PGRMC1

Last updated
PGRMC1
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PGRMC1 , HPR6.6, MPR, progesterone receptor membrane component 1, Dap1, IZA, 25-Dx
External IDs OMIM: 300435; MGI: 1858305; HomoloGene: 48457; GeneCards: PGRMC1; OMA:PGRMC1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006667
NM_001282621

NM_016783

RefSeq (protein)

NP_001269550
NP_006658
NP_006658.1

NP_058063

Location (UCSC) Chr X: 119.24 – 119.24 Mb Chr X: 35.86 – 35.87 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Progesterone receptor membrane component 1 (abbreviated PGRMC1) is a protein which co-purifies with progesterone binding proteins in the liver and ovary. [5] [6] In humans, the PGRMC1 protein is encoded by the PGRMC1 gene. [7]

Contents

The sole biochemical function of PGRMC1 is heme-binding. [8] [9] PGRMC1 shares key structural motifs with cytochrome b5. [10] PGRMC1 binds and activates P450 proteins, [11] [12] [13] which are important in drug, hormone and lipid metabolism. PGRMC1 also binds to PAIR-BP1 (plasminogen activator inhibitor RNA-binding protein-1). [6] However, its expression outside of the reproductive tract and in males suggests multiple functions for the protein. These may include binding to Insig (insulin-induced gene), [14] which regulates cholesterol synthesis. [15]

Expression

PGRMC1 is highly expressed in the liver and kidney in humans [7] with lower expression in the brain, lung, heart, skeletal muscle and pancreas. [7] [16] [17] In rodents, PGRMC1 is found in the liver, lung, kidney and brain. [16] [17] PGRMC1 is over-expressed in breast tumors and in cancer cell lines from the colon, thyroid, ovary, lung, and cervix. [18] [19] Microarray analyses have detected PGRMC1 expression in colon, lung and breast tumors. [20] [21] [22]

PGRMC1 expression is induced by the non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat liver, [17] but this induction is specific to males. [23] PGRMC1 is expressed in the ovary and corpus luteum, where its expression is induced by progesterone [24] and during pregnancy, [25] respectively. PGRMC1 is expressed in various regions of the brain (hypothalamic area, circumventricular organs, ependymal cells of the lateral ventricles, meninges), [16] [26] including regions known to facilitate lordosis. [16]

Binding to heme and cytochrome P450s

The PGRMC1 yeast homologue, Dap1 (damage associated protein 1), binds heme [9] [27] through a penta-coordinate mechanism. [9] [28] Yeast cells lacking the DAP1 gene are sensitive to DNA damage, [29] and heme-binding is essential for damage resistance. [27] Dap1 is also required for a critical step in cholesterol synthesis in which the P450 protein Erg11/Cyp51 removes a methyl group from lanosterol. [11] [27] [29] [30] Erg11/Cyp51 is the target of the azole antifungal drugs. As a result, yeast cells lacking the DAP1 gene are highly sensitive to antifungal drugs [11] [27] [29] This function is conserved between the unrelated fungi S. cerevisiae and S. pombe . Dap1 also regulates the metabolism of iron in yeast. [30]

In yeast and humans, PGRMC1 binds directly to P450 proteins, including CYP51A1, CYP3A4, CYP7A1 and CYP21A2. [11] PGRMC1 also activates Cyp21 when the two proteins are co-expressed, [12] [13] indicating that PGRMC1 promotes progesterone turnover. Just as Dap1 is required for the action of Erg11 in the synthesis of ergosterol in yeast, PGRMC1 regulates the Cyp51-catalyzed demethylation step in human cholesterol synthesis. [11] Thus, PGRMC1 and its homologues bind and regulate P450 proteins, and it has been likened to “a helping hand for P450 proteins”. [31]

Roles in signaling and apoptosis

The yeast PGRMC1 homologue is required for resistance to damage. [29] PGRMC1 also promotes survival in human cancer cells after treatment with chemotherapy. [6] [8] In contrast, PGRMC1 promotes cell death in cancer cells after oxidative damage. [32] PGRMC1 alters several known survival signaling proteins, including the Akt protein kinase and the cell death-associated protein IκB. [32] Progesterone inhibits apoptosis in immortalized granulosa cells, and this activity requires PGRMC1 and its binding partner, PAIR-BP1 (plasminogen activator inhibitor RNA-binding protein-1). [6] However, PAIR-BP1 is not a progesterone binding protein, and the component of the PGRMC1 complex that binds to progesterone is unknown.

