Ran (protein)

Last updated
RAN
PBB Protein RAN image.jpg
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RAN , ARA24, Gsp1, TC4, Ran, member RAS oncogene family
External IDs OMIM: 601179 MGI: 1333112 HomoloGene: 68143 GeneCards: RAN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006325
NM_001300796
NM_001300797

NM_009391

RefSeq (protein)

NP_001287725
NP_001287726
NP_006316

NP_033417

Location (UCSC) Chr 12: 130.87 – 130.88 Mb Chr 5: 129.1 – 129.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Ran (RAs-related Nuclear protein) also known as GTP-binding nuclear protein Ran is a protein that in humans is encoded by the RAN gene. Ran is a small 25 kDa protein that is involved in transport into and out of the cell nucleus during interphase and also involved in mitosis. It is a member of the Ras superfamily. [5] [6] [7]

Ran is a small G protein that is essential for the translocation of RNA and proteins through the nuclear pore complex. The Ran protein has also been implicated in the control of DNA synthesis and cell cycle progression, as mutations in Ran have been found to disrupt DNA synthesis. [8]

Function

Ran cycle

Schematic representation of the Ran cycle Rancycle.png
Schematic representation of the Ran cycle

Ran exists in the cell in two nucleotide-bound forms: GDP-bound and GTP-bound. RanGDP is converted into RanGTP through the action of RCC1, the nucleotide exchange factor for Ran. RCC1 is also known as RanGEF (Ran Guanine nucleotide Exchange Factor). Ran's intrinsic GTPase-activity is activated through interaction with Ran GTPase activating protein (RanGAP), facilitated by complex formation with Ran-binding protein (RanBP). GTPase-activation leads to the conversion of RanGTP to RanGDP, thus closing the Ran cycle.

Ran can diffuse freely within the cell, but because RCC1 and RanGAP are located in different places in the cell, the concentration of RanGTP and RanGDP differs locally as well, creating concentration gradients that act as signals for other cellular processes. RCC1 is bound to chromatin and therefore located inside the nucleus. RanGAP is cytoplasmic in yeast and bound to the nuclear envelope in plants and animals. In mammalian cells, it is SUMO modified and attached to the cytoplasmic side of the nuclear pore complex via interaction with the nucleoporin RANBP2 (Nup358). This difference in location of the accessory proteins in the Ran cycle leads to a high RanGTP to RanGDP ratio inside the nucleus and an inversely low RanGTP to RanGDP ratio outside the nucleus. In addition to a gradient of the nucleotide bound state of Ran, there is a gradient of the protein itself, with a higher concentration of Ran in the nucleus than in the cytoplasm. Cytoplasmic RanGDP is imported into the nucleus by the small protein NUTF2 (Nuclear Transport Factor 2), where RCC1 can then catalyze exchange of GDP for GTP on Ran.

Role in nuclear transport during interphase

Ran cycle involvement in nucleocytoplasmic transport at the nuclear pore RanGTPcycle.png
Ran cycle involvement in nucleocytoplasmic transport at the nuclear pore

Ran is involved in the transport of proteins across the nuclear envelope by interacting with karyopherins and changing their ability to bind or release cargo molecules. Cargo proteins containing a nuclear localization signal (NLS) are bound by importins and transported into the nucleus. Inside the nucleus, RanGTP binds to importin and releases the import cargo. Cargo that needs to get out of the nucleus into the cytoplasm binds to exportin in a ternary complex with RanGTP. Upon hydrolysis of RanGTP to RanGDP outside the nucleus, the complex dissociates and export cargo is released.

Role in mitosis

During mitosis, the Ran cycle is involved in mitotic spindle assembly and nuclear envelope reassembly after the chromosomes have been separated. [9] [10] During prophase, the steep gradient in RanGTP-RanGDP ratio at the nuclear pores breaks down as the nuclear envelope becomes leaky and disassembles. RanGTP concentration stays high around the chromosomes as RCC1, a nucleotide exchange factor, stays attached to chromatin. [11] RanBP2 (Nup358) and RanGAP move to the kinetochores where they facilitate the attachment of spindle fibers to chromosomes. Moreover, RanGTP promotes spindle assembly by mechanisms similar to mechanisms of nuclear transport: the activity of spindle assembly factors such as NuMA and TPX2 is inhibited by the binding to importins. By releasing importins, RanGTP activates these factors and therefore promotes the assembly of the mitotic spindle. In telophase, RanGTP hydrolysis and nucleotide exchange are required for vesicle fusion at the reforming nuclear envelopes of the daughter nuclei.

