Idaeovirus

Last updated

Idaeovirus
Virus classification Red Pencil Icon.png
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Kitrinoviricota
Class: Alsuviricetes
Order: Martellivirales
Family: Mayoviridae
Genus:Idaeovirus

Idaeovirus is a genus of positive-sense ssRNA viruses that contains two species: Raspberry bushy dwarf virus (RBDV) and Privet idaeovirus. [1] [2] RBDV has two host-dependent clades: one for raspberries; the other for grapevines. [3] Infections are a significant agricultural burden, resulting in decreased yield and quality of crops. [4] RBDV has a synergistic relation with Raspberry leaf mottle virus , with co-infection greatly amplifying the concentration of virions in infected plants. [5] The virus is transmitted via pollination with RBDV-infected pollen grains that first infect the stigma before causing systemic infection. [6]

Contents

Virology

RBDV is non-enveloped with an isometric protein coat about 33 nanometres in diameter. [7] Inside the protein coat is the viral genome, which is bipartite, with the RNA strands referred to as RNA-1 and RNA-2. RNA-1 is 5,449 nucleotides in length and contains one open reading frame (ORF) that encodes for a combined protein that has methyltransferase, helicase, and an RNA-dependent RNA polymerase domains. [1] [8] [9] RNA-2 is 2,231 nucleotides in length and contains two ORFs, one at the 5' end and the other at the 3' end. [9] [10] The first ORF encodes for a cell-to-cell movement protein, while the second ORF is expressed as a subgenomic RNA strand. [7] [10] This strand, RNA-3, is 946 nucleotides in length and encodes for the coat protein. [11] Infection has been shown to not occur if RNA-3 is either not present or is sufficiently damaged. [7]

GenusStructureSymmetryCapsidGenomic arrangementGenomic segmentation
IdaeovirusIcosahedral, IsometricNon-envelopedLinearBipartite

Life cycle

Viral replication is cytoplasmic. Entry into the host cell is achieved by penetration into the host cell. Replication follows the positive stranded RNA virus replication model. Positive stranded RNA virus transcription is the method of transcription. The virus exits the host cell by tubule-guided viral movement. Plants serve as the natural host. Transmission routes are pollen associated. [12]

GenusHost detailsTissue tropismEntry detailsRelease detailsReplication siteAssembly siteTransmission
IdaeovirusPlantsNoneCytoplasmCytoplasmPollen-associated

Diagnosis

Single-step reverse transcription polymerase chain reactions has been developed to detect RBDV. [5] [13] Viruses are enriched by antibodies in the PCR microwells, followed by lysis of the virus particles, then reverse transcription of the viral RNA. [13] By including reverse transcriptase and DNA polymerase in the whole process, the procedure can be conducted in a single step. [13] These tests are sensitive enough to identify the specific strain of the virus. [5]

Treatment

RBDV can be eradicated from infected plants by a procedure that first applies thermotherapy then cryotherapy to infected shoots. [14] [15] Applying heat to infected plants causes vacuoles in infected cells to enlarge, with these cells later being killed during cryotherapy. [15] Adding either Fe-ethylenediaminetetraacetic acid or Fe-ethylenediaminedi(o)hydroxyphenylacetic acid after cryotherapy stimulates regrowth and prevents chlorosis from developing in plant shoots. [14] Using this method, about 80% of shoots survive the initial heat therapy, with 33% surviving the cryotherapy and successfully regrowing. [14]

Related Research Articles

<i>Paramyxoviridae</i> Family of viruses

Paramyxoviridae is a family of negative-strand RNA viruses in the order Mononegavirales. Vertebrates serve as natural hosts. Diseases associated with this family include measles, mumps, and respiratory tract infections. The family has four subfamilies, 17 genera, and 78 species, three genera of which are unassigned to a subfamily.

<i>Hepadnaviridae</i> Family of viruses

Hepadnaviridae is a family of viruses. Humans, apes, and birds serve as natural hosts. There are currently 18 species in this family, divided among 5 genera. Its best-known member is hepatitis B virus. Diseases associated with this family include: liver infections, such as hepatitis, hepatocellular carcinomas, and cirrhosis. It is the sole accepted family in the order Blubervirales.

