bi Sheng's revolving typecase tables in Beijing Beijing.Musee imprimerie.caracteres mobiles.Bisheng.jpg
Models of Bi Sheng's revolving typecase tables in Beijing

Metal movable type appeared in the late Song and Yuan dynasties. Bronze movable types were used to print banknotes and official documents by both the Song and Jin. [57]

In the Jin dynasty, copper-block prints were slotted with two square holes for embedding bronze movable type characters, each selected from 1000 different characters, such that each printed paper money had a different combination of markers. A copper block printed paper banknote dated between 1215 and 1216 in the collection of Luo Zhenyu's Pictorial Paper Money of the Four Dynasties, 1914, shows two special characters: one called Ziliao, the other called Zihao, for the purpose of preventing counterfeit. Over the Ziliao there is a small character (輶) printed with movable copper type, while over the Zihao there is an empty square hole; apparently the associated copper metal type was lost. Another sample of Song dynasty money of the same period in the collection of Shanghai Museum has two empty square holes above Ziliao as well as Zihou, due to the loss of two copper movable types. [58]

In 1234, cast metal movable type was used in Goryeo (Korea) to print the 50-volume Prescribed Texts for Rites of the Past and Present, compiled by Choe Yun-ui, but no copies survived to the present. [59] Choe Yun-ui built on an earlier Chinese method of creating movable type, he adapted a method for minting bronze coins to cast 3-dimensional characters in metal. Because of the length of the text Choe Yun-ui did not complete the project until 1250. The oldest extant book printed with movable metal type is the Jikji of 1377. [60] This form of metal movable type was described by the French scholar Henri-Jean Martin as "extremely similar to Gutenberg's". [61]

Tin movable type is mentioned in Wang Zhen's Zao Huozi Yinshufa (造活字印書法) of 1298, but it was considered unsatisfactory due to incompatibility with the inking process. [62] Only in the late 15th century did bronze movable type begin to be widely used in China. [63]

Impact of movable type in the Sinosphere

Movable type printing was hardly used for the first 300 years after its invention by Bi Sheng. Even in Korea where metal movable type was most widespread, it still never replaced woodblock printing. Indeed, even the promulgation of Hangeul was done through woodblock prints. The general assumption is that movable type did not replace block printing in places that used Chinese characters due to the expense of producing more than 200,000 individual pieces of type. Even woodblock printing was not as cost productive as simply paying a copyist to write out a book by hand if there was no intention of producing more than a few copies. Although Sejong the Great introduced Hangeul, an alphabetic system, in the 15th century, Hangeul only replaced Hanja in the 20th century. [49] And unlike China, the movable type system was kept mainly within the confines of a highly stratified elite Korean society:

Korean printing with movable metallic type developed mainly within the royal foundry of the Yi dynasty. Royalty kept a monopoly of this new technique and by royal mandate suppressed all non-official printing activities and any budding attempts at commercialization of printing. Thus, printing in early Korea served only the small, noble groups of the highly stratified society. [64]

Sohn Pow-Key

Only during the Ming and Qing dynasties did wooden and metal movable types see any considerable use, but the preferred method remained woodblock. Usage of movable type in China never exceeded 10 percent of all printed materials while 90 percent of printed books used the older woodblock technology. In one case an entire set of wooden type numbering 250,000 pieces was used for firewood. [36] Woodblocks remained the dominant printing method in China until the introduction of lithography in the late 19th century. [5]

In Japan the first Western style movable type printing-press was brought to Japan by Tenshō embassy in 1590, and was first printed in Kazusa, Nagasaki in 1591. However, western printing-press were discontinued after the ban on Christianity in 1614. [24] [65] The moveable type printing-press seized from Korea by Toyotomi Hideyoshi's forces in 1593 was also in use at the same time as the printing press from Europe. An edition of the Confucian Analects was printed in 1598, using a Korean moveable type printing press, at the order of Emperor Go-Yōzei. [24] [66] Tokugawa Ieyasu established a printing school at Enko-ji in Kyoto and started publishing books using domestic wooden movable type printing-press instead of metal from 1599. Ieyasu supervised the production of 100,000 types, which were used to print many political and historical books. In 1605, books using domestic copper movable type printing-press began to be published, but copper type did not become mainstream after Ieyasu died in 1616. [24] Despite the appeal of moveable type, however, craftsmen soon decided that the running script style of Japanese writings was better reproduced using woodblocks. By 1640 woodblocks were once again used for nearly all purposes. [67] After the 1640s, movable type printing declined, and books were mass-produced by conventional woodblock printing during most of the Edo period. It was after the 1870s, during the Meiji period, when Japan opened the country to the West and began to modernize, that this technique was used again. [24] [68]

Movable type vs. woodblock printing

Traditionally it has been assumed that the prevalence of woodblock printing in East Asia as a result of Chinese characters led to the stagnation of printing culture and enterprise in that region. S. H. Steinberg describes woodblock printing in his Five Hundred Years of Printing as having "outlived their usefulness" and their printed material as "cheap tracts for the half-literate, [...] which anyway had to be very brief because of the laborious process of cutting the letters." [69] John Man's The Gutenberg Revolution makes a similar case: "wood-blocks were even more demanding than manuscript pages to make, and they wore out and broke, and then you had to carve another one – a whole page at a time." [69]

Recent commentaries on printing in China using contemporary European observers with first hand knowledge complicate the traditional narrative. T. H. Barrett points out that only Europeans who had never seen Chinese woodblock printing in action tended to dismiss it, perhaps due to the almost instantaneous arrival of both xylography and movable type in Europe. The early Jesuit missionaries of late 16th century China, for instance, had a similar distaste for wood based printing for very different reasons. These Jesuits found that "the cheapness and omnipresence of printing in China made the prevailing wood-based technology extremely disturbing, even dangerous." [70] Matteo Ricci made note of "the exceedingly large numbers of books in circulation here and the ridiculously low prices at which they are sold." [71] Two hundred years later the Englishman John Barrow, by way of the Macartney mission to Qing China, also remarked with some amazement that the printing industry was "as free as in England, and the profession of printing open to everyone." [70] The commercial success and profitability of woodblock printing was attested to by one British observer at the end of the nineteenth century, who noted that even before the arrival of western printing methods, the price of books and printed materials in China had already reached an astoundingly low price compared to what could be found in his home country. Of this, he said:

We have an extensive penny literature at home, but the English cottager cannot buy anything like the amount of printed matter for his penny that the Chinaman can for even less. A penny Prayer-book, admittedly sold at a loss, cannot compete in mass of matter with many of the books to be bought for a few cash in China. When it is considered, too, that a block has been laboriously cut for each leaf, the cheapness of the result is only accounted for by the wideness of sale. [72]

Other modern scholars such as Endymion Wilkinson hold a more conservative and skeptical view. While Wilkinson does not deny "China's dominance in book production from the fourth to the fifteenth century," he also insists that arguments for the Chinese advantage "should not be extended either forwards or backwards in time." [73]

European book production began to catch up with China after the introduction of the mechanical printing press in the mid fifteenth century. Reliable figures of the number of imprints of each edition are as hard to find in Europe as they are in China, but one result of the spread of printing in Europe was that public and private libraries were able to build up their collections and for the first time in over a thousand years they began to match and then overtake the largest libraries in China. [73]

Endymion Wilkinson

European movable type (1439)

European output of books printed by movable type from ca. 1450 to 1800 European Output of Printed Books ca. 1450-1800.png
European output of books printed by movable type from ca. 1450 to 1800
The rapid spread of printing from Mainz in the 15th century Printing towns incunabula.svg
The rapid spread of printing from Mainz in the 15th century

Eastern metal movable type was spread to Europe between the late 14th and early 15th centuries. [75] [76] [77] [78] [79] Historians Frances Gies and Joseph Gies claimed that "The Asian priority of invention movable type is now firmly established, and that Chinese-Korean technique, or a report of it traveled westward is almost certain." [80] However, Joseph P. McDermott claimed that "No text indicates the presence or knowledge of any kind of Asian movable type or movable type imprint in Europe before 1450. The material evidence is even more conclusive." [81]

It is traditionally surmised that Johannes Gutenberg, of the German city of Mainz, developed European movable type printing technology with the printing press around 1439 [82] and in just over a decade, the European age of printing began. However, the evidence shows a more complex evolutionary process, spread over multiple locations. [83] Also, Johann Fust and Peter Schöffer experimented with Gutenberg in Mainz.

