Consumer green energy program

Last updated
A solar trough array is an example of green energy. Solar Array.jpg
A solar trough array is an example of green energy.

A consumer green energy program is a program that enables households to buy energy from renewable sources. By allowing consumers to purchase renewable energy, it simultaneously diverts the utilization of fossil fuels and promotes the use of renewable energy sources such as solar and wind.

Contents

In several countries with common carrier arrangements, electricity retailing arrangements make it possible for consumers to purchase "green" electricity from either their utility or a green power provider. Electricity is considered to be green if it is produced from a source that produces relatively little pollution, and the concept is often considered equivalent to renewable energy. [1] Although electricity is the most common green energy, biomethane is sold as "green gas" in some locations. [2]

In many countries, green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool of electricity offered by most utility companies, electric companies, or state power pools. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco. [3]

By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy. Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider. If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.

In some countries such as the Netherlands, electricity companies guarantee to buy an equal amount of 'green power' as is being used by their green power customers. The Dutch government exempts green power from pollution taxes, which means green power is hardly any more expensive than other power.

Green energy and labeling by region

European Union

Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market [4] includes the article 5 (Guarantee of origin of electricity from high-efficiency cogeneration).

European environmental NGOs have launched an ecolabel for green power. The ecolabel is called EKOenergy. It sets criteria for sustainability, additionality, consumer information and tracking. Only part of electricity produced by renewables fulfills the EKOenergy criteria. [5]

United Kingdom

The Green Energy Supply Certification Scheme was launched in 2010: it implements guidelines from the Energy Regulator, Ofgem, and sets requirements on transparency, the matching of sales by renewable energy supplies, and additionality. [6] Green electricity in the United Kingdom is widespread, and green gas is supplied to over a million homes. [2]

United States

The United States Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Center for Resource Solutions (CRS) [7] recognizes the voluntary purchase of electricity from renewable energy sources (also called renewable electricity or green electricity) as green power. [8]

The most popular way to purchase renewable energy as revealed by NREL data is through purchasing Renewable Energy Certificates (RECs). According to a Natural Marketing Institute (NMI) [9] survey 55 percent of American consumers want companies to increase their use of renewable energy. [8]

DOE selected six companies for its 2007 Green Power Supplier Awards, including Constellation NewEnergy; 3Degrees; Sterling Planet; SunEdison; Pacific Power and Rocky Mountain Power; and Silicon Valley Power. The combined green power provided by those six winners equals more than 5 billion kilowatt-hours per year, which is enough to power nearly 465,000 average U.S. households. In 2014, Arcadia Power made RECS available to homes and businesses in all 50 states, allowing consumers to use "100% green power" as defined by the EPA's Green Power Partnership. [10] [11]

The U.S. Environmental Protection Agency (USEPA) Green Power Partnership is a voluntary program that supports the organizational procurement of renewable electricity by offering expert advice, technical support, tools and resources. This can help organizations lower the transaction costs of buying renewable power, reduce carbon footprint, and communicate its leadership to key stakeholders. [12]

Throughout the country, more than half of all U.S. electricity customers now have an option to purchase some type of green power product from a retail electricity provider. Roughly one-quarter of the nation's utilities offer green power programs to customers, and voluntary retail sales of renewable energy in the United States totaled more than 12 billion kilowatt-hours in 2006, a 40% increase over the previous year.

In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer's electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues. [13] An additional $450 billion will be invested to expand this fledgling system over the next 20 years to meet increasing demand. [14] In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy. [15]

Several initiatives are being proposed to mitigate distribution problems. First and foremost, the most effective way to reduce USA's CO2 emissions and slow global warming is through conservation efforts. Opponents of the current US electrical grid have also advocated for decentralizing the grid. This system would increase efficiency by reducing the amount of energy lost in transmission. It would also be economically viable as it would reduce the amount of power lines that will need to be constructed in the future to keep up with demand. Merging heat and power in this system would create added benefits and help to increase its efficiency by up to 80-90%. This is a significant increase from the current fossil fuel plants which only have an efficiency of 34%. [16]

Asia

India

India's Ministry of Power notified 'Green Energy Open Access' Rules to accelerate ambitious renewable energy programmes by enabling provisions to incentivize the common consumers to get Green Power at reasonable rates through Electricity (Promoting Renewable Energy Through Green Energy Open Access) Rules, 2022 on 06.06.2022 [17] [18]

Small-scale green energy systems

A small Quietrevolution QR5 Gorlov type vertical axis wind turbine in Bristol, England. Measuring 3 m in diameter and 5 m high, it has a nameplate rating of 6.5 kW to the grid. Quietrevolution Bristol 3513051949.jpg
A small Quietrevolution QR5 Gorlov type vertical axis wind turbine in Bristol, England. Measuring 3 m in diameter and 5 m high, it has a nameplate rating of 6.5 kW to the grid.

