Traveler's dilemma

Last updated

In game theory, the traveler's dilemma (sometimes abbreviated TD) is a non-zero-sum game in which each player proposes a payoff. The lower of the two proposals wins; the lowball player receives the lowball payoff plus a small bonus, and the highball player receives the same lowball payoff, minus a small penalty. Surprisingly, the Nash equilibrium is for both players to aggressively lowball. The traveler's dilemma is notable in that naive play appears to outperform the Nash equilibrium; this apparent paradox also appears in the centipede game and the finitely-iterated prisoner's dilemma.

Contents

Formulation

The original game scenario was formulated in 1994 by Kaushik Basu and goes as follows: [1] [2]

"An airline loses two suitcases belonging to two different travelers. Both suitcases happen to be identical and contain identical antiques. An airline manager tasked to settle the claims of both travelers explains that the airline is liable for a maximum of $100 per suitcase—he is unable to find out directly the price of the antiques."


"To determine an honest appraised value of the antiques, the manager separates both travelers so they can't confer, and asks them to write down the amount of their value at no less than $2 and no larger than $100. He also tells them that if both write down the same number, he will treat that number as the true dollar value of both suitcases and reimburse both travelers that amount. However, if one writes down a smaller number than the other, this smaller number will be taken as the true dollar value, and both travelers will receive that amount along with a bonus/malus: $2 extra will be paid to the traveler who wrote down the lower value and a $2 deduction will be taken from the person who wrote down the higher amount. The challenge is: what strategy should both travelers follow to decide the value they should write down?"

The two players attempt to maximize their own payoff, without any concern for the other player's payoff.

Analysis

Backward induction only applies where there is perfect information. If it is used where there is information asymmetry- the Airline manager does not know the value of the antique- the result will be irrational behavior. This is what happens in the following analysis-

One might expect a traveler's optimum choice to be $100; that is, the traveler values the antiques at the airline manager's maximum allowed price. Remarkably, and, to many, counter-intuitively, the Nash equilibrium solution is in fact just $2; that is, the traveler values the antiques at the airline manager's minimum allowed price.

For an understanding of why $2 is the Nash equilibrium consider the following proof:

The above analysis depends crucially on (1) imperfect information- the airline manager does not know the true value and (2) irrationality- in particular failure to use the Muth Rational strategy.

Another proof goes as follows:

Experimental results

The ($2, $2) outcome in this instance is the Nash equilibrium of the game. By definition this means that if your opponent chooses this Nash equilibrium value then your best choice is that Nash equilibrium value of $2. This will not be the optimum choice if there is a chance of your opponent choosing a higher value than $2. [3] When the game is played experimentally, most participants select a value higher than the Nash equilibrium and closer to $100 (corresponding to the Pareto optimal solution). More precisely, the Nash equilibrium strategy solution proved to be a bad predictor of people's behavior in a traveler's dilemma with small bonus/malus and a rather good predictor if the bonus/malus parameter was big. [4]

Furthermore, the travelers are rewarded by deviating strongly from the Nash equilibrium in the game and obtain much higher rewards than would be realized with the purely rational strategy. These experiments (and others, such as focal points) show that the majority of people do not use purely rational strategies, but the strategies they do use are demonstrably optimal. This paradox could reduce the value of pure game theory analysis, but could also point to the benefit of an expanded reasoning that understands how it can be quite rational to make non-rational choices, at least in the context of games that have players that can be counted on to not play "rationally." For instance, Capraro has proposed a model where humans do not act a priori as single agents but they forecast how the game would be played if they formed coalitions and then they act so as to maximize the forecast. His model fits the experimental data on the Traveler's dilemma and similar games quite well. [5] Recently, the traveler's dilemma was tested with decision undertaken in groups rather than individually, in order to test the assumption that groups decisions are more rational, delivering the message that, usually, two heads are better than one. [6] Experimental findings show that groups are always more rational – i.e. their claims are closer to the Nash equilibrium - and more sensitive to the size of the bonus/malus. [7]

Some players appear to pursue a Bayesian Nash equilibrium. [8] [9]

Similar games

The traveler's dilemma can be framed as a finitely repeated prisoner's dilemma. [8] [9] Similar paradoxes are attributed to the centipede game and to the p-beauty contest game [7] (or more specifically, "Guess 2/3 of the average"). One variation of the original traveler's dilemma in which both travelers are offered only two integer choices, $2 or $3, is identical mathematically to the standard non-iterated Prisoner's dilemma and thus the traveler's dilemma can be viewed as an extension of prisoner's dilemma. (The minimum guaranteed payout is $1, and each dollar beyond that may be considered equivalent to a year removed from a three-year prison sentence.) These games tend to involve deep iterative deletion of dominated strategies in order to demonstrate the Nash equilibrium, and tend to lead to experimental results that deviate markedly from classical game-theoretical predictions.

Payoff matrix

The canonical payoff matrix is shown below (if only integer inputs are taken into account):

Canonical TD payoff matrix
10099989732
100100, 10097, 10196, 10095, 991, 50, 4
99101, 9799, 9996, 10095, 991, 50, 4
98100, 96100, 9698, 9895, 991, 50, 4
9799, 9599, 9599, 9597, 971, 50, 4
35, 15, 15, 15, 13, 30, 4
24, 04, 04, 04, 04, 02, 2

Denoting by the set of strategies available to both players and by the payoff function of one of them we can write

(Note that the other player receives since the game is quantitatively symmetric).