PGRMC1 was originally thought to represent a progesterone receptor of some sort and to bind to progesterone, but subsequently thought has moved towards PGRMC1 acting as a downstream mediator of some other progesterone-binding protein. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Heme</span> Chemical coordination complex of an iron ion chelated to a porphyrin

Heme, or haem, is a ring-shaped iron-containing molecular component of hemoglobin, which is necessary to bind oxygen in the bloodstream. It is composed of four pyrrole rings with 2 vinyl and 2 propionic acid side chains. Heme is biosynthesized in both the bone marrow and the liver.

Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen and 3-ketosteroids. In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as cell surface receptors for certain steroid hormones.

<span class="mw-page-title-main">Human iron metabolism</span> Iron metabolism in the body

Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease. Hematologists have been especially interested in systemic iron metabolism, because iron is essential for red blood cells, where most of the human body's iron is contained. Understanding iron metabolism is also important for understanding diseases of iron overload, such as hereditary hemochromatosis, and iron deficiency, such as iron-deficiency anemia.

<span class="mw-page-title-main">Thromboxane-A synthase</span> Mammalian protein found in Homo sapiens

Thromboxane A synthase 1 , also known as TBXAS1, is a cytochrome P450 enzyme that, in humans, is encoded by the TBXAS1 gene.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">CYP17A1</span> Mammalian protein found in Homo sapiens

Cytochrome P450 17A1 is an enzyme of the hydroxylase type that in humans is encoded by the CYP17A1 gene on chromosome 10. It is ubiquitously expressed in many tissues and cell types, including the zona reticularis and zona fasciculata of the adrenal cortex as well as gonadal tissues. It has both 17α-hydroxylase and 17,20-lyase activities, and is a key enzyme in the steroidogenic pathway that produces progestins, mineralocorticoids, glucocorticoids, androgens, and estrogens. More specifically, the enzyme acts upon pregnenolone and progesterone to add a hydroxyl (-OH) group at carbon 17 position (C17) of the steroid D ring, or acts upon 17α-hydroxyprogesterone and 17α-hydroxypregnenolone to split the side-chain off the steroid nucleus.

<span class="mw-page-title-main">Cholesterol 7 alpha-hydroxylase</span> Protein-coding gene in the species Homo sapiens

Cholesterol 7 alpha-hydroxylase also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1) is an enzyme that in humans is encoded by the CYP7A1 gene which has an important role in cholesterol metabolism. It is a cytochrome P450 enzyme, which belongs to the oxidoreductase class, and converts cholesterol to 7-alpha-hydroxycholesterol, the first and rate limiting step in bile acid synthesis.

<span class="mw-page-title-main">21-Hydroxylase</span> Human enzyme that hydroxylates steroids

Steroid 21-hydroxylase is a protein that in humans is encoded by the CYP21A2 gene. The protein is an enzyme that hydroxylates steroids at the C21 position on the molecule. Naming conventions for enzymes are based on the substrate acted upon and the chemical process performed. Biochemically, this enzyme is involved in the biosynthesis of the adrenal gland hormones aldosterone and cortisol, which are important in blood pressure regulation, sodium homeostasis and blood sugar control. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways which in humans ultimately lead to aldosterone and cortisol creation—deficiency in the enzyme may cause congenital adrenal hyperplasia.

<span class="mw-page-title-main">Cytochrome P450 reductase</span> Mammalian protein found in Homo sapiens

Cytochrome P450 reductase is a membrane-bound enzyme required for electron transfer from NADPH to cytochrome P450 and other heme proteins including heme oxygenase in the endoplasmic reticulum of the eukaryotic cell.

<span class="mw-page-title-main">Lanosterol 14 alpha-demethylase</span> Protein-coding gene in the species Homo sapiens

Lanosterol 14α-demethylase (CYP51A1) is the animal version of a cytochrome P450 enzyme that is involved in the conversion of lanosterol to 4,4-dimethylcholesta-8(9),14,24-trien-3β-ol. The cytochrome P450 isoenzymes are a conserved group of proteins that serve as key players in the metabolism of organic substances and the biosynthesis of important steroids, lipids, and vitamins in eukaryotes. As a member of this family, lanosterol 14α-demethylase is responsible for an essential step in the biosynthesis of sterols. In particular, this protein catalyzes the removal of the C-14α-methyl group from lanosterol. This demethylation step is regarded as the initial checkpoint in the transformation of lanosterol to other sterols that are widely used within the cell.

