Maharam's theorem

Last updated

In mathematics, Maharam's theorem is a deep result about the decomposability of measure spaces, which plays an important role in the theory of Banach spaces. In brief, it states that every complete measure space is decomposable into "non-atomic parts" (copies of products of the unit interval [0,1] on the reals), and "purely atomic parts," using the counting measure on some discrete space. [1] The theorem is due to Dorothy Maharam. It was extended to localizable measure spaces by Irving Segal. [2]

The result is important to classical Banach space theory, in that, when considering the Banach space given as an Lp space of measurable functions over a general measurable space, it is sufficient to understand it in terms of its decomposition into non-atomic and atomic parts.

Maharam's theorem can also be translated into the language of abelian von Neumann algebras. Every abelian von Neumann algebra is isomorphic to a product of σ-finite abelian von Neumann algebras, and every σ-finite abelian von Neumann algebra is isomorphic to a spatial tensor product of discrete abelian von Neumann algebras; that is, algebras of bounded functions on a discrete set.

A similar theorem was given by Kazimierz Kuratowski for Polish spaces, stating that they are isomorphic, as Borel spaces, to either the reals, the integers, or a finite set.

Related Research Articles

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

In mathematics and functional analysis, a direct integral or Hilbert integral is a generalization of the concept of direct sum. The theory is most developed for direct integrals of Hilbert spaces and direct integrals of von Neumann algebras. The concept was introduced in 1949 by John von Neumann in one of the papers in the series On Rings of Operators. One of von Neumann's goals in this paper was to reduce the classification of von Neumann algebras on separable Hilbert spaces to the classification of so-called factors. Factors are analogous to full matrix algebras over a field, and von Neumann wanted to prove a continuous analogue of the Artin–Wedderburn theorem classifying semi-simple rings.

In functional analysis, a branch of mathematics, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

In mathematics, more precisely in measure theory, an atom is a measurable set which has positive measure and contains no set of smaller positive measures. A measure which has no atoms is called non-atomic or atomless.

In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞). A set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets each with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In mathematics, a representation theorem is a theorem that states that every abstract structure with certain properties is isomorphic to another structure.

<span class="mw-page-title-main">Space (mathematics)</span> Mathematical set with some added structure

In mathematics, a space is a set endowed with a structure defining the relationships among the elements of the set. A subspace is a subset of the parent space which retains the same structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.

In mathematics, an extremally disconnected space is a topological space in which the closure of every open set is open.

In mathematics, a refinement monoid is a commutative monoid M such that for any elements a0, a1, b0, b1 of M such that a0+a1=b0+b1, there are elements c00, c01, c10, c11 of M such that a0=c00+c01, a1=c10+c11, b0=c00+c10, and b1=c01+c11.

<span class="mw-page-title-main">Dorothy Maharam</span> American mathematician

Dorothy Maharam Stone was an American mathematician born in Parkersburg, West Virginia, who made important contributions to measure theory and became the namesake of Maharam's theorem and Maharam algebra.

In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.

The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the reassembly process involves only moving the pieces around and rotating them, without changing their original shape. However, the pieces themselves are not "solids" in the traditional sense, but infinite scatterings of points. The reconstruction can work with as few as five pieces.

In mathematics, a standard Borel space is the Borel space associated with a Polish space. Except in the case of discrete Polish spaces, the standard Borel space is unique, up to isomorphism of measurable spaces.

In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Shultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Maharam, Dorothy (1942). "On homogeneous measure algebras". Proceedings of the National Academy of Sciences of the United States of America . 28 (3): 108–111. Bibcode:1942PNAS...28..108M. doi: 10.1073/pnas.28.3.108 . JSTOR   87851. PMC   1078424 . PMID   16578030.
  2. Segal, Irving E. (1951). "Equivalences of measure spaces". American Journal of Mathematics . 73 (2): 275–313. doi:10.2307/2372178. JSTOR   2372178.