Compared to woodblock printing, movable type page-setting was quicker and more durable. The metal type pieces were more durable and the lettering was more uniform, leading to typography and fonts. The high quality and relatively low price of the Gutenberg Bible (1455) established the superiority of movable type, and printing presses rapidly spread across Europe, leading up to the Renaissance, and later all around the world. Today, practically all movable type printing ultimately derives from Gutenberg's movable type printing, which is often regarded as the most important invention of the second millennium. [84] [85] [86]

Gutenberg is also credited with the introduction of an oil-based ink which was more durable than previously used water-based inks. Having worked as a professional goldsmith, Gutenberg made skillful use of his knowledge of metals. He was also the first to make his type from an alloy of lead, tin, and antimony, known as type metal, printer's lead, or printer's metal, which was critical for producing durable type that produced high-quality printed books, and proved to be more suitable for printing than the clay, wooden or bronze types used in East Asia. To create these lead types, Gutenberg used what some considered his most ingenious invention: a special matrix which enabled the moulding of new movable types with an unprecedented precision at short notice. Within a year of printing the Gutenberg Bible, Gutenberg also published the first coloured prints.

The invention of the printing press revolutionized communication and book production, leading to the spread of knowledge. [87]   Printing was rapidly spread from Germany by emigrating German printers, but also by foreign apprentices returning home. A printing press was built in Venice in 1469, and by 1500 the city had 417 printers. In 1470 Johann Heynlin set up a printing press in Paris. In 1473 Kasper Straube published the Almanach cracoviense ad annum 1474 in Kraków. Dirk Martens set up a printing press in Aalst (Flanders) in 1473. He printed a book about the two lovers of Enea Piccolomini who became Pope Pius II. In 1476 a printing press was set up in England by William Caxton. The Italian Juan Pablos set up an imported press in Mexico City in 1539. The first printing press in Southeast Asia was set up in the Philippines by the Spanish in 1593. The Rev. Jose Glover intended to bring the first printing press to England's American colonies in 1638, but died on the voyage, so his widow, Elizabeth Harris Glover, established the printing house, which was run by Stephen Day and became The Cambridge Press. [88]

The Gutenberg press was much more efficient than manual copying. It remained largely unchanged in the eras of John Baskerville and Giambattista Bodoni, over 300 years later. [89] By 1800, Lord Stanhope had constructed a press completely from cast iron, reducing the force required by 90% while doubling the size of the printed area. [89] While Stanhope's "mechanical theory" had improved the efficiency of the press, it was only capable of 250 sheets per hour. [89] German printer Friedrich Koenig was the first to design a non-manpowered machine—using steam. [89] He moved to London in 1804, and met Thomas Bensley; he secured financial support for his project in 1807. [89] With a patent in 1810, Koenig designed a steam press "much like a hand press connected to a steam engine." [89] The first production trial of this model occurred in April 1811.

Flat-bed printing press

Printing press from 1811, photographed in Munich, Germany. Handtiegelpresse von 1811.jpg
Printing press from 1811, photographed in Munich, Germany.

A printing press is a mechanical device for applying pressure to an inked surface resting upon a medium (such as paper or cloth), thereby transferring an image. The systems involved were first assembled in Germany by the goldsmith Johannes Gutenberg in the mid-15th century. [82] Printing methods based on Gutenberg's printing press spread rapidly throughout first Europe and then the rest of the world, replacing most block printing and making it the sole progenitor of modern movable type printing. As a method of creating reproductions for mass consumption, the printing press has been superseded by the advent of offset printing.

Johannes Gutenberg's work in the printing press began in approximately 1436 when he partnered with Andreas Dritzehen—a man he had previously instructed in gem-cutting—and Andreas Heilmann, owner of a paper mill. [82] It was not until a 1439 lawsuit against Gutenberg that official record exists; witnesses testimony discussed type, an inventory of metals (including lead) and his type mold. [82]

Others in Europe were developing movable type at this time, including goldsmith Procopius Waldfoghel of France and Laurens Janszoon Coster of the Netherlands. [82] They are not known to have contributed specific advances to the printing press. [82] While the Encyclopædia Britannica Eleventh Edition had attributed the invention of the printing press to Coster, the company now states that is incorrect. [90]

In this woodblock from 1568, the printer at left is removing a page from the press while the one at right inks the text-blocks Printer in 1568-ce.png
In this woodblock from 1568, the printer at left is removing a page from the press while the one at right inks the text-blocks

Printing houses in Europe

Early printing houses (near the time of Gutenberg) were run by "master printers." These printers owned shops, selected and edited manuscripts, determined the sizes of print runs, sold the works they produced, raised capital and organized distribution. Some master printing houses, like that of Aldus Manutius, became the cultural center for literati such as Erasmus.

The earliest-known image of a European, Gutenberg-style print shop is the Dance of Death by Matthias Huss, at Lyon, 1499. This image depicts a compositor standing at a compositor's case being grabbed by a skeleton. The case is raised to facilitate his work. At the right of the printing house a bookshop is shown.

Financial aspects

According to court records from the city of Mainz, Johannes Fust was for some time Gutenberg's financial backer. By the 16th century jobs in printing were becoming increasingly specialized. Structures[ clarification needed ] supporting publishers were more and more complex, leading to division of labour. In Europe between 1500 and 1700 the role of the Master Printer was dying out and giving way to the bookseller—publisher. During this period, printing had a stronger commercial imperative than previously. Risks associated with the industry however were substantial, although dependent on the nature of the publication.

Bookseller publishers negotiated at trade fairs and at print shops. Jobbing work appeared: some printers performed menial tasks at the beginning of their careers to support themselves.

From 1500 to 1700 publishers developed several new methods of funding projects:

  1. Cooperative associations/publication syndicates—a number of individuals shared the risks associated with printing and shared in the profit. This was pioneered by the French.[ citation needed ]
  2. Subscription publishing: pioneered by the English in the early 17th century. [91] A prospectus for a publication was drawn up by a publisher to raise funding. The prospectus was given to potential buyers who signed up for a copy. If there were not enough subscriptions the publication did not go ahead. Lists of subscribers were included in the books as endorsements. If enough people subscribed, there might be a reprint. Some authors used subscription publication to bypass the publisher entirely.
  3. Installment publishing: books were issued in parts until a complete book had been issued. This was not necessarily done within a fixed time period. It was an effective method of spreading the cost over a period of time. It also allowed earlier returns on investment to help cover the production costs of subsequent installments.

The Mechanick Exercises, by Joseph Moxon, in London, 1683, was said to be the first publication in installments. [92]

Publishing trade organizations allowed publishers to organize business concerns collectively. These arrangements included systems of self-regulation. For example, if one publisher did something to irritate other publishers he would be controlled by peer pressure. Such systems are known as cartels, and are in most countries now considered to be in restraint of trade. These arrangements helped deal with labour unrest among journeymen, who faced difficult working conditions. Brotherhoods predated unions, without the formal regulations now associated with unions.

In most cases, publishers bought the copyright in a work from the author, and made some arrangement about the possible profits. This required a substantial amount of capital in addition to that needed for the physical equipment and staff. Alternatively, an author with some capital available would sometimes keep the copyright himself, and simply pay the printer to print the book.

