Sheet Metal and Air Conditioning Contractors' National Association

Last updated

The Sheet Metal and Air Conditioning Contractors' National Association (SMACNA; pronounced 'Smack'-'Nah') is an international trade association with more than 4,500 contributing contractor members [1] in 103 chapters [2] throughout the United States, Canada, Australia and Brazil. Its headquarters is in Chantilly, Virginia.

Contents

Sheet Metal and Air Conditioning Contractors' National Association logo.png

Member profile

SMACNA members perform work in industrial, commercial, institutional and residential markets. They specialize in heating, ventilation and air conditioning (HVAC); architectural sheet metal; industrial sheet metal; kitchen equipment; specialty stainless steel work; manufacturing; siding and decking; testing and balancing; service; and energy management and maintenance.[ citation needed ]

Technical manuals and standards

The voluntary technical standards and manuals developed by SMACNA Contractors have found worldwide acceptance by the construction and design community, as well as local, national, and foreign government agencies. ANSI, the American National Standards Institute, has accredited SMACNA as a standards-setting organization. SMACNA does not seek to enforce its standards or provide accreditation for compliance.

SMACNA standards and manuals address all facets of the sheet metal industry, from duct construction and installation to indoor air quality and air pollution control, from energy recovery to roofing. [3] SMACNA's Technical Resources Department fields several thousand technical questions annually from architects, engineers, manufacturers and government personnel.

Member services

The association offers contractors professional assistance in labor relations, legislative assistance, research and technical standards' development, safety, marketing, business management and industry issues.

See also

Related Research Articles

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Furnace (central heating)</span> Device used for heating buildings

A furnace, referred to as a heater or boiler in British English, is an appliance used to generate heat for all or part of a building. Furnaces are mostly used as a major component of a central heating system. Furnaces are permanently installed to provide heat to an interior space through intermediary fluid movement, which may be air, steam, or hot water. Heating appliances that use steam or hot water as the fluid are normally referred to as a residential steam boilers or residential hot water boilers. The most common fuel source for modern furnaces in North America and much of Europe is natural gas; other common fuel sources include LPG, fuel oil, wood and in rare cases coal. In some areas electrical resistance heating is used, especially where the cost of electricity is low or the primary purpose is for air conditioning. Modern high-efficiency furnaces can be up to 98% efficient and operate without a chimney, with a typical gas furnace being about 80% efficient. Waste gas and heat are mechanically ventilated through either metal flue pipes or polyvinyl chloride (PVC) pipes that can be vented through the side or roof of the structure. Fuel efficiency in a gas furnace is measured in AFUE.

A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces.

<span class="mw-page-title-main">Air handler</span> Device used to regulate and circulate air as part of an HVAC system

An air handler, or air handling unit, is a device used to regulate and circulate air as part of a heating, ventilating, and air-conditioning (HVAC) system. An air handler is usually a large metal box containing a blower, furnace or A/C elements, filter racks or chambers, sound attenuators, and dampers. Air handlers usually connect to a ductwork ventilation system that distributes the conditioned air through the building and returns it to the AHU. Sometimes AHUs discharge (supply) and admit (return) air directly to and from the space served without ductwork

<span class="mw-page-title-main">Duct (flow)</span> Conduit used in heating, ventilation, and air conditioning

Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

The Air Movement and Control Association International, Inc. (AMCA) is an American trade body that sets standards for Heating, Ventilation and Air Conditioning (HVAC) equipment. It rates fan balance and vibration, aerodynamic performance, air density, speed and efficiency.

<span class="mw-page-title-main">Smoke exhaust ductwork</span>

Smoke exhaust ductwork, in Europe, is typically protected via passive fire protection means, subject to fire testing and listing and approval use and compliance. It is used to remove smoke from buildings, ships or offshore structures to enable emergency evacuation as well as improved firefighting. In North America, fireproofed ductwork may be used for the purpose of smoke exhaust, but it is more common to use unfireproofed return air ductwork, whereby no fire testing or listings are employed to qualify the ductwork for this use.

<span class="mw-page-title-main">Chartered Institution of Building Services Engineers</span> Engineering association based in London

The Chartered Institution of Building Services Engineers is an international professional engineering association based in London, England that represents building services engineers. It is a full member of the Construction Industry Council, and is consulted by government on matters relating to construction, engineering and sustainability. It is also licensed by the Engineering Council to assess candidates for inclusion on its Register of Professional Engineers.