Those not satisfied with the third-party grid approach to green energy via the power grid can install their own locally based renewable energy system. Renewable energy electrical systems from solar to wind to even local hydro-power in some cases, are some of the many types of renewable energy systems available locally. Additionally, for those interested in heating and cooling their dwelling via renewable energy, geothermal heat pump systems that tap the constant temperature of the earth, which is around 7 to 15 degrees Celsius a few feet underground and increases dramatically at greater depths, are an option over conventional natural gas and petroleum-fueled heat approaches. Also, in geographic locations where the Earth's Crust is especially thin, or near volcanoes (as is the case in Iceland) there exists the potential to generate even more electricity than would be possible at other sites, thanks to a more significant temperature gradient at these locales.

The advantage of this approach in the United States is that many states offer incentives to offset the cost of installation of a renewable energy system. In California, Massachusetts and several other U.S. states, a new approach to community energy supply called Community Choice Aggregation has provided communities with the means to solicit a competitive electricity supplier and use municipal revenue bonds to finance development of local green energy resources. Individuals are usually assured that the electricity they are using is actually produced from a green energy source that they control. Once the system is paid for, the owner of a renewable energy system will be producing their own renewable electricity for essentially no cost and can sell the excess to the local utility at a profit.

A 01 KiloWatt Micro Windmill for Domestic Usage Micro WindMill.jpg
A 01 KiloWatt Micro Windmill for Domestic Usage

In household power systems, organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

<span class="mw-page-title-main">Zero-emissions vehicle</span> Class of motor vehicle

A zero-emission vehicle, or ZEV, is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.

<span class="mw-page-title-main">Net metering</span> Type of billing of electricity generated from renewable sources

Net metering is an electricity billing mechanism that allows consumers who generate some or all of their own electricity to use that electricity anytime, instead of when it is generated. This is particularly important with renewable energy sources like wind and solar, which are non-dispatchable. Monthly net metering allows consumers to use solar power generated during the day at night, or wind from a windy day later in the month. Annual net metering rolls over a net kilowatt-hour (kWh) credit to the following month, allowing solar power that was generated in July to be used in December, or wind power from March in August.

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods such as financial incentives and behavioral change through education.

<span class="mw-page-title-main">Grid energy storage</span> Large scale electricity supply management

Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.

Renewable Energy Certificates (RECs), also known as Green tags, Renewable Energy Credits, Renewable Electricity Certificates, or Tradable Renewable Certificates (TRCs), are tradable, non-tangible energy certificates in the United States that represent proof that 1 megawatt-hour (MWh) of electricity was generated from an eligible renewable energy resource and was fed into the shared system of power lines which transport energy. Solar renewable energy certificates (SRECs) are RECs that are specifically generated by solar energy.

<span class="mw-page-title-main">Energy policy of the United States</span> Where and how the United States gets electrical and other power

The energy policy of the United States is determined by federal, state, and local entities. It addresses issues of energy production, distribution, consumption, and modes of use, such as building codes, mileage standards, and commuting policies. Energy policy may be addressed via legislation, regulation, court decisions, public participation, and other techniques.

<span class="mw-page-title-main">Zero-energy building</span> Energy efficiency standard for buildings

A Zero-Energy Building (ZEB), also known as a Net Zero-Energy (NZE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy created on the site or in other definitions by renewable energy sources offsite, using technology such as heat pumps, high efficiency windows and insulation, and solar panels.

<span class="mw-page-title-main">California Energy Commission</span> Government agency

The California Energy Commission, formally the Energy Resources Conservation and Development Commission, is the primary energy policy and planning agency for California.

<span class="mw-page-title-main">Renewable energy commercialization</span> Deployment of technologies harnessing easily replenished natural resources

Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. As of 2012, renewable energy accounts for about half of new nameplate electrical capacity installed and costs are continuing to fall.

<span class="mw-page-title-main">Greenhouse gas emissions by the United States</span> Climate changing gases from the North American country

The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person. However, the IEA estimates that the richest decile in the US emits over 55 tonnes of CO2 per capita each year. Because coal-fired power stations are gradually shutting down, in the 2010s emissions from electricity generation fell to second place behind transportation which is now the largest single source. In 2020, 27% of the GHG emissions of the United States were from transportation, 25% from electricity, 24% from industry, 13% from commercial and residential buildings and 11% from agriculture. In 2021, the electric power sector was the second largest source of U.S. greenhouse gas emissions, accounting for 25% of the U.S. total. These greenhouse gas emissions are contributing to climate change in the United States, as well as worldwide.

<span class="mw-page-title-main">Renewable energy in the United States</span>

According to data from the US Energy Information Administration, renewable energy accounted for about 13.1% of total primary energy consumption and about 21.5% of total utility-scale electricity generation in the United States in 2022.