Rotary printing press

In a rotary printing press, the impressions are carved around a cylinder so that the printing can be done on long continuous rolls of paper, cardboard, plastic, or a large number of other substrates. Rotary drum printing was invented by Richard March Hoe in 1843 and patented in 1847, and then significantly improved by William Bullock in 1863.


Intaglio printing. The top line is the paper, to which a slightly raised layer of ink adheres; the matrix is beneath Intaglio-printing.svg
Intaglio printing. The top line is the paper, to which a slightly raised layer of ink adheres; the matrix is beneath

Intaglio ( /ɪnˈtæli/ ) is a family of printmaking techniques in which the image is incised into a surface, known as the matrix or plate. Normally, copper or zinc plates are used as a surface, and the incisions are created by etching, engraving, drypoint, aquatint or mezzotint. Collographs may also be printed as intaglio plates. To print an intaglio plate the surface is covered in thick ink and then rubbed with tarlatan cloth to remove most of the excess. The final smooth wipe is usually done by hand, sometimes with the aid of newspaper or old public phone book pages, leaving ink only in the incisions. A damp piece of paper is placed on top and the plate and paper are run through a printing press that, through pressure, transfers the ink from the recesses of the plate to the paper.

Lithography (1796)

Lithography press for printing maps in Munich. Lithography press with map of Moosburg 02.jpg
Lithography press for printing maps in Munich.
Stone used for a lithograph with a view of Princeton University (Collection: Princeton University Library, NJ) Lithography stone Princeton motif.jpg
Stone used for a lithograph with a view of Princeton University (Collection: Princeton University Library, NJ)

Invented by Bavarian author Aloys Senefelder in 1796, [93] lithography is a method for printing on a smooth surface. Lithography is a printing process that uses chemical processes to create an image. For instance, the positive part of an image would be a hydrophobic chemical, while the negative image would be water. Thus, when the plate is introduced to a compatible ink and water mixture, the ink will adhere to the positive image and the water will clean the negative image. This allows for a relatively flat print plate which allows for much longer runs than the older physical methods of imaging (e.g., embossing or engraving). High-volume lithography is used today to produce posters, maps, books, newspapers, and packaging — just about any smooth, mass-produced item with print and graphics on it. Most books, indeed all types of high-volume text, are now printed using offset lithography.

In offset lithography, which depends on photographic processes, flexible aluminum, polyester, mylar or paper printing plates are used in place of stone tablets. Modern printing plates have a brushed or roughened texture and are covered with a photosensitive emulsion. A photographic negative of the desired image is placed in contact with the emulsion and the plate is exposed to ultraviolet light. After development, the emulsion shows a reverse of the negative image, which is thus a duplicate of the original (positive) image. The image on the plate emulsion can also be created through direct laser imaging in a CTP (Computer-To-Plate) device called a platesetter. The positive image is the emulsion that remains after imaging. For many years, chemicals have been used to remove the non-image emulsion, but now plates are available that do not require chemical processing.

Color printing

Calvert Lithographic Company, Detroit, MI. Uncle Sam Supplying the World with Berry Brothers Hard Oil Finish, c. 1880. Noel Wisdom Chromolithograph Collection, Special Collections Department, The University of South Florida Tampa Library. Uncle Sam Supplying the World with Berry Brothers Hard Oil Finish.jpg
Calvert Lithographic Company, Detroit, MI. Uncle Sam Supplying the World with Berry Brothers Hard Oil Finish, c. 1880. Noel Wisdom Chromolithograph Collection, Special Collections Department, The University of South Florida Tampa Library.

According to Michael Sullivan, the earliest known example of color printing "is a two-color frontispiece to a Buddhist sutra scroll, dated 1346". Color printing continued to be used in China throughout the Ming and Qing Dynasty. [94]

Chromolithography became the most successful of several methods of colour printing developed by the 19th century; other methods were developed by printers such as Jacob Christoph Le Blon, George Baxter and Edmund Evans, and mostly relied on using several woodblocks with the colors. Hand-coloring also remained important; elements of the official British Ordnance Survey maps were colored by hand by boys until 1875. Chromolithography developed from lithography and the term covers various types of lithography that are printed in color. [95] The initial technique involved the use of multiple lithographic stones, one for each color, and was still extremely expensive when done for the best quality results. Depending on the number of colors present, a chromolithograph could take months to produce, by very skilled workers. However much cheaper prints could be produced by simplifying both the number of colors used, and the refinement of the detail in the image. Cheaper images, like the advertisement illustrated, relied heavily on an initial black print (not always a lithograph), on which colors were then overprinted. To make an expensive reproduction print as what was once referred to as a "’chromo’", a lithographer, with a finished painting in front of him, gradually created and corrected the many stones using proofs to look as much as possible like the painting in front of him, sometimes using dozens of layers. [96]

Aloys Senefelder, the inventor of lithography, introduced the subject of colored lithography in his 1818 Vollstaendiges Lehrbuch der Steindruckerey (A Complete Course of Lithography), where he told of his plans to print using color and explained the colors he wished to be able to print someday. [97] Although Senefelder recorded plans for chromolithography, printers in other countries, such as France and England, were also trying to find a new way to print in color. Godefroy Engelmann of Mulhouse in France was awarded a patent on chromolithography in July 1837, [97] but there are disputes over whether chromolithography was already in use before this date, as some sources say, pointing to areas of printing such as the production of playing cards. [97]

Offset press (1870s)

Offset printing is a widely used printing technique where the inked image is transferred (or "offset") from a plate to a rubber blanket, then to the printing surface. When used in combination with the lithographic process, which is based on the repulsion of oil and water, the offset technique employs a flat (planographic) image carrier on which the image to be printed obtains ink from ink rollers, while the non-printing area attracts a film of water, keeping the non-printing areas ink-free.

Screenprinting (1907)

Screenprinting has its origins in simple stencilling, most notably of the Japanese form (katazome), used who cut banana leaves and inserted ink through the design holes on textiles, mostly for clothing. This was taken up in France. The modern screenprinting process originated from patents taken out by Samuel Simon in 1907 in England. This idea was then adopted in San Francisco, California, by John Pilsworth in 1914 who used screenprinting to form multicolor prints in a subtractive mode, differing from screenprinting as it is done today.


A flexographic printing plate. Flexography-Platecloseup.JPG
A flexographic printing plate.

Flexography (also called "surface printing"), often abbreviated to "flexo", is a method of printing most commonly used for packaging (labels, tape, bags, boxes, banners, and so on).

A flexo print is achieved by creating a mirrored master of the required image as a 3D relief in a rubber or polymer material. A measured amount of ink is deposited upon the surface of the printing plate (or printing cylinder) using an anilox roll. The print surface then rotates, contacting the print material which transfers the ink.

Originally flexo printing was basic in quality. Labels requiring high quality have generally been printed by offset printing until recently. Great advances have been made to the quality of flexo printing presses.

The greatest advances though have been in the area of photopolymer printing plates, including improvements to the plate material and the method of plate creation. Usually, photographic exposure followed by chemical etch or water washout. Direct laser engraving of an ablative surface allows direct-to-plate exposure of photopolymer plates.

Dot matrix printer (1968)

A dot matrix printer or impact matrix printer is a type of computer printer with a print head that runs back and forth on the page and prints by impact, striking an ink-soaked cloth ribbon against the paper, much like a typewriter. Unlike a typewriter or daisy wheel printer, letters are drawn out of a dot matrix, and thus, varied fonts and arbitrary graphics can be produced. Because the printing involves mechanical pressure, these printers can create carbon copies and carbonless copies.

Each dot is produced by a tiny metal rod, also called a "wire" or "pin", which is driven forward by the power of a tiny electromagnet or solenoid, either directly or through small levers (pawls). Facing the ribbon and the paper is a small guide plate (often made of an artificial jewel such as sapphire or ruby [98] ) pierced with holes to serve as guides for the pins. The moving portion of the printer is called the print head, and when running the printer as a generic text device generally prints one line of text at a time. Most dot matrix printers have a single vertical line of dot-making equipment on their print heads; others have a few interleaved rows in order to improve dot density.