Building services engineering (BSE) is a professional engineering discipline that strives to achieve a safe and comfortable indoor environment whilst minimizing the environmental impact of a building.

<span class="mw-page-title-main">Architectural engineer (PE)</span>

Architectural Engineer (PE) is a professional engineering designation in the United States. The architectural engineer applies the knowledge and skills of broader engineering disciplines to the design, construction, operation, maintenance, and renovation of buildings and their component systems while paying careful attention to their effects on the surrounding environment.

<span class="mw-page-title-main">Fire damper</span>

Fire dampers are passive fire protection products used in heating, ventilation, and air conditioning (HVAC) ducts to prevent and isolate the spread of fire inside the ductwork through fire-resistance rated walls and floors. Fire/smoke dampers are similar to fire dampers in fire resistance rating, and also prevent the spread of smoke inside the ducts. When a rise in temperature occurs, the fire damper closes, usually activated by a thermal element which melts at temperatures higher than ambient but low enough to indicate the presence of a fire, allowing springs to close the damper blades. Fire dampers can also close following receipt of an electrical signal from a fire alarm system utilising detectors remote from the damper, indicating the sensing of heat or smoke in the building occupied spaces or in the HVAC duct system.

<span class="mw-page-title-main">Mechanical systems drawing</span>

Mechanical systems drawing is a type of technical drawing that shows information about heating, ventilating, air conditioning and transportation around the building. It is a powerful tool that helps analyze complex systems. These drawings are often a set of detailed drawings used for construction projects; it is a requirement for all HVAC work. They are based on the floor and reflected ceiling plans of the architect. After the mechanical drawings are complete, they become part of the construction drawings, which is then used to apply for a building permit. They are also used to determine the price of the project.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Solar air heat</span> Solar thermal technology

Solar air heating is a solar thermal technology in which the energy from the sun, insolation, is captured by an absorbing medium and used to heat air. Solar air heating is a renewable energy heating technology used to heat or condition air for buildings or process heat applications. It is typically the most cost-effective out of all the solar technologies, especially in commercial and industrial applications, and it addresses the largest usage of building energy in heating climates, which is space heating and industrial process heating.

<span class="mw-page-title-main">Building Engineering Services Association</span>

The Building Engineering Services Association (BESA), until 2012 the Heating and Ventilating Contractors' Association, and from then until 2016, B&ES, is the main UK trade association for companies that design, install, commission and maintain heating, ventilation, air conditioning, refrigeration (HVACR) and related engineering projects.

<span class="mw-page-title-main">Dedicated outdoor air system</span>

A dedicated outdoor air system (DOAS) is a type of heating, ventilation and air-conditioning (HVAC) system that consists of two parallel systems: a dedicated system for delivering outdoor air ventilation that handles both the latent and sensible loads of conditioning the ventilation air, and a parallel system to handle the loads generated by indoor/process sources and those that pass through the building enclosure.

<span class="mw-page-title-main">Duct leakage testing</span>

A duct leakage tester is a diagnostic tool designed to measure the airtightness of forced air heating, ventilating and air-conditioning (HVAC) ductwork. A duct leakage tester consists of a calibrated fan for measuring an air flow rate and a pressure sensing device to measure the pressure created by the fan flow. The combination of pressure and fan flow measurements are used to determine the ductwork airtightness. The airtightness of ductwork is useful knowledge when trying to improve energy conservation.

The Uniform Mechanical Code (UMC) is a model code developed by the International Association of Plumbing and Mechanical Officials (IAPMO) to govern the installation, inspection and maintenance of HVAC and refrigeration systems. It is designated as an American National Standard.

<span class="mw-page-title-main">Turning vanes (HVAC)</span>

HVAC turning vanes are sheet metal devices inside of mechanical ductwork used to smoothly direct air inside a duct where there is a change in direction, by reducing resistance and turbulence.

Ductwork airtightness can be defined as the resistance to inward or outward air leakage through the ductwork envelope. This air leakage is driven by differential pressures across the ductwork envelope due to the combined effects of stack and fan operation.

References

  1. "SMACNA Applauds "Partnership for Multiemployer Retirement Security Initiative"". Archived from the original on 2015-02-09. Retrieved 2014-04-23.
  2. "Sheet Metal and Air Conditioning Contractors' National Association". Archived from the original on 2013-11-02. Retrieved 2014-04-23.
  3. "SMACNA: Sheet Metal and Air Conditioning Contractors' National Association" . Retrieved 2023-08-15.