<span class="mw-page-title-main">Sigma-2 receptor</span> Protein-coding gene in the species Homo sapiens

The sigma-2 receptor (σ2R) is a sigma receptor subtype that has attracted attention due to its involvement in diseases such as neurological diseases, neurodegenerative, neuro-ophthalmic and cancer. It is currently under investigation for its potential diagnostic and therapeutic uses.

<span class="mw-page-title-main">Cholesterol 24-hydroxylase</span> Protein family

Cholesterol 24-hydroxylase, also commonly known as cholesterol 24S-hydroxylase, cholesterol 24-monooxygenase, CYP46, or CYP46A1, is an enzyme that catalyzes the conversion of cholesterol to 24S-hydroxycholesterol. It is responsible for the majority of cholesterol turnover in the human central nervous system. The systematic name of this enzyme class is cholesterol,NADPH:oxygen oxidoreductase (24-hydroxylating).

<span class="mw-page-title-main">Sterol 14-demethylase</span> Class of enzymes

In enzymology, a sterol 14-demethylase (EC 1.14.13.70) is an enzyme of the cytochrome P450 (CYP) superfamily. It is any member of the CYP51 family. It catalyzes a chemical reaction such as:

<span class="mw-page-title-main">CYP3A5</span> Enzyme involved in drug metabolism

Cytochrome P450 3A5 is a protein that in humans is encoded by the CYP3A5 gene.

<span class="mw-page-title-main">CYP2J2</span> Gene of the species Homo sapiens

Cytochrome P450 2J2 (CYP2J2) is a protein that in humans is encoded by the CYP2J2 gene. CYP2J2 is a member of the cytochrome P450 superfamily of enzymes. The enzymes are oxygenases which catalyze many reactions involved in the metabolism of drugs and other xenobiotics) as well as in the synthesis of cholesterol, steroids and other lipids.

<span class="mw-page-title-main">CYP7B1</span> Protein-coding gene in the species Homo sapiens

25-hydroxycholesterol 7-alpha-hydroxylase also known as oxysterol and steroid 7-alpha-hydroxylase is an enzyme that in humans is encoded by the CYP7B1 gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids.

<span class="mw-page-title-main">KLF9</span> Protein-coding gene in the species Homo sapiens

Krueppel-like factor 9 is a protein that in humans is encoded by the KLF9 gene. Previously known as Basic Transcription Element Binding Protein 1, Klf9 is part of the Sp1 C2H2-type zinc finger family of transcription factors. Several previous studies showed Klf9-related regulation of animal development, including cell differentiation of B cells, keratinocytes, and neurons. Klf9 is also a key transcriptional regulator for uterine endometrial cell proliferation, adhesion, and differentiation, all factors that are essential during the process of pregnancy and are turned off during tumorigenesis.

<span class="mw-page-title-main">Ascorbate ferrireductase (transmembrane)</span> Class of enzymes

Ascorbate ferrireductase (transmembrane) (EC 1.16.5.1, cytochrome b561) is an enzyme with systematic name Fe(III):ascorbate oxidorectuctase (electron-translocating). This enzyme catalyses the following chemical reaction

Membrane progesterone receptors (mPRs) are a group of cell surface receptors and membrane steroid receptors belonging to the progestin and adipoQ receptor (PAQR) family which bind the endogenous progestogen and neurosteroid progesterone, as well as the neurosteroid allopregnanolone. Unlike the progesterone receptor (PR), a nuclear receptor which mediates its effects via genomic mechanisms, mPRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The mPRs mediate important physiological functions in male and female reproductive tracts, liver, neuroendocrine tissues, and the immune system as well as in breast and ovarian cancer.