The first dot-matrix printers were invented in Japan. [99] In 1968, Japanese manufacturer Epson released the EP-101, [100] [101] the world's first dot-matrix printer. [99] The same year, Japanese manufacturer OKI introduced the first serial impact dot matrix printer (SIDM), the OKI Wiredot. [102] [103] [104]

Thermal printer

A thermal printer (or direct thermal printer) produces a printed image by selectively heating coated thermochromic paper, or thermal paper as it is commonly known, when the paper passes over the thermal print head. The coating turns black in the areas where it is heated, producing an image.

Laser printer (1969)

The laser printer, based on a modified xerographic copier, was invented at Xerox in 1969 by researcher Gary Starkweather, who had a fully functional networked printer system working by 1971. [105] [106] Laser printing eventually became a multibillion-dollar business for Xerox.

The first commercial implementation of a laser printer was the IBM model 3800 in 1976, used for high-volume printing of documents such as invoices and mailing labels. It is often cited as "taking up a whole room," implying that it was a primitive version of the later familiar device used with a personal computer. While large, it was designed for an entirely different purpose. Many 3800s are still in use.

The first laser printer designed for use with an individual computer was released with the Xerox Star 8010 in 1981. Although it was innovative, the Star was an expensive ($17,000) system that was only purchased by a small number of laboratories and institutions. After personal computers became more widespread, the first laser printer intended for a mass market was the HP LaserJet 8ppm, released in 1984, using a Canon engine controlled by HP software. The HP LaserJet printer was quickly followed by other laser printers from Brother Industries, IBM, and others.

Most noteworthy was the role the laser printer played in popularizing desktop publishing with the introduction of the Apple LaserWriter for the Apple Macintosh, along with Aldus PageMaker software, in 1985. With these products, users could create documents that would previously have required professional typesetting.

Inkjet printer

Inkjet printers are a type of computer printer that operates by propelling tiny droplets of liquid ink onto paper. There are two types of inkjet technologies: Continuous and Drop-On-Demand. [107]

Continuous inkjet flows a continuous pressurized stream of ink toward a paper. Electrically charged droplets are deflected by an electrical field to print on paper or go into a basin and reused.

Drop-On-Demand inkjets propel single drops with each electrical pulse.

Hot-melt inks were introduced in 1984. [107] Hot-melt inks printed in full color. [108]

Dye-sublimation printer

A dye-sublimation printer (or dye-sub printer) is a computer printer which employs a printing process that uses heat to transfer dye to a medium such as a plastic card, printer paper or poster paper. The process is usually to lay one color at a time using a ribbon that has color panels. Most dye-sublimation printers use CMYO colors which differs from the more recognized CMYK colors in that the black dye is eliminated in favour of a clear overcoating. This overcoating (which has numerous names depending on the manufacturer) is effectively a thin laminate which protects the print from discoloration from UV light and the air while also rendering the print water-resistant. Many consumer and professional dye-sublimation printers are designed and used for producing photographic prints.

Digital press (1993)

Digital printing is the reproduction of digital images on a physical surface, such as common or photographic paper or paperboard-cover stock, film, cloth, plastic, vinyl, magnets, labels etc.

It can be differentiated from litho, flexography, gravure or letterpress printing in many ways, some of which are;

Frescography (1998)

Frescography created using a CAM program Comersee Spalier rgb.jpg
Frescography created using a CAM program
Screenshot of a CAM program for designing frescographies Frescography.jpg
Screenshot of a CAM program for designing frescographies

Frescography is a method for reproduction/creation of murals using digital printing methods, invented in 1998 by Rainer Maria Latzke, and patented in 2000. The frescography is based on digitally cut-out motifs which are stored in a database. CAM software programs then allow to enter the measurements of a wall or ceiling to create a mural design with low resolution motifs. Since architectural elements such as beams, windows or doors can be integrated, the design will result in an accurately and tailor-fit wall mural. Once a design is finished, the low resolution motifs are converted into the original high resolution images and are printed on canvas by Wide-format printers. The canvas then can be applied to the wall in a wall-paperhanging like procedure and will then look like on-site created mural.

3D printing

Three-dimensional printing is a method of converting a virtual 3D model into a physical object. 3D printing is a category of rapid prototyping technology. 3D printers typically work by 'printing' successive layers on top of the previous to build up a three dimensional object. 3D printers are generally faster, more affordable and easier to use than other additive fabrication technologies. [109]

Technological developments


Woodcut is a relief printing artistic technique in printmaking in which an image is carved into the surface of a block of wood, with the printing parts remaining level with the surface while the non-printing parts are removed, typically with gouges. The areas to show 'white' are cut away with a knife or chisel, leaving the characters or image to show in 'black' at the original surface level. The block is cut along the grain of the wood (unlike wood engraving where the block is cut in the end-grain). In Europe beechwood was most commonly used; in Japan, a special type of cherry wood was popular.

Woodcut first appeared in ancient China. From 6th century onward, woodcut icons became popular and especially flourished in Chinese Buddhism. Since the 10th century, woodcut pictures appeared as illustrations in Chinese books, on banknotes such as Jiaozi (currency), and as single sheet images. Woodcut New Year pictures are also very popular with the Chinese.

In China and Tibet printed images mostly remained tied as illustrations to accompanying text until the modern period. The earliest woodblock printed book, the Diamond Sutra contains a large image as frontispiece, and many Buddhist texts contain some images. Later some notable Chinese artists designed woodcuts for books, the individual print develop in China in the form of New Year picture as an art-form in the way it did in Europe and Japan.

In Europe, woodcut is the oldest technique used for old master prints, developing about 1400, by using on paper existing techniques for printing on cloth. The explosion of sales of cheap woodcuts in the middle of the century led to a fall in standards, and many popular prints were very crude. The development of hatching followed on rather later than in engraving. Michael Wolgemut was significant in making German woodcut more sophisticated from about 1475, and Erhard Reuwich was the first to use cross-hatching (far harder to do than in engraving or etching). Both of these produced mainly book-illustrations, as did various Italian artists who were also raising standards there at the same period. At the end of the century Albrecht Dürer brought the Western woodcut to a level that has never been surpassed, and greatly increased the status of the single-leaf (i.e. an image sold separately) woodcut.


Engraving is the practice of incising a design onto a hard, flat surface, by cutting grooves into it. The result may be a decorated object in itself, as when silver, gold or steel are engraved, or may provide an intaglio printing plate, of copper or another metal, for printing images on paper, which are called engravings. Engraving was a historically important method of producing images on paper, both in artistic printmaking, and also for commercial reproductions and illustrations for books and magazines. It has long been replaced by photography in its commercial applications and, partly because of the difficulty of learning the technique, is much less common in printmaking, where it has been largely replaced by etching and other techniques. Other terms often used for engravings are copper-plate engraving and Line engraving . These should all mean exactly the same, but especially in the past were often used very loosely to cover several printmaking techniques, so that many so-called engravings were in fact produced by totally different techniques, such as etching.

In antiquity, the only engraving that could be carried out is evident in the shallow grooves found in some jewellery after the beginning of the 1st Millennium B.C. The majority of so-called engraved designs on ancient gold rings or other items were produced by chasing or sometimes a combination of lost-wax casting and chasing.

In the European Middle Ages goldsmiths used engraving to decorate and inscribe metalwork. It is thought that they began to print impressions of their designs to record them. From this grew the engraving of copper printing plates to produce artistic images on paper, known as old master prints in Germany in the 1430s. Italy soon followed. Many early engravers came from a goldsmithing background. The first and greatest period of the engraving was from about 1470 to 1530, with such masters as Martin Schongauer, Albrecht Dürer, and Lucas van Leiden.


Etching is the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio in the metal (the original process—in modern manufacturing other chemicals may be used on other types of material). As an intaglio method of printmaking it is, along with engraving, the most important technique for old master prints, and remains widely used today.