<i>Papillomaviridae</i> Family of viruses

Papillomaviridae is a family of non-enveloped DNA viruses whose members are known as papillomaviruses. Several hundred species of papillomaviruses, traditionally referred to as "types", have been identified infecting all carefully inspected mammals, but also other vertebrates such as birds, snakes, turtles and fish. Infection by most papillomavirus types, depending on the type, is either asymptomatic or causes small benign tumors, known as papillomas or warts. Papillomas caused by some types, however, such as human papillomaviruses 16 and 18, carry a risk of becoming cancerous.

<span class="mw-page-title-main">Kaposi's sarcoma-associated herpesvirus</span> Species of virus

Kaposi's sarcoma-associated herpesvirus (KSHV) is the ninth known human herpesvirus; its formal name according to the International Committee on Taxonomy of Viruses (ICTV) is Human gammaherpesvirus 8, or HHV-8 in short. Like other herpesviruses, its informal names are used interchangeably with its formal ICTV name. This virus causes Kaposi's sarcoma, a cancer commonly occurring in AIDS patients, as well as primary effusion lymphoma, HHV-8-associated multicentric Castleman's disease and KSHV inflammatory cytokine syndrome. It is one of seven currently known human cancer viruses, or oncoviruses. Even after so many years of discovery of KSHV/HHV8, there is no known cure for KSHV associated tumorigenesis.

<i>Tombusviridae</i> Family of viruses

Tombusviridae is a family of single-stranded positive sense RNA plant viruses. There are three subfamilies, 17 genera, and 95 species in this family. The name is derived from Tomato bushy stunt virus (TBSV).

<i>Tomato bushy stunt virus</i> Species of virus

Tomato bushy stunt virus (TBSV) is a virus of the tombusvirus family. It was first reported in tomatoes in 1935 and primarily affects vegetable crops, though it is not generally considered an economically significant plant pathogen. Depending upon the host, TBSV causes stunting of growth, leaf mottling, and deformed or absent fruit. The virus is likely to be soil-borne in the natural setting, but can also transmitted mechanically, for example through contaminated cutting tools. TBSV has been used as a model system in virology research on the life cycle of plant viruses, particularly in experimental infections of the model host plant Nicotiana benthamiana.

Drosophila X virus (DXV) belongs to the Birnaviridae family of viruses. Birnaviridae currently consists of three genera. The first genus is Entomobirnavirus, which contains DXV. The next genus is Aquabirnavirus, containing infectious pancreatic necrosis virus (IPNV). The last genus is Avibirnavirus, which contains infectious bursal disease virus (IBDV). All of these genera contain homology in three specific areas of their transcripts. The homology comes from the amino and carboxyl regions of preVP2, a small 21-residue-long domain near the carboxyl terminal of VP3, and similar small ORFs sequences.

Luteovirus is a genus of viruses, in the family Tombusviridae. There are 13 species in this genus. Plants serve as natural hosts. The geographical distribution of Luteoviruses is widespread, with the virus primarily infecting plants via transmission by aphid vectors. The virus only replicates within the host cell and not within the vector. The name 'luteovirus' arises from the Latin luteus, which is translated as 'yellow'. Luteovirus was given this name due to the symptomatic yellowing of the plant that occurs as a result of infection.

Strawberry mottle virus (SMV) is a pathogenic plant virus in Secoviridae, a family of plant-infecting picornaviruses. It is not yet assigned to a genus. Virions are isometric, approximately 28 nm in diameter, and contain two RNA strands equal to about 12,600 nucleotides in length. The polyprotein of RNA1 contains regions identified as helicase, protease, RNA-dependent RNA polymerase and a viral genome-linked protein while RNA2 shows similarities to the large coat protein domain of the Satsuma dwarf virus.

Alphasatellites are a single-stranded DNA family of satellite viruses that depend on the presence of another virus to replicate their genomes. As such, they have minimal genomes with very low genomic redundancy. The genome is a single circular single strand DNA molecule. The first alphasatellites were described in 1999 and were associated with cotton leaf curl disease and Ageratum yellow vein disease. As begomoviruses are being characterised at the molecular level an increasing number of alphasatellites are being described.