Haem or Heme carrier protein 1 (HCP1) was originally identified as mediating heme-Fe transport although it later emerged that it was the SLC46A1 folate transporter.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000101856 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000006373 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Meyer C, Schmid R, Scriba PC, Wehling M (Aug 1996). "Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes". European Journal of Biochemistry. 239 (3): 726–31. doi: 10.1111/j.1432-1033.1996.0726u.x . PMID   8774719.
  6. 1 2 3 4 Peluso JJ, Romak J, Liu X (Feb 2008). "Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations". Endocrinology. 149 (2): 534–43. doi:10.1210/en.2007-1050. PMC   2219306 . PMID   17991724.
  7. 1 2 3 Gerdes D, Wehling M, Leube B, Falkenstein E (Jul 1998). "Cloning and tissue expression of two putative steroid membrane receptors". Biological Chemistry. 379 (7): 907–11. doi:10.1515/bchm.1998.379.7.907. PMID   9705155.
  8. 1 2 Crudden G, Chitti RE, Craven RJ (Jan 2006). "Hpr6 (heme-1 domain protein) regulates the susceptibility of cancer cells to chemotherapeutic drugs". The Journal of Pharmacology and Experimental Therapeutics. 316 (1): 448–55. doi:10.1124/jpet.105.094631. PMID   16234411. S2CID   18928996.
  9. 1 2 3 Ghosh K, Thompson AM, Goldbeck RA, Shi X, Whitman S, Oh E, Zhiwu Z, Vulpe C, Holman TR (Dec 2005). "Spectroscopic and biochemical characterization of heme binding to yeast Dap1p and mouse PGRMC1p". Biochemistry. 44 (50): 16729–36. doi:10.1021/bi0511585. PMC   2577039 . PMID   16342963.
  10. Mifsud W, Bateman A (2002). "Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain". Genome Biology. 3 (12): RESEARCH0068. doi: 10.1186/gb-2002-3-12-research0068 . PMC   151170 . PMID   12537557.
  11. 1 2 3 4 5 Hughes AL, Powell DW, Bard M, Eckstein J, Barbuch R, Link AJ, Espenshade PJ (Feb 2007). "Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes". Cell Metabolism. 5 (2): 143–9. doi: 10.1016/j.cmet.2006.12.009 . PMID   17276356.
  12. 1 2 Min L, Strushkevich NV, Harnastai IN, Iwamoto H, Gilep AA, Takemori H, Usanov SA, Nonaka Y, Hori H, Vinson GP, Okamoto M (Nov 2005). "Molecular identification of adrenal inner zone antigen as a heme-binding protein". The FEBS Journal. 272 (22): 5832–43. doi: 10.1111/j.1742-4658.2005.04977.x . PMID   16279947.
  13. 1 2 Min L, Takemori H, Nonaka Y, Katoh Y, Doi J, Horike N, Osamu H, Raza FS, Vinson GP, Okamoto M (Feb 2004). "Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis". Molecular and Cellular Endocrinology. 215 (1–2): 143–8. doi:10.1016/j.mce.2003.11.025. PMID   15026187. S2CID   20640748.
  14. Suchanek M, Radzikowska A, Thiele C (Apr 2005). "Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells". Nature Methods. 2 (4): 261–7. doi: 10.1038/nmeth752 . PMID   15782218.
  15. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS (Aug 2002). "Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER". Cell. 110 (4): 489–500. doi: 10.1016/S0092-8674(02)00872-3 . PMID   12202038.
  16. 1 2 3 4 Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW (Nov 2000). "A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors". Proceedings of the National Academy of Sciences of the United States of America. 97 (23): 12816–21. Bibcode:2000PNAS...9712816K. doi: 10.1073/pnas.97.23.12816 . PMC   18847 . PMID   11070092.
  17. 1 2 3 Selmin O, Lucier GW, Clark GC, Tritscher AM, Vanden Heuvel JP, Gastel JA, Walker NJ, Sutter TR, Bell DA (Dec 1996). "Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver". Carcinogenesis. 17 (12): 2609–15. doi: 10.1093/carcin/17.12.2609 . PMID   9006096.
  18. Crudden G, Loesel R, Craven RJ (2005). "Overexpression of the cytochrome p450 activator hpr6 (heme-1 domain protein/human progesterone receptor) in tumors". Tumour Biology. 26 (3): 142–6. doi:10.1159/000086485. PMID   15970648. S2CID   2555270.