Halftone is the reprographic technique that simulates ones it is continuous tone imagery through the use of equally spaced dots of varying size. [110] 'Halftone' can also be used to refer specifically to the image that is produced by this process. [110]

The idea of halftone printing originates from William Fox Talbot. In the early 1850s he suggested using "photographic screens or veils" in connection with a photographic intaglio process. [111]

Several different kinds of screens were proposed during the following decades, but the first half-tone photo-engraving process was invented by Canadians George-Édouard Desbarats and William Leggo Jr. [112] On October 30, 1869, Desbarats published the Canadian Illustrated News which became the world's first periodical to successfully employ this photo-mechanical technique; featuring a full page half-tone image of His Royal Highness Prince Arthur, from a photograph by Notman. [113] Ambitious to exploit a much larger circulation, Debarats and Leggo went to New York and launched the New York Daily Graphic in March 1873, which became the world's first illustrated daily.

The first truly successful commercial method was patented by Frederic Ives of Philadelphia in 1881. [111] [114] But although he found a way of breaking up the image into dots of varying sizes he did not make use of a screen. In 1882 the German George Meisenbach patented a halftone process in England. His invention was based on the previous ideas of Berchtold and Swan. He used single lined screens which were turned during exposure to produce cross-lined effects. He was the first to achieve any commercial success with relief halftones. [111]


Xerography (or electrophotography) is a photocopying technique developed by Chester Carlson in 1938 and patented on October 6, 1942. He received U.S. Patent 2,297,691 for his invention. The name xerography came from the Greek radicals xeros (dry) and graphos (writing), because there are no liquid chemicals involved in the process, unlike earlier reproduction techniques like cyanotype.

In 1938 Bulgarian physicist Georgi Nadjakov found that when placed into electric field and exposed to light, some dielectrics acquire permanent electric polarization in the exposed areas. [115] That polarization persists in the dark and is destroyed in light. Chester Carlson, the inventor of photocopying, was originally a patent attorney and part-time researcher and inventor. His job at the patent office in New York City required him to make a large number of copies of important papers. Carlson, who was arthritic, found this a painful and tedious process. This prompted him to conduct experiments with photoconductivity. Carlson experimented with "electrophotography" in his kitchen and in 1938, applied for a patent for the process. He made the first "photocopy" using a zinc plate covered with sulfur. The words "10-22-38 Astoria" were written on a microscope slide, which was placed on top of more sulfur and under a bright light. After the slide was removed, a mirror image of the words remained. Carlson tried to sell his invention to some companies, but because the process was still underdeveloped he failed. At the time multiple copies were made using carbon paper or duplicating machines and people did not feel the need for an electronic machine. Between 1939 and 1944, Carlson was turned down by over 20 companies, including IBM and GE, neither of which believed there was a significant market for copiers.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Lithography</span> Printing technique

Lithography is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone or a metal plate with a smooth surface. It was invented in 1796 by the German author and actor Alois Senefelder and was initially used mostly for musical scores and maps. Lithography can be used to print text or images onto paper or other suitable material. A lithograph is something printed by lithography, but this term is only used for fine art prints and some other, mostly older, types of printed matter, not for those made by modern commercial lithography.

<span class="mw-page-title-main">Printing press</span> Device for evenly printing ink onto a print medium

A printing press is a mechanical device for applying pressure to an inked surface resting upon a print medium, thereby transferring the ink. It marked a dramatic improvement on earlier printing methods in which the cloth, paper or other medium was brushed or rubbed repeatedly to achieve the transfer of ink, and accelerated the process. Typically used for texts, the invention and global spread of the printing press was one of the most influential events in the second millennium.

<span class="mw-page-title-main">Printmaking</span> Process of creating artworks by printing, normally on paper

Printmaking is the process of creating artworks by printing, normally on paper, but also on fabric, wood, metal, and other surfaces. "Traditional printmaking" normally covers only the process of creating prints using a hand processed technique, rather than a photographic reproduction of a visual artwork which would be printed using an electronic machine ; however, there is some cross-over between traditional and digital printmaking, including risograph. Except in the case of monotyping, all printmaking processes have the capacity to produce identical multiples of the same artwork, which is called a print. Each print produced is considered an "original" work of art, and is correctly referred to as an "impression", not a "copy". However, impressions can vary considerably, whether intentionally or not. Master printmakers are technicians who are capable of printing identical "impressions" by hand. Historically, many printed images were created as a preparatory study, such as a drawing. A print that copies another work of art, especially a painting, is known as a "reproductive print".

<span class="mw-page-title-main">Printing</span> Process for reproducing text and images

Printing is a process for mass reproducing text and images using a master form or template. The earliest non-paper products involving printing include cylinder seals and objects such as the Cyrus Cylinder and the Cylinders of Nabonidus. The earliest known form of printing as applied to paper was woodblock printing, which appeared in China before 220 AD for cloth printing. However, it would not be applied to paper until the seventh century. Later developments in printing technology include the movable type invented by Bi Sheng around 1040 AD and the printing press invented by Johannes Gutenberg in the 15th century. The technology of printing played a key role in the development of the Renaissance and the Scientific Revolution and laid the material basis for the modern knowledge-based economy and the spread of learning to the masses.

<span class="mw-page-title-main">Movable type</span> Printing technology and system based on reconfigurable blocks of glyphs

Movable type is the system and technology of printing and typography that uses movable components to reproduce the elements of a document usually on the medium of paper.

<span class="mw-page-title-main">Woodcut</span> Relief printing technique

Woodcut is a relief printing technique in printmaking. An artist carves an image into the surface of a block of wood—typically with gouges—leaving the printing parts level with the surface while removing the non-printing parts. Areas that the artist cuts away carry no ink, while characters or images at surface level carry the ink to produce the print. The block is cut along the wood grain. The surface is covered with ink by rolling over the surface with an ink-covered roller (brayer), leaving ink upon the flat surface but not in the non-printing areas.

<span class="mw-page-title-main">Relief printing</span> Family of printing methods

Relief printing is a family of printing methods where a printing block, plate or matrix, which has had ink applied to its non-recessed surface, is brought into contact with paper. The non-recessed surface will leave ink on the paper, whereas the recessed areas will not. A printing press may not be needed, as the back of the paper can be rubbed or pressed by hand with a simple tool such as a brayer or roller. In contrast, in intaglio printing, the recessed areas are printed.

<span class="mw-page-title-main">Stationery</span> Writing materials

Stationery refers to commercially manufactured writing materials, including cut paper, envelopes, writing implements, continuous form paper, and other office supplies. Stationery includes materials to be written on by hand or by equipment such as computer printers.

<span class="mw-page-title-main">Letterpress printing</span> Technique of relief printing using a printing press

Letterpress printing is a technique of relief printing for producing many copies by repeated direct impression of an inked, raised surface against individual sheets of paper or a continuous roll of paper. A worker composes and locks movable type into the "bed" or "chase" of a press, inks it, and presses paper against it to transfer the ink from the type, which creates an impression on the paper.

Color printing or colour printing is the reproduction of an image or text in color. Any natural scene or color photograph can be optically and physiologically dissected into three primary colors, red, green and blue, roughly equal amounts of which give rise to the perception of white, and different proportions of which give rise to the visual sensations of all other colors. The additive combination of any two primary colors in roughly equal proportion gives rise to the perception of a secondary color. For example, red and green yields yellow, red and blue yields magenta, and green and blue yield cyan. Only yellow is counter-intuitive. Yellow, cyan and magenta are merely the "basic" secondary colors: unequal mixtures of the primaries give rise to perception of many other colors all of which may be considered "tertiary".