Ran and the androgen receptor

RAN is an androgen receptor (AR) coactivator (ARA24) that binds differentially with different lengths of polyglutamine within the androgen receptor. Polyglutamine repeat expansion in the AR is linked to spinal and bulbar muscular atrophy (Kennedy's disease). RAN coactivation of the AR diminishes with polyglutamine expansion within the AR, and this weak coactivation may lead to partial androgen insensitivity during the development of spinal and bulbar muscular atrophy. [12] [13]

Interactions

Ran has been shown to interact with:

Regulation

The expression of Ran is repressed by the microRNA miR-10a. [32]

See also

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

<span class="mw-page-title-main">Nuclear pore</span> Openings in nuclear envelope of eukaryotic cells

A nuclear pore is a channel as part of the nuclear pore complex (NPC), a large protein complex found in the nuclear envelope in eukaryotic cells, enveloping the cell nucleus containing DNA, which facilitates the selective membrane transport of various molecules across the membrane.

Small GTPases, also known as small G-proteins, are a family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP). They are a type of G-protein found in the cytosol that are homologous to the alpha subunit of heterotrimeric G-proteins, but unlike the alpha subunit of G proteins, a small GTPase can function independently as a hydrolase enzyme to bind to and hydrolyze a guanosine triphosphate (GTP) to form guanosine diphosphate (GDP). The best-known members are the Ras GTPases and hence they are sometimes called Ras subfamily GTPases.

A nuclear localization signalorsequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysines or arginines exposed on the protein surface. Different nuclear localized proteins may share the same NLS. An NLS has the opposite function of a nuclear export signal (NES), which targets proteins out of the nucleus.

Karyopherins are proteins involved in transporting molecules between the cytoplasm and the nucleus of a eukaryotic cell. The inside of the nucleus is called the karyoplasm. Generally, karyopherin-mediated transport occurs through nuclear pores which act as a gateway into and out of the nucleus. Most proteins require karyopherins to traverse the nuclear pore.

Importin is a type of karyopherin that transports protein molecules from the cell's cytoplasm to the nucleus. It does so by binding to specific recognition sequences, called nuclear localization sequences (NLS).

Nuclear transport refers to the mechanisms by which molecules move across the nuclear membrane of a cell. The entry and exit of large molecules from the cell nucleus is tightly controlled by the nuclear pore complexes (NPCs). Although small molecules can enter the nucleus without regulation, macromolecules such as RNA and proteins require association with transport factors known as nuclear transport receptors, like karyopherins called importins to enter the nucleus and exportins to exit.

<span class="mw-page-title-main">Guanine nucleotide exchange factor</span> Proteins which remove GDP from GTPases

Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated structural domains have been shown to exhibit guanine nucleotide exchange activity. Some GEFs can activate multiple GTPases while others are specific to a single GTPase.

<span class="mw-page-title-main">Nuclear pore glycoprotein p62</span> Protein-coding gene in the species Homo sapiens

Nuclear pore glycoprotein p62 is a protein complex associated with the nuclear envelope. The p62 protein remains associated with the nuclear pore complex-lamina fraction. p62 is synthesized as a soluble cytoplasmic precursor of 61 kDa followed by modification that involve addition of N-acetylglucosamine residues, followed by association with other complex proteins. In humans it is encoded by the NUP62 gene.

<span class="mw-page-title-main">KPNB1</span> Protein-coding gene in the species Homo sapiens

Importin subunit beta-1 is a protein that in humans is encoded by the KPNB1 gene.

<span class="mw-page-title-main">NUP98</span> Protein-coding gene in the species Homo sapiens

Nuclear pore complex protein Nup98-Nup96 is a protein that in humans is encoded by the NUP98 gene.

<span class="mw-page-title-main">RCC1</span> Protein-coding gene in the species Homo sapiens

Regulator of chromosome condensation 1, also known as RCC1, Ran guanine nucleotide exchange factor and RanGEF, is the name for a human gene and protein.

<span class="mw-page-title-main">Nucleoporin 153</span> Protein-coding gene in the species Homo sapiens

Nucleoporin 153 (Nup153) is a protein which in humans is encoded by the NUP153 gene. It is an essential component of the basket of nuclear pore complexes (NPCs) in vertebrates, and required for the anchoring of NPCs. It also acts as the docking site of an importing karyopherin. On the cytoplasmic side of the NPC, Nup358 fulfills an analogous role.

