Chrysiogenaceae

Last updated

Chrysiogenaceae
Scientific classification
Domain:
Phylum:
Chrysiogenota

Garrity and Holt 2021 [1]
Class:
Chrysiogenetes

Garrity and Holt 2002 [2]
Order:
Chrysiogenales

Garrity and Holt 2002 [3]
Family:
Chrysiogenaceae

Garrity and Holt 2002 [4]
Genera
Synonyms
  • Chrysiogenota:
    • "Chrysiogenetes" Garrity and Holt 2001
    • "Chrysiogenetota" Whitman et al. 2018
    • "Chrysiogenaeota" Oren et al. 2015

Chrysiogenaceae is a family of bacteria. [5] [6]

Phylogeny

The phylogeny is based on 16S rRNA based LTP_08_2023 [7] [8] [9] and 120 marker proteins based GTDB 08-RS214. [10] [11] [12]

Contents

Chrysiogenes arsenatis Macy et al. 1996

Desulfurispira natronophila Sorokin and Muyzer 2010

Desulfurispirillum

D. alkaliphilum Sorokin et al. 2010

D. indicum Rauschenbach et al. 2011

See also

Related Research Articles

<span class="mw-page-title-main">Euryarchaeota</span> Phylum of archaea

Euryarchaeota is a phylum of archaea. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.

<span class="mw-page-title-main">Deinococcota</span> Phylum of Gram-negative bacteria

Deinococcota is a phylum of bacteria with a single class, Deinococci, that are highly resistant to environmental hazards, also known as extremophiles. These bacteria have thick cell walls that give them gram-positive stains, but they include a second membrane and so are closer in structure to those of gram-negative bacteria.

The Thermomicrobia is a group of thermophilic green non-sulfur bacteria. Based on species Thermomicrobium roseum and Sphaerobacter thermophilus, this bacteria class has the following description:

The Thermoprotei is a class of the Thermoproteota.

The Deferribacteraceae are a family of gram-negative bacteria which make energy by anaerobic respiration.

In taxonomy, the Methanopyri are a class of the Euryarchaeota.

<span class="mw-page-title-main">Thermoplasmata</span> Class of archaea

In taxonomy, the Thermoplasmata are a class of the Euryarchaeota.

<span class="mw-page-title-main">Thermoplasmataceae</span> Family of archaea

In taxonomy, the Thermoplasmataceae are a family of the Thermoplasmatales. It contains only one genus, Thermoplasma. All species within Thermoplasmataceae are thermoacidophiles, and they grow at a temperature of 60°C and pH 2. They were isolated from hydrothermal vents, fumaroles and similar environments.

<span class="mw-page-title-main">Thermoplasmatales</span> Order of archaea

In taxonomy, the Thermoplasmatales are an order of the Thermoplasmata. All are acidophiles, growing optimally at pH below 2. Picrophilus is currently the most acidophilic of all known organisms, being capable of growing at a pH of -0.06. Many of these organisms do not contain a cell wall, although this is not true in the case of Picrophilus. Most members of the Thermotoplasmata are thermophilic.

<span class="mw-page-title-main">Methanomicrobia</span> Class of archaea

In the taxonomy of microorganisms, the Methanomicrobia are a class of the Euryarchaeota.

<span class="mw-page-title-main">Methanococci</span> Class of archaea

Methanococci is a class of methanogenic archaea in the phylum Euryarchaeota. They can be mesophilic, thermophilic or hyperthermophilic.

<span class="mw-page-title-main">Acidilobales</span> Order of archaea

Acidilobales are an order of archaea in the class Thermoprotei.

<span class="mw-page-title-main">Desulfurococcales</span> Order of archaea

The Desulfurococcales are an order of the Thermoprotei, part of the kingdom Archaea. The order encompasses some genera which are all thermophilic, autotrophs which utilise chemical energy, typically by reducing sulfur compounds using hydrogen.

Methanobacteriales is an order of archaeans in the class Methanobacteria. Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane.

In taxonomy, the Methanococcales are an order of the Methanococci.

<span class="mw-page-title-main">Methanosarcinales</span> Order of archaea

Methanosarcinales is an order of archaeans in the class Methanomicrobia.

In taxonomy, the Ferroplasmaceae are a family of the Thermoplasmatales.

Methanocaldococcus formerly known as Methanococcus is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaean genome to be completely sequenced, revealing many novel and eukaryote-like elements.

Bergey's Manual of Systematic Bacteriology is the main resource for determining the identity of prokaryotic organisms, emphasizing bacterial species, using every characterizing aspect.

Heliorestis is an alkaliphilic genus of bacteria from the family of Heliobacteriaceae.

References

  1. Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi: 10.1099/ijsem.0.005056 . PMID   34694987.
  2. Garrity GM, Holt JG. (2001). "Class I. Chrysiogenetes class. nov.". In Boone DR, Castenholz RW, Garrity GM. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 1 (The Archaea and the Deeply Branching and Phototrophic Bacteria) (2nd ed.). New York, NY: Springer. pp. 421–425.
  3. Garrity GM, Holt JG. (2001). "Order I. Chrysiogenales ord. nov.". In Boone DR, Castenholz RW, Garrity GM. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 1 (The Archaea and the Deeply Branching and Phototrophic Bacteria) (2nd ed.). New York, NY: Springer. pp. 421–425.
  4. Garrity GM, Holt JG. (2001). "Family I. Chrysiogenaceae fam. nov.". In Boone DR, Castenholz RW, Garrity GM. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 1 (The Archaea and the Deeply Branching and Phototrophic Bacteria) (2nd ed.). New York, NY: Springer. pp. 421–425.
  5. J.P. Euzéby. "Chrysiogenetes". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2016-03-20.
  6. Sayers; et al. "Chrysiogenetes". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-03-20.
  7. "The LTP" . Retrieved 20 November 2023.
  8. "LTP_all tree in newick format" . Retrieved 20 November 2023.
  9. "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  10. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  11. "bac120_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  12. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.