<span class="mw-page-title-main">Wood engraving</span> Printmaking technique

Wood engraving is a printmaking technique, in which an artist works an image or matrix of images into a block of wood. Functionally a variety of woodcut, it uses relief printing, where the artist applies ink to the face of the block and prints using relatively low pressure. By contrast, ordinary engraving, like etching, uses a metal plate for the matrix, and is printed by the intaglio method, where the ink fills the valleys, the removed areas. As a result, the blocks for wood engravings deteriorate less quickly than the copper plates of engravings, and have a distinctive white-on-black character.

<span class="mw-page-title-main">Woodblock printing</span> Early printing technique using carved wooden blocks

Woodblock printing or block printing is a technique for printing text, images or patterns used widely throughout East Asia and originating in China in antiquity as a method of printing on textiles and later paper. Each page or image is created by carving a wooden block to leave only some areas and lines at the original level; it is these that are inked and show in the print, in a relief printing process. Carving the blocks is skilled and laborious work, but a large number of impressions can then be printed.

<span class="mw-page-title-main">Wasōbon</span> Books in Japan

Wasōbon is a traditional book style in Japan that dates from the late eighth century AD with the printing of "Hyakumantō Darani" during the reign of Empress Shōtoku (764-770AD). The majority of books were hand-copied until the Edo period (1603–1867), when woodblock printing became comparatively affordable and widespread. Movable-type printing had been used from the late 16th century, but for various aesthetic and practical reasons woodblock printing and hand-copied remained dominant until much later. Japanese equivalents for "book" include (hon) and 書籍 (shoseki). The former term indicates only bound books, and does not include scrolls. The latter is used for printed matter only. The most general term is 書物 (shomotsu), which means all written or printed matter that has been collected into a single unit, regardless of construction.

<span class="mw-page-title-main">Block book</span> Early Western block-printed book

Block books or blockbooks, also called xylographica, are short books of up to 50 leaves, block printed in Europe in the second half of the 15th century as woodcuts with blocks carved to include both text (usually) and illustrations. The content of the books was nearly always religious, aimed at a popular audience, and a few titles were often reprinted in several editions using new woodcuts. Although many had believed that block books preceded Gutenberg's invention of movable type in the first part of the 1450s, it now is accepted that most of the surviving block books were printed in the 1460s or later, and that the earliest surviving examples may date to about 1451.

<span class="mw-page-title-main">History of printing in East Asia</span>

Printing in East Asia originated from the Han dynasty in China, evolving from ink rubbings made on paper or cloth from texts on stone tables used during the Han. Printing is considered one of the Four Great Inventions of China that spread throughout the world. A specific type of printing called mechanical woodblock printing on paper started in China during the Tang dynasty before the 8th century CE. The use of woodblock printing spread throughout Asia, and the idea of printing perhaps spread to Europe, where German publisher and inventor Johannes Gutenberg improved on the design with the introduction of the mechanical press in the mid-15th century. As recorded in 1088 by Shen Kuo in his Dream Pool Essays, the Chinese artisan Bi Sheng invented an early form of movable type using clay and wood pieces arranged and organized for written Chinese characters. The use of metal movable type was known in Korea by the 13th century during the Goryeo period. In Korea the first movable types date from 1239/1240. A further discovery was made in 2009, and here the types were dated to the year 1377.

<span class="mw-page-title-main">Woodblock printing in Japan</span> Ancient technique for reproducing images or text

Woodblock printing in Japan is a technique best known for its use in the ukiyo-e artistic genre of single sheets, but it was also used for printing books in the same period. Widely adopted in Japan during the Edo period (1603–1868) and similar to woodcut in Western printmaking in some regards, the mokuhanga technique differs in that it uses water-based inks—as opposed to western woodcut, which typically uses oil-based inks. The Japanese water-based inks provide a wide range of vivid colors, glazes, and transparency.

<span class="mw-page-title-main">Wang Zhen (inventor)</span> Officer and inventor

Wang Zhen was a Chinese mechanical engineer, agronomist, inventor, writer, and politician of the Yuan dynasty (1271–1368). He was one of the early innovators of the wooden movable type printing technology. His illustrated agricultural treatise was also one of the most advanced of its day, covering a wide range of equipment and technologies available in the late 13th and early 14th century.

<span class="mw-page-title-main">Hua Sui</span> Chinese scholar and printer

Hua Sui was a Chinese scholar, engineer, inventor, and printer of Wuxi, Jiangsu province during the Ming dynasty. He belonged to the wealthy Hua family that was renowned throughout the region. Hua Sui is best known for creating China's first metal movable type printing in 1490 AD.

<span class="mw-page-title-main">Book illustration</span> Illustration which appears in books

The illustration of manuscript books was well established in ancient times, and the tradition of the illuminated manuscript thrived in the West until the invention of printing. Other parts of the world had comparable traditions, such as the Persian miniature. Modern book illustration comes from the 15th-century woodcut illustrations that were fairly rapidly included in early printed books, and later block books. Other techniques such as engraving, etching, lithography and various kinds of colour printing were to expand the possibilities and were exploited by such masters as Daumier, Doré or Gavarni.

<span class="mw-page-title-main">Bois Protat</span> Fragmentary woodblock for painting

The woodblock fragment Bois Protat is a fragmentary woodblock for printing, and the images on it are the oldest surviving woodcut images from the Western world. It is cut on both sides, with a scene from Christ's crucifixion on the recto, and a kneeling angel from a presumed Annunciation scene on the verso. The crucifixion scene likely consisted of three or more blocks; the surviving block fragment features Longinus the Roman centurion at the Crucifixion, shown speaking with a banderole, a mediaeval precursor to the modern speech balloon containing his words.