<span class="mw-page-title-main">Transportin 1</span> Protein-coding gene in the species Homo sapiens

Transportin-1 is a protein that in humans is encoded by the TNPO1 gene.

<span class="mw-page-title-main">RANGAP1</span> Protein-coding gene in the species Homo sapiens

Ran GTPase-activating protein 1 is an enzyme that in humans is encoded by the RANGAP1 gene.

<span class="mw-page-title-main">RANBP1</span> Protein-coding gene in the species Homo sapiens

Ran-specific binding protein 1 is an enzyme that in humans is encoded by the RANBP1 gene.

<span class="mw-page-title-main">IPO7</span> Protein-coding gene in the species Homo sapiens

Importin-7 is a protein that in humans is encoded by the IPO7 gene.

<span class="mw-page-title-main">XPOT</span> Protein-coding gene in the species Homo sapiens

Exportin-T is a protein that in humans is encoded by the XPOT gene.

A nuclear export signal (NES) is a short target peptide containing 4 hydrophobic residues in a protein that targets it for export from the cell nucleus to the cytoplasm through the nuclear pore complex using nuclear transport. It has the opposite effect of a nuclear localization signal, which targets a protein located in the cytoplasm for import to the nucleus. The NES is recognized and bound by exportins.

RanGAP is a protein involved in the transport of other proteins from the cytosol to the nucleus in eukaryotic cells.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000132341 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029430 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Moore MS, Blobel G (May 1994). "A G protein involved in nucleocytoplasmic transport: the role of Ran". Trends Biochem. Sci. 19 (5): 211–6. doi:10.1016/0968-0004(94)90024-8. PMID   7519373.
  6. Avis JM, Clarke PR (October 1996). "Ran, a GTPase involved in nuclear processes: its regulators and effectors". J. Cell Sci. 109 (10): 2423–7. doi:10.1242/jcs.109.10.2423. PMID   8923203.
  7. Dasso M, Pu RT (August 1998). "Nuclear transport: run by Ran?". Am. J. Hum. Genet. 63 (2): 311–6. doi:10.1086/301990. PMC   1377330 . PMID   9683621.
  8. Sazer S, Dasso M (April 2000). "The ran decathlon: multiple roles of Ran". J. Cell Sci. 113 (7): 1111–8. doi:10.1242/jcs.113.7.1111. PMID   10704362.
  9. Gruss OJ, Vernos I (September 2004). "The mechanism of spindle assembly: functions of Ran and its target TPX2". J. Cell Biol. 166 (7): 949–55. doi:10.1083/jcb.200312112. PMC   2172015 . PMID   15452138.
  10. Ciciarello M, Mangiacasale R, Lavia P (August 2007). "Spatial control of mitosis by the GTPase Ran". Cell. Mol. Life Sci. 64 (15): 1891–914. doi:10.1007/s00018-007-6568-2. PMID   17483873. S2CID   8687055.
  11. Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (July 1999). "Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation". Nature. 400 (6740): 178–81. Bibcode:1999Natur.400..178C. doi:10.1038/22133. PMID   10408446. S2CID   4417176.
  12. Hsiao PW, Lin DL, Nakao R, Chang C (July 1999). "The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator". J. Biol. Chem. 274 (29): 20229–34. doi: 10.1074/jbc.274.29.20229 . PMID   10400640.
  13. Sampson ER, Yeh SY, Chang HC, Tsai MY, Wang X, Ting HJ, Chang C (2001). "Identification and characterization of androgen receptor associated coregulators in prostate cancer cells". J. Biol. Regul. Homeost. Agents. 15 (2): 123–9. PMID   11501969.
  14. 1 2 3 Plafker K, Macara IG (2000). "Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1". Mol. Cell. Biol. 20 (10): 3510–21. doi:10.1128/MCB.20.10.3510-3521.2000. PMC   85643 . PMID   10779340.
  15. Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Görlich D (1997). "Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex". EMBO J. 16 (6): 1153–63. doi:10.1093/emboj/16.6.1153. PMC   1169714 . PMID   9135132.
  16. Percipalle P, Clarkson WD, Kent HM, Rhodes D, Stewart M (1997). "Molecular interactions between the importin alpha/beta heterodimer and proteins involved in vertebrate nuclear protein import". J. Mol. Biol. 266 (4): 722–32. doi:10.1006/jmbi.1996.0801. PMID   9102465.