<i>Fig mosaic emaravirus</i> Species of virus

Fig mosaic emaravirus (FMV) is a segmented, negative sense, single-stranded RNA virus that is determined to be the causal agent of fig mosaic disease (FMD) in fig plants, Ficus carica. It is a member of the genus Emaravirus and order Bunyavirales and is transmitted mainly by the eriophyid mite Aceria ficus. FMV can cause a range of symptoms varying in severity, including leaf chlorosis, deformity, and mosaic or discoloration patterns, as well as premature fruit drop.

Batai orthobunyavirus (BATV) is a RNA virus belonging to order Bunyavirales, genus Orthobunyavirus.

Tilapia tilapinevirus, or Tilapia lake virus (TiLV), is a negative-strand RNA virus that infects both wild and aquacultured populations of tilapia. It is the only species in the monotypic genus Tilapinevirus, which in turn is the only genus in the family Amnoonviridae. Thus far it has been recorded in various regions across Asia, Africa, and South America. The virus was first discovered and identified in 2014 when the Sea of Galilee in Israel experienced a major noticeable decline in tilapia catch quantities.

<span class="mw-page-title-main">Agnoprotein</span> Viral protein found in some polyomaviruses

Agnoprotein is a protein expressed by some members of the polyomavirus family from a gene called the agnogene. Polyomaviruses in which it occurs include two human polyomaviruses associated with disease, BK virus and JC virus, as well as the simian polyomavirus SV40.

<span class="mw-page-title-main">RNA silencing suppressor p19</span> Viral protein

RNA silencing suppressor p19 is a protein expressed from the ORF4 gene in the genome of tombusviruses. These viruses are positive-sense single-stranded RNA viruses that infect plant cells, in which RNA silencing forms a widespread and robust antiviral defense system. The p19 protein serves as a counter-defense strategy, specifically binding the 19- to 21-nucleotide double-stranded RNAs that function as small interfering RNA (siRNA) in the RNA silencing system. By sequestering siRNA, p19 suppresses RNA silencing and promotes viral proliferation. The p19 protein is considered a significant virulence factor and a component of an evolutionary arms race between plants and their pathogens.

Triatoma virus (TrV) is a virus belonging to the insect virus family Dicistroviridae. Within this family, there are currently 3 genera and 15 species of virus. Triatoma virus belongs to the genus Cripavirus. It is non-enveloped and its genetic material is positive-sense, single-stranded RNA. The natural hosts of triatoma virus are invertebrates. TrV is a known pathogen to Triatoma infestans, the major vector of Chagas disease in Argentina which makes triatoma virus a major candidate for biological vector control as opposed to chemical insecticides. Triatoma virus was first discovered in 1984 when a survey of pathogens of triatomes was conducted in the hopes of finding potential biological control methods for T. infestans.

<i>Black queen cell virus</i> Species of virus

The black queen cell virus (BQCV) is a virus that infects honey bees, specifically Apis mellifera, Apis florea, and Apis dorsata. Infection of the latter two species is more recent and can be attributed to genetic similarity and geographical closeness. It is important to learn about this virus because it is one of the most common bee viruses and bees are the most important pollinators. The agricultural industry depends on the bee's pollination to increase its economic value.

Betaarterivirus suid 2 is a species of enveloped, positive-strand RNA viruses which infect domestic pigs. Members of the species are also known as porcine reproductive and respiratory syndrome virus 2. Member viruses are a type of the porcine reproductive and respiratory syndrome viruses (PRRSV). The two types of PRRSV are distinguished by which genomic cluster they are associated with. Type 1 is associated with a LV cluster. Type 2 is associated with a VR2332 cluster.

<i>Modoc virus</i> Species of virus

Modoc virus (MODV) is a rodent-associated flavivirus. Small and enveloped, MODV contains positive single-stranded RNA. Taxonomically, MODV is part of the Flavivirus genus and Flaviviridae family. The Flavivirus genus includes nearly 80 viruses, both vector-borne and no known vector (NKV) species. Known flavivirus vector-borne viruses include Dengue virus, Yellow Fever virus, tick-borne encephalitis virus, and West Nile virus.