  1. Ghosh, Pallab (8 October 2014). "Cave paintings change ideas about the origin of art". BBC News. BBC News. "The minimum age for (the outline of the hand) is 39,900 years old, which makes it the oldest hand stencil in the world," said Dr Aubert. "Next to it is a pig that has a minimum age of 35,400 years old, and this is one of the oldest figurative depictions in the world, if not the oldest one," he told BBC News. There are also paintings in the caves that are around 27,000 years old, which means that the inhabitants were painting for at least 13,000 years."
  2. Pike, A. W. G.; Hoffmann, D. L.; García-Diaz, M.; Pettitt, P. B.; Alcolea, J.; De Balbín, R.; González-Sainz, C.; de las Heras, C.; Lasheras, J. A.; Montes, R.; Zilhão, J. (15 June 2012). "U-Series Dating of Paleolithic Art in 11 Caves in Spain". Science. 336 (6087): 1409–1413. Bibcode:2012Sci...336.1409P. doi:10.1126/science.1219957. PMID   22700921. S2CID   7807664. Abstract: "... minimum ages of 40.8 thousand years for a red disk, 37.3 thousand years for a hand stencil, and 35.6 thousand years for a claviform-like symbol".
  3. Mayor, Hyatt A., Prints and People, Metropolitan Museum of Art/Princeton, 1971, no. 51, 65, 80, ISBN   0691003262
  4. Mayor, Hyatt A., Prints and People, Metropolitan Museum of Art/Princeton, 1971, no. 15, ISBN   0691003262
  5. 1 2 3 Wilkinson 2012, p. 909.
  6. "The History Behind … Signet Rings". National Jeweler. Retrieved 2020-08-21.
  7. Seibt, Werner (19 June 2016). "The Use of Monograms on Byzantine Seals in the Early Middle-Ages (6th to 9th Centuries)". Parekbolai. An Electronic Journal for Byzantine Literature. 6: 1–14. doi:10.26262/par.v6i0.5082 . Retrieved 20 March 2021.
  8. Tsien 1985, p. 6.
  9. 1 2 3 4 5 6 7 Wilkinson 2012, p. 910.
  10. Hann, M. A. (2007). Patterns of Culture – Techniques of Decoration and Coloration (PDF). The University of Leeds. p. 7. ISBN   978-0-9549640-0-9.
  11. Henderson, Jeffrey. "Pliny Natural History: Book XXXV: Chapter XLIII". Loeb Classical Library. Retrieved 2020-08-21.
  12. "History of Printing Timeline". American Printing History Association: To Encourage the Study of Printing History. Retrieved 22 December 2015.
  13. Barrett 2008, p. 60.
  14. Barrett 2008, p. 50.
  15. Barrett 2008, p. 61.
  16. Pan, Jixing (1997). "On the Origin of Printing in the Light of New Archaeological Discoveries". Chinese Science Bulletin. 42 (12): 976–981 [pp. 979–980]. Bibcode:1997ChSBu..42..976P. doi:10.1007/BF02882611. ISSN   1001-6538. S2CID   98230482.
  17. Pan 1997, p. 979.
  18. North Korea — Silla Countrystudies.us Archived 2011-06-29 at the Wayback Machine accessed 2009-12-03; A History of Writings in Japanese and Current Studies in the Field of Rare Books in Japan Archived 2008-11-20 at the Wayback Machine – 62nd IFLA General Conference, Ifla.org, accessed 009-12-03; Gutenberg and the Koreans: The Invention of Movable Metal Type Printing in Korea Archived 2021-05-15 at the Wayback Machine , Rightreading.com, 2006-09-13, accessed 2009-12-03; Cho Woo-suk, JoongAng Daily Archived 2011-07-19 at the Wayback Machine , November 22, 2004, Eng.buddhapia.com, accessed 2009-12-03; National Treasure No. 126-6 Archived 2011-10-04 at the Wayback Machine , by the Cultural Heritage Administration of South Korea (in Korean), jikimi.cha.go.kr, accessed 2009-12-28; National Treasure No. 126-6, by the Cultural Heritage Administration of South Korea (in Korean)
  19. http://www.bl.uk/onlinegallery/hightours/diamsutra/index.html Archived 2010-04-26 at the Wayback Machine The Xiantong era (咸通 Xián tōng) ran from 860–74, crossing the reigns of Yi Zong (懿宗 Yì zōng) and Xi Zong (僖宗 Xī zōng), see List of Tang Emperors. The book was thus prepared in the time of Yi Zong.
  20. 1 2 McDermott 2006, p. 5.
  21. McDermott 2006, p. 32.
  22. https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/24231/Hyun_washington_0250E_12384.pdf?sequence=1 Archived 2016-06-30 at the Wayback Machine p. 191.
  23. "Printing woodblocks of the Tripitaka Koreana and miscellaneous Buddhist scriptures". UNESCO Memory of the World. United Nations. Retrieved 30 July 2016.
  24. 1 2 3 4 5 6 The Past, Present and Future of Printing in Japan. Izumi Munemura. (2010). The Surface Finishing Society of Japan.
  25. 1 2 Edo Picture Books and the Edo Period. National Diet Library.
  26. 第6回 和本の楽しみ方4 江戸の草紙. Konosuke Hashiguchi. (2013) Seikei University.
  27. Nihonbashi. Mitsui Fdosan.
  28. Keizaburo Seimaru. (2017) 江戸のベストセラー. Yosensha. ISBN   978-4800312556
  29. Shin hanga bringing ukiyo-e back to life. Archived 2021-05-02 at the Wayback Machine The Japan Times.
  30. Junko Nishiyama. (2018) 新版画作品集 ―なつかしい風景への旅. p18. Tokyo Bijutsu. ISBN   978-4808711016
  31. 1 2 Wilkinson 2012, p. 930.
  32. Chia 2011, p. 43.
  33. Chia 2011, p. 21.
  34. Chia 2011, p. 33.
  35. Chia 2011, p. 38.
  36. 1 2 Wilkinson 2012, p. 912.
  37. "Dunhuang concertina binding findings". Archived from the original on March 9, 2000.
  38. "The Schoyen Collection: 21. Pre-Gutenberg printing". Archived from the original on 2006-11-04. Retrieved 2017-07-23.
  39. 1 2 3 Tsien 1985, p. 373.
  40. Twitchett 1998b, p. 636.
  41. Chia 2011, p. 41.
  42. In late Ming/early Qing China, cost for copying 20 to 30 pages was around .02 to .03 tael, which worked out to something like 0.005 tael per hundred characters, while a carver was typically paid .0.02 to 0.03 tael per hundred characters carved, and could carve 100 to 150 characters a day. "Publishing, Culture, and Power in Early Modern China", Kai-Wing Chow, 2004, Stanford University Press, page 36
  43. Zwalf, Buddhism: Art and Faith (London: British Museum, 1985).
  44. Bloom, Jonathan (2001). Paper Before Print: The History and Impact of Paper in the Islamic World . New Haven: Yale University Press. pp.  8–10, 42–45. ISBN   0-300-08955-4.
  45. See Geoffrey Roper, Muslim Printing Before Gutenberg and the references cited therein.
  46. Richard W. Bulliet (1987), "Medieval Arabic Tarsh: A Forgotten Chapter in the History of Printing Archived 2017-09-21 at the Wayback Machine ". Journal of the American Oriental Society107 (3), pp. 427–38.
  47. An Introduction to a History of Woodcut, Arthur M. Hind, p ?, Houghton Mifflin Co. 1935 (in USA), reprinted Dover Publications, 1963 ISBN   0-486-20952-0
  48. Master E.S., Alan Shestack, Philadelphia Museum of Art, 1967
  49. 1 2 3 4 5 6 Wilkinson 2012, p. 911.
  50. Tsien 1985, p. 221.
  51. The Book: A Cover-to-Cover Exploration of the Most Powerful Object of Our Time. W. W. Norton & Company. 22 August 2016. ISBN   9780393244809.
  52. Tsien 1985, pp. 201–217.
  53. Shen Kua: Dream Pool Essay
  54. Hou Jianmei (侯健美); Tong Shuquan (童曙泉) (20 December 2004). "《大夏寻踪》今展国博" ['In the Footsteps of the Great Xia' now exhibiting at the National Museum]. Beijing Daily (《北京日报》).
  55. Languages, scripts, and Chinese texts in East Asia. Oxford University Press. 11 January 2018. ISBN   978-0-19-251868-2.
  56. Needham, Volume 5, Part 1, 206–207.
  57. Pan Jixing, A history of movable metal type printing technique in China 2001, pp. 41–54.
  58. A History of Moveable Type Printing in China, by Pan Jixing, Professor of the Institute for History of Science, Academy of Science, Beijing, China, English Abstract, p. 273.
  59. Taylor, Insup; Taylor, Martin M. (1995). Writing and Literacy in Chinese, Korean and Japanese. John Benjamins Publishing. p. 266. ISBN   9789027285768 . Retrieved 12 January 2019.
  60. Needham, Joseph; Tsien, Tsuen-Hsuin (11 July 1985). Science and Civilisation in China. Vol. 5. Cambridge University Press. p. 330.
  61. Briggs, Asa and Burke, Peter (2002) A Social History of the Media: from Gutenberg to the Internet, Polity, Cambridge, pp.15–23, 61–73.