<span class="mw-page-title-main">Green electricity in the United Kingdom</span>

The availability and uptake of green electricity in the United Kingdom has increased in the 21st century. There are a number of suppliers offering green electricity in the United Kingdom. In theory these types of tariffs help to lower carbon dioxide emissions by increasing consumer demand for green electricity and encouraging more renewable energy plant to be built. Since Ofgem's 2014 regulations there are now set criteria defining what can be classified as a green source product. As well as holding sufficient guarantee of origin certificates to cover the electricity sold to consumers, suppliers are also required to show additionality by contributing to wider environmental and low carbon funds.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

New Energy for America was a plan led by Barack Obama and Joe Biden beginning in 2008 to invest in renewable energy sources, reduce reliance on foreign oil, address global warming issues, and create jobs for Americans. The main objective of the New Energy for America plan was to implement clean energy sources in the United States to switch from nonrenewable resources to renewable resources. The plan led by the Obama Administration aimed to implement short-term solutions to provide immediate relief from pain at the pump, and mid- to- long-term solutions to provide a New Energy for America plan. The goals of the clean energy plan hoped to: invest in renewable technologies that will boost domestic manufacturing and increase homegrown energy, invest in training for workers of clean technologies, strengthen the middle class, and help the economy.

<span class="mw-page-title-main">Energy in Switzerland</span> Overview of energy in Switzerland

The energy sector in Switzerland is, by its structure and importance, typical of a developed country. Apart from hydroelectric power and firewood, the country has few indigenous energy resources: oil products, natural gas and nuclear fuel are imported, so that in 2013 only 22.6% of primary energy consumption was supplied by local resources.

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

<span class="mw-page-title-main">EKOenergy</span>

EKOenergy is a globally active nonprofit ecolabel for renewable energy. It is owned by the Finnish Association for Nature Conservation and managed in cooperation with other environmental NGOs.

The term smart grid is most commonly defined as an electric grid that has been digitized to enable two way communication between producers and consumers. The objective of the smart grid is to update electricity infrastructure to include more advanced communication, control, and sensory technology with the hope of increasing communication between consumers and energy producers. The potential benefits from a smart grid include increased reliability, more efficient electricity use, better economics, and improved sustainability.

<span class="mw-page-title-main">Grid-connected photovoltaic power system</span>

A grid-connected photovoltaic system, or grid-connected PV system is an electricity generating solar PV power system that is connected to the utility grid. A grid-connected PV system consists of solar panels, one or several inverters, a power conditioning unit and grid connection equipment. They range from small residential and commercial rooftop systems to large utility-scale solar power stations. When conditions are right, the grid-connected PV system supplies the excess power, beyond consumption by the connected load, to the utility grid.

References

  1. Green power, fueleconomy.gov
  2. 1 2 "Green Gas Certification Scheme". www.greengas.org.uk. Retrieved 2019-12-27.
  3. San Francisco Community Choice Program Design, Draft Implementation Plan and H Bond Action Plan, Ordinance 447-07, 2007.
  4. "Archived copy" (PDF). Archived from the original (PDF) on 13 November 2009. Retrieved 12 September 2009.{{cite web}}: CS1 maint: archived copy as title (link)
  5. "The European ecolabel for electricity". EKOenergy. Retrieved 2013-08-21.
  6. Green Energy Supply Certification Scheme website Archived 2016-01-16 at the Wayback Machine , accessed 16 December 2010
  7. "Center for Resource Solutions". Center for Resource Solutions.
  8. 1 2 "Insights into the Voluntary Renewable Energy Market". Renewable Energy World. Retrieved 2010-07-08.
  9. "Health & Wellness Consumer Market Research. Strategic Consulting". Nmisolutions.com. Retrieved 2010-07-08.
  10. "Green Power Partnership". EPA.gov. Archived from the original on 22 April 2014.
  11. "How It Works". ArcadiaPower.com.
  12. "Green Power Partnership | US EPA". Epa.gov. 2006-06-28. Retrieved 2010-07-08.
  13. U.S. Department of Energy Office of Electricity Delivery and Energy Reliability.
  14. "Energy Distribution" U.S. Department of Energy Office of Electricity Delivery and Energy Reliability.[ permanent dead link ]
  15. Whittington, H. W. (2002). "Electricity generation: Options for reduction in carbon emissions". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 360 (1797): 1653–1668. Bibcode:2002RSPTA.360.1653W. doi:10.1098/rsta.2002.1025. PMID   12460490. S2CID   34524012.
  16. Romm, Joseph; Levine, Mark; Brown, Marilyn; Petersen, Eric (1998). "A Road Map for U.S. Carbon Reductions". Science. 279 (5351): 669–670. doi:10.1126/science.279.5351.669. S2CID   128724816.
  17. "Ministry of Power notifies 'Green Energy Open Access' Rules to accelerate ambitious renewable energy programmes. Provisions to incentivize the common consumers to get Green Power at reasonable rates". Press Information Bureau - Government of India. 6 June 2022.
  18. "Green Energy Tariff: Purchasing Electricity With Green Attributes From DISCOMs". JMK Research & Analytics. September 14, 2022.