  19. Peluso JJ, Liu X, Saunders MM, Claffey KP, Phoenix K (May 2008). "Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1". The Journal of Clinical Endocrinology and Metabolism. 93 (5): 1592–9. doi: 10.1210/jc.2007-2771 . PMID   18319313.
  20. Difilippantonio S, Chen Y, Pietas A, Schlüns K, Pacyna-Gengelbach M, Deutschmann N, Padilla-Nash HM, Ried T, Petersen I (Sep 2003). "Gene expression profiles in human non-small and small-cell lung cancers". European Journal of Cancer. 39 (13): 1936–47. doi:10.1016/S0959-8049(03)00419-2. PMID   12932674.
  21. Dressman HK, Hans C, Bild A, Olson JA, Rosen E, Marcom PK, Liotcheva VB, Jones EL, Vujaskovic Z, Marks J, Dewhirst MW, West M, Nevins JR, Blackwell K (Feb 2006). "Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy". Clinical Cancer Research. 12 (3 Pt 1): 819–26. doi: 10.1158/1078-0432.CCR-05-1447 . PMID   16467094.
  22. Irby RB, Malek RL, Bloom G, Tsai J, Letwin N, Frank BC, Verratti K, Yeatman TJ, Lee NH (Mar 2005). "Iterative microarray and RNA interference-based interrogation of the SRC-induced invasive phenotype". Cancer Research. 65 (5): 1814–21. doi: 10.1158/0008-5472.CAN-04-3609 . PMID   15753379.
  23. Selmin O, Thorne PA, Blachere FM, Johnson PD, Romagnolo DF (Feb 2005). "Transcriptional activation of the membrane-bound progesterone receptor (mPR) by dioxin, in endocrine-responsive tissues". Molecular Reproduction and Development. 70 (2): 166–74. doi:10.1002/mrd.20090. PMID   15570619. S2CID   20023746.
  24. Nilsson EE, Stanfield J, Skinner MK (Dec 2006). "Interactions between progesterone and tumor necrosis factor-alpha in the regulation of primordial follicle assembly". Reproduction. 132 (6): 877–86. doi: 10.1530/REP-06-0045 . PMC   8260010 . PMID   17127748.
  25. Cai Z, Stocco C (Dec 2005). "Expression and regulation of progestin membrane receptors in the rat corpus luteum". Endocrinology. 146 (12): 5522–32. doi: 10.1210/en.2005-0759 . PMID   16123161.
  26. Meffre D, Delespierre B, Gouézou M, Leclerc P, Vinson GP, Schumacher M, Stein DG, Guennoun R (Jun 2005). "The membrane-associated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is up-regulated after traumatic brain injury". Journal of Neurochemistry. 93 (5): 1314–26. doi:10.1111/j.1471-4159.2005.03127.x. PMID   15934950. S2CID   10107122.
  27. 1 2 3 4 Mallory JC, Crudden G, Johnson BL, Mo C, Pierson CA, Bard M, Craven RJ (Mar 2005). "Dap1p, a heme-binding protein that regulates the cytochrome P450 protein Erg11p/Cyp51p in Saccharomyces cerevisiae". Molecular and Cellular Biology. 25 (5): 1669–79. doi:10.1128/MCB.25.5.1669-1679.2005. PMC   549369 . PMID   15713626.
  28. Thompson AM, Reddi AR, Shi X, Goldbeck RA, Moënne-Loccoz P, Gibney BR, Holman TR (Dec 2007). "Measurement of the heme affinity for yeast dap1p, and its importance in cellular function". Biochemistry. 46 (50): 14629–37. doi:10.1021/bi7013739. PMC   2669782 . PMID   18031064.
  29. 1 2 3 4 Hand RA, Jia N, Bard M, Craven RJ (Apr 2003). "Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor". Eukaryotic Cell. 2 (2): 306–17. doi:10.1128/EC.2.2.306-317.2003. PMC   154842 . PMID   12684380.
  30. 1 2 Craven RJ, Mallory JC, Hand RA (Dec 2007). "Regulation of iron homeostasis mediated by the heme-binding protein Dap1 (damage resistance protein 1) via the P450 protein Erg11/Cyp51". The Journal of Biological Chemistry. 282 (50): 36543–51. doi: 10.1074/jbc.M706770200 . PMID   17954932.
  31. Debose-Boyd RA (Feb 2007). "A helping hand for cytochrome p450 enzymes". Cell Metabolism. 5 (2): 81–3. doi: 10.1016/j.cmet.2007.01.007 . PMID   17276348.
  32. 1 2 Hand RA, Craven RJ (Oct 2003). "Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells". Journal of Cellular Biochemistry. 90 (3): 534–47. doi:10.1002/jcb.10648. PMID   14523988. S2CID   24471996.
  33. Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR (December 2016). "The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology". Biochim. Biophys. Acta. 1866 (2): 339–349. doi:10.1016/j.bbcan.2016.07.004. PMID   27452206.