  62. Tsien 1985 , p. 217
  63. Tsien 1985, p. 211.
  64. Sohn, Pow-Key, "Early Korean Printing," Journal of the American Oriental Society, Vol. 79, No. 2 (April -June, 1959), pp. 96–103 (103).
  65. Lane, Richard (1978). Images of the Floating World. Old Saybrook, CT: Konecky & Konecky. p. 33. ISBN   1-56852-481-1.
  66. Ikegami, Eiko (2005-02-28). Bonds of Civility: Aesthetic Networks and the Political Origins of Japanese Culture. Cambridge University Press. ISBN   9780521601153.
  67. Sansom, George (1961). A History of Japan: 1334–1615 . Stanford, California: Stanford University Press.
  68. "History of printing. The Japan Federation of Printing Industries". Archived from the original on 2021-12-08. Retrieved 2021-02-26.
  69. 1 2 Barrett 2008, p. 10.
  70. 1 2 Barrett 2008, p. 11.
  71. Twitchett 1998b, p. 637.
  72. Barrett 2008, p. 14.
  73. 1 2 Wilkinson 2012, p. 935.
  74. Buringh, Eltjo; van Zanden, Jan Luiten: "Charting the "Rise of the West": Manuscripts and Printed Books in Europe, A Long-Term Perspective from the Sixth through Eighteenth Centuries", The Journal of Economic History, Vol. 69, No. 2 (2009), pp. 409–445 (417, table 2)
  75. Polenz, Peter von. (1991). Deutsche Sprachgeschichte vom Spätmittelalter bis zur Gegenwart: I. Einführung, Grundbegriffe, Deutsch in der frühbürgerlichen Zeit (in German). New York/Berlin: Gruyter, Walter de GmbH.
  76. Thomas Christensen (2007). "Did East Asian Printing Traditions Influence the European Renaissance?". Arts of Asia Magazine (to appear). Retrieved 2006-10-18.
  77. Juan González de Mendoza (1585). Historia de las cosas más notables, ritos y costumbres del gran reyno de la China (in Spanish).
  78. Thomas Franklin Carter, The Invention of Printing in China and its Spread Westward, The Ronald Press, NY 2nd ed. 1955, pp. 176–178
  79. L. S. Stavrianos (1998) [1970]. A Global History: From Prehistory to the 21st Century (7th ed.). Upper Saddle River, New Jersey: Prentice Hall. ISBN   978-0-13-923897-0.
  80. Gies, Frances and Gies, Joseph (1994) Cathedral, Forge, and Waterwheel: Technology and Invention in the Middle Age, New York : HarperCollins, ISBN   0-06-016590-1, P 241
  81. McDermott, Joseph P., ed. (2015). The Book Worlds of East Asia and Europe, 1450–1850: Connections and Comparisons. Hong Kong University Press. pp. 25–26. ISBN   978-988-8208-08-1.
  82. 1 2 3 4 5 6 Meggs, Philip B. A History of Graphic Design. John Wiley & Sons, Inc. 1998. (pp 58–69) ISBN   0-471-29198-6
  83. "What Did Gutenberg Invent?" by Paul Needham and Blaise Aguera y Arcas at the BBC / Open University
  84. In 1997, Time Life magazine picked Gutenberg's invention to be the most important of the second millennium.[ citation needed ]
  85. In 1999, the A&E Network voted Johannes Gutenberg "Man of the Millennium".[ citation needed ]
  86. 1,000 Years, 1,000 People: Ranking The Men and Women Who Shaped The Millennium Archived 2007-10-12 at the Wayback Machine which was composed by four prominent US journalists in 1998.
  87. Eisenstein, Elizabeth L. The Printing Press as an Agent of Change: Communications and Cultural Transformations in Early Modern Europe, Volumes I and II. 14th printing. Cambridge: Cambridge University Press, 1980.
  88. Stowell, Marion B. (1977) Early American Almanacs: The Colonial Weekday Bible. ISBN   0-89102-063-2 / 9780891020639
  89. 1 2 3 4 5 6 Meggs, Philip B. A History of Graphic Design. John Wiley & Sons, Inc. 1998. (pp 130–133) ISBN   0-471-29198-6
  90. "Typography – Gutenberg and printing in Germany". Encyclopædia Britannica. 2007.
  91. ""The Beginnings of Subscription Publication in the Seventeenth Century", Sarah L. C. Clapp, Modern Philology. Vol. 29 No. 2, 1931, pp. 199–224, University of Chicago Press". doi:10.1086/387957. S2CID   162013335. Archived from the original on 2022-11-16. Retrieved 2022-11-16.{{cite journal}}: Cite journal requires |journal= (help)
  92. Wiles, R. M. (2012). Serial Publication in England Before 1750. Cambridge University Press. p. 79. ISBN   9780521170680.
  93. Meggs, Philip B. A History of Graphic Design. ©1998 John Wiley & Sons, Inc. p 146 Archived 2022-11-17 at the Wayback Machine ISBN   0-471-29198-6
  94. Michael Sullivan (18 June 1984). The Arts of China (Third ed.). University of California Press. p.  203. ISBN   978-0-520-04918-5.
  95. "Planographic Printing". The New York Public Library. 1999-10-23. Retrieved 2014-11-21.
  96. "Clapper, Michael. "'I Was Once a Barefoot Boy!': Cultural Tensions in a Popular Chromo." American Art 16(2002): 16–39". JSTOR   1568806. Archived from the original on 2022-04-12. Retrieved 2022-11-16.
  97. 1 2 3 "Ferry, Kathryn. "Printing the Alhambra: Owen Jones and Chromolithography." Architectural History 46(2003): 175–188". JSTOR   3109383. Archived from the original on 2022-11-16. Retrieved 2022-11-16.
  98. "Dot matrix printing device employing a novel image transfer technique to print on single or multiple ply print receiving materials". Archived from the original on 2007-09-29. Retrieved 2007-09-23.
  99. 1 2 Allen Kent, James G. Williams (1990), Encyclopedia of Microcomputers: Volume 6, page 298 Archived 2022-11-16 at the Wayback Machine , CRC Press
  100. 40 years since Epson's first Electronic Printer Archived 2018-06-16 at the Wayback Machine , Digital Photographer
  101. About Epson Archived 2017-02-27 at the Wayback Machine , Epson
  102. "Information Processing Technology Heritage – Wiredot printer". Information Processing Society of Japan (IPSJ). 2012. Archived from the original on 2016-10-31. Retrieved 2016-10-31.
  103. "OKI's Wiredot Printer Receives Information Processing Technology Heritage Certification in Japan". Mount Laurel, New Jersey, USA. 2013-03-14. Retrieved 2016-10-31.
  104. "OKI Printer aus 1968 als technologisch wertvolles Erbe ausgezeichnet" (in German). 2013-03-26. Archived from the original on 2016-10-31. Retrieved 2016-10-31.
  105. Edwin D. Reilly (2003). Milestones in Computer Science and Information Technology . Greenwood Press. p.  152. ISBN   1-57356-521-0. starkweather laser-printer.
  106. Roy A. Allan (2001). A History of the Personal Computer: The People and the Technology. Allan Publishing. ISBN   0-9689108-0-7.
  107. 1 2 Chemistry and technology of printing and imaging systems. P. Gregory. London: Blackie Academic & Professional. 1996. ISBN   0-7514-0238-9. OCLC   34513398.{{cite book}}: CS1 maint: others (link)
  108. Howard, Robert (2009). Connecting the dots : my life and inventions, from X-rays to death rays. New York, NY: Welcome Rain. ISBN   978-1-56649-957-6. OCLC   455879561.
  109. "Close-Up On Technology – 3D Printers Lead Growth of Rapid Prototyping – 08/04". Archived from the original on 2010-01-23. Retrieved 2007-09-24.
  110. 1 2 Campbell, Alastair (2000). Campbell, Alastair. The Designer's Lexicon. ©2000 Chronicle, San Francisco. ISBN   9780811826259. Archived from the original on 2022-11-16. Retrieved 2022-11-16.
  111. 1 2 3 Twyman, Michael. Eyre & Spottiswoode, London 1970. Eyre & Spottiswoode. 1970. ISBN   9780413264206. Archived from the original on 2022-11-16. Retrieved 2022-11-16.
  112. Galarneau, Claude (1990). "Desbarats, George-Édouard-Amable". In Halpenny, Francess G (ed.). Dictionary of Canadian Biography . Vol. XII (1891–1900) (online ed.). University of Toronto Press.
  113. "Canadian Illustrated News: - Canadian Illustrated News: Images in the news: 1869-1883". May 23, 2008. Archived from the original on 2008-05-23.
  114. Meggs (1998), 141.
  115. "Academician Georgi Nadjakov". issp.bas.bg (in Chinese). Archived from the original on November 1, 2007. Retrieved September 7, 2022.