  17. Roig J, Mikhailov A, Belham C, Avruch J (2002). "Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression". Genes Dev. 16 (13): 1640–58. doi:10.1101/gad.972202. PMC   186374 . PMID   12101123.
  18. Cushman I, Bowman BR, Sowa ME, Lichtarge O, Quiocho FA, Moore MS (2004). "Computational and biochemical identification of a nuclear pore complex binding site on the nuclear transport carrier NTF2". J. Mol. Biol. 344 (2): 303–10. doi:10.1016/j.jmb.2004.09.043. PMID   15522285.
  19. Stewart M, Kent HM, McCoy AJ (1998). "Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran". J. Mol. Biol. 277 (3): 635–46. doi:10.1006/jmbi.1997.1602. PMID   9533885.
  20. 1 2 Steggerda SM, Paschal BM (2000). "The mammalian Mog1 protein is a guanine nucleotide release factor for Ran". J. Biol. Chem. 275 (30): 23175–80. doi: 10.1074/jbc.C000252200 . PMID   10811801.
  21. 1 2 Ren M, Villamarin A, Shih A, Coutavas E, Moore MS, LoCurcio M, Clarke V, Oppenheim JD, D'Eustachio P, Rush MG (1995). "Separate domains of the Ran GTPase interact with different factors to regulate nuclear protein import and RNA processing". Mol. Cell. Biol. 15 (4): 2117–24. doi:10.1128/MCB.15.4.2117. PMC   230439 . PMID   7891706.
  22. Hillig RC, Renault L, Vetter IR, Drell T, Wittinghofer A, Becker J (1999). "The crystal structure of rna1p: a new fold for a GTPase-activating protein". Mol. Cell. 3 (6): 781–91. doi: 10.1016/S1097-2765(01)80010-1 . PMID   10394366.
  23. Becker J, Melchior F, Gerke V, Bischoff FR, Ponstingl H, Wittinghofer A (1995). "RNA1 encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of Saccharomyces cerevisiae". J. Biol. Chem. 270 (20): 11860–5. doi: 10.1074/jbc.270.20.11860 . PMID   7744835.
  24. Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H (1994). "RanGAP1 induces GTPase activity of nuclear Ras-related Ran". Proc. Natl. Acad. Sci. U.S.A. 91 (7): 2587–91. Bibcode:1994PNAS...91.2587B. doi: 10.1073/pnas.91.7.2587 . PMC   43414 . PMID   8146159.
  25. Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001). "Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1)". Cell. 105 (2): 245–55. doi: 10.1016/S0092-8674(01)00315-4 . PMID   11336674. S2CID   12827419.
  26. Azuma Y, Renault L, García-Ranea JA, Valencia A, Nishimoto T, Wittinghofer A (1999). "Model of the ran-RCC1 interaction using biochemical and docking experiments". J. Mol. Biol. 289 (4): 1119–30. doi:10.1006/jmbi.1999.2820. PMID   10369786.
  27. Chook YM, Blobel G (1999). "Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp". Nature. 399 (6733): 230–7. Bibcode:1999Natur.399..230C. doi:10.1038/20375. PMID   10353245. S2CID   4413233.
  28. 1 2 Shamsher MK, Ploski J, Radu A (2002). "Karyopherin beta 2B participates in mRNA export from the nucleus". Proc. Natl. Acad. Sci. U.S.A. 99 (22): 14195–9. Bibcode:2002PNAS...9914195S. doi: 10.1073/pnas.212518199 . PMC   137860 . PMID   12384575.
  29. Tickenbrock L, Cramer J, Vetter IR, Muller O (2002). "The coiled coil region (amino acids 129-250) of the tumor suppressor protein adenomatous polyposis coli (APC). Its structure and its interaction with chromosome maintenance region 1 (Crm-1)". J. Biol. Chem. 277 (35): 32332–8. doi: 10.1074/jbc.M203990200 . PMID   12070164.
  30. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997). "CRM1 is an export receptor for leucine-rich nuclear export signals". Cell. 90 (6): 1051–60. doi: 10.1016/S0092-8674(00)80371-2 . PMID   9323133. S2CID   15119502.
  31. Brownawell AM, Macara IG (2002). "Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins". J. Cell Biol. 156 (1): 53–64. doi:10.1083/jcb.200110082. PMC   2173575 . PMID   11777942.
  32. Ørom UA, Nielsen FC, Lund AH (2008). "MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation". Mol Cell. 30 (4): 460–71. doi: 10.1016/j.molcel.2008.05.001 . PMID   18498749.