References

  1. 1 2 Ziegler, A; Natsuaki, T; Mayo, M. A.; Jolly, C. A.; Murant, A. F. (1992). "The nucleotide sequence of RNA-1 of raspberry bushy dwarf virus". The Journal of General Virology. 73 (12): 3213–8. doi: 10.1099/0022-1317-73-12-3213 . PMID   1469359.
  2. "Virus Taxonomy: 2020 Release". International Committee on Taxonomy of Viruses (ICTV). Retrieved 5 July 2021.
  3. Valasevich, N; Kukharchyk, N; Kvarnheden, A (2011). "Molecular characterisation of Raspberry bushy dwarf virus isolates from Sweden and Belarus". Archives of Virology. 156 (3): 369–74. doi:10.1007/s00705-010-0912-9. PMID   21253783. S2CID   43135450.
  4. Malowicki, S. M.; Martin, R; Qian, M. C. (2008). "Comparison of sugar, acids, and volatile composition in raspberry bushy dwarf virus-resistant transgenic raspberries and the wild type 'meeker' (rubus idaeus L.)". Journal of Agricultural and Food Chemistry. 56 (15): 6648–55. doi:10.1021/jf800253e. PMID   18598047.
  5. 1 2 3 Quito-Avila, D. F.; Martin, R. R. (2012). "Real-time RT-PCR for detection of Raspberry bushy dwarf virus, Raspberry leaf mottle virus and characterizing synergistic interactions in mixed infections". Journal of Virological Methods. 179 (1): 38–44. doi:10.1016/j.jviromet.2011.09.016. PMID   21968094.
  6. Isogai, M; Yoshida, T; Nakanowatari, C; Yoshikawa, N (2014). "Penetration of pollen tubes with accumulated Raspberry bushy dwarf virus into stigmas is involved in initial infection of maternal tissue and horizontal transmission". Virology. 452–453: 247–53. doi: 10.1016/j.virol.2014.02.001 . PMID   24606702.
  7. 1 2 3 MacFarlane, S. A.; McGavin, W. J. (2009). "Genome activation by raspberry bushy dwarf virus coat protein". Journal of General Virology. 90 (Pt 3): 747–53. doi: 10.1099/vir.0.007195-0 . PMID   19218221.
  8. Ziegler, A; Mayo, M. A.; Murant, A. F. (1993). "Proposed classification of the bipartite-genomed raspberry bushy dwarf idaeovirus, with tripartite-genomed viruses in the family Bromoviridae". Archives of Virology. 131 (3–4): 483–8. doi:10.1007/bf01378649. PMID   8347087. S2CID   31922799.
  9. 1 2 Quito-Avila, D. F.; Ibarra, M. A.; Alvarez, R; Peralta, E. L.; Martin, R. R. (2014). "A raspberry bushy dwarf virus isolate from Ecuadorean Rubus glaucus contains an additional RNA that is a rearrangement of RNA-2". Archives of Virology. 159 (9): 2519–21. doi:10.1007/s00705-014-2069-4. PMID   24719196. S2CID   18080015.
  10. 1 2 Natsuaki, T; Mayo, M. A.; Jolly, C. A.; Murant, A. F. (1991). "Nucleotide sequence of raspberry bushy dwarf virus RNA-2: A bicistronic component of a bipartite genome". The Journal of General Virology. 72 (9): 2183–9. doi: 10.1099/0022-1317-72-9-2183 . PMID   1895055.
  11. Mayo, M. A.; Jolly, C. A.; Murant, A. F.; Raschke, J. H. (1991). "Nucleotide sequence of raspberry bushy dwarf virus RNA-3". The Journal of General Virology. 72 (2): 469–72. doi: 10.1099/0022-1317-72-2-469 . PMID   1993886.
  12. "Viral Zone". ExPASy. Retrieved 15 June 2015.
  13. 1 2 3 Kokko, H. I.; Kivineva, M; Kärenlampi, S. O. (1996). "Single-step immunocapture RT-PCR in the detection of raspberry bushy dwarf virus". BioTechniques. 20 (5): 842–6. doi: 10.2144/96205st03 . PMID   8723929.
  14. 1 2 3 Wang, Q; Valkonen, J. P. (2009). "Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.)". Cryo Letters. 30 (3): 170–82. PMID   19750241.
  15. 1 2 Wang, Q; Cuellar, W. J.; Rajamäki, M. L.; Hirata, Y; Valkonen, J. P. (2008). "Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips". Molecular Plant Pathology. 9 (2): 237–50. doi:10.1111/j.1364-3703.2007.00456.x. PMC   6640318 . PMID   18705855.