Related Research Articles

Zero-sum game is a mathematical representation in game theory and economic theory of a situation that involves two competing entities, where the result is an advantage for one side and an equivalent loss for the other. In other words, player one's gain is equivalent to player two's loss, with the result that the net improvement in benefit of the game is zero.

The prisoner's dilemma is a game theory thought experiment involving two rational agents, each of whom can either cooperate for mutual benefit or betray their partner ("defect") for individual gain. The dilemma arises from the fact that while defecting is rational for each agent, cooperation yields a higher payoff for each. The puzzle was designed by Merrill Flood and Melvin Dresher in 1950 during their work at the RAND Corporation. They invited economist Armen Alchian and mathematician John Williams to play a hundred rounds of the game, observing that Alchian and Williams often chose to cooperate. When asked about the results, John Nash remarked that rational behavior in the iterated version of the game can differ from that in a single-round version. This insight anticipated a key result in game theory: cooperation can emerge in repeated interactions, even in situations where it is not rational in a one-off interaction.

In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.

In economics and game theory, a participant is considered to have superrationality if they have perfect rationality but assume that all other players are superrational too and that a superrational individual will always come up with the same strategy as any other superrational thinker when facing the same problem. Applying this definition, a superrational player who assumes they are playing against a superrational opponent in a prisoner's dilemma will cooperate while a rationally self-interested player would defect.

The game of chicken, also known as the hawk-dove game or snowdrift game, is a model of conflict for two players in game theory. The principle of the game is that while the ideal outcome is for one player to yield, individuals try to avoid it out of pride, not wanting to look like "chickens". Each player taunts the other to increase the risk of shame in yielding. However, when one player yields, the conflict is avoided, and the game essentially ends.

In game theory, the centipede game, first introduced by Robert Rosenthal in 1981, is an extensive form game in which two players take turns choosing either to take a slightly larger share of an increasing pot, or to pass the pot to the other player. The payoffs are arranged so that if one passes the pot to one's opponent and the opponent takes the pot on the next round, one receives slightly less than if one had taken the pot on this round, but after an additional switch the potential payoff will be higher. Therefore, although at each round a player has an incentive to take the pot, it would be better for them to wait. Although the traditional centipede game had a limit of 100 rounds, any game with this structure but a different number of rounds is called a centipede game.

Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously. If the pennies match, then Even wins and keeps both pennies. If the pennies do not match, then Odd wins and keeps both pennies.

In game theory, a move, action, or play is any one of the options which a player can choose in a setting where the optimal outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship.

Backward induction is the process of determining a sequence of optimal choices by reasoning from the endpoint of a problem or situation back to its beginning using individual events or actions. Backward induction involves examining the final point in a series of decisions and identifying the optimal process or action required to arrive at that point. This process continues backward until the best action for every possible point along the sequence is determined. Backward induction was first utilized in 1875 by Arthur Cayley, who discovered the method while attempting to solve the secretary problem.

In game theory, a strategy Adominates another strategy B if A will always produces a better result than B, regardless of how any other player plays matter how that player's opponent or opponents play. Some very simple games can be solved using dominance.

Rationalizability is a solution concept in game theory. It is the most permissive possible solution concept that still requires both players to be at least somewhat rational and know the other players are also somewhat rational, i.e. that they do not play dominated strategies. A strategy is rationalizable if there exists some possible set of beliefs both players could have about each other's actions, that would still result in the strategy being played.

The chain store paradox is an apparent game theory paradox describing the decisions a chain store might make, where a "deterrence strategy" appears optimal instead of the backward induction strategy of standard game theory reasoning.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

In game theory, the outcome of a game is the ultimate result of a strategic interaction with one or more people, dependant on the choices made by all participants in a certain exchange. It represents the final payoff resulting from a set of actions that individuals can take within the context of the game. Outcomes are pivotal in determining the payoffs and expected utility for parties involved. Game theorists commonly study how the outcome of a game is determined and what factors affect it.

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilibrium used in dynamic games. A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium of every subgame of the original game. Informally, this means that at any point in the game, the players' behavior from that point onward should represent a Nash equilibrium of the continuation game, no matter what happened before. Every finite extensive game with perfect recall has a subgame perfect equilibrium. Perfect recall is a term introduced by Harold W. Kuhn in 1953 and "equivalent to the assertion that each player is allowed by the rules of the game to remember everything he knew at previous moves and all of his choices at those moves".

Quantum game theory is an extension of classical game theory to the quantum domain. It differs from classical game theory in three primary ways:

  1. Superposed initial states,
  2. Quantum entanglement of initial states,
  3. Superposition of strategies to be used on the initial states.

Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten. A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game.1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since it offers to each player at least as much payoff as the other Nash equilibria. Conversely, a Nash equilibrium is considered risk dominant if it has the largest basin of attraction. This implies that the more uncertainty players have about the actions of the other player(s), the more likely they will choose the strategy corresponding to it.

In game theory, an epsilon-equilibrium, or near-Nash equilibrium, is a strategy profile that approximately satisfies the condition of Nash equilibrium. In a Nash equilibrium, no player has an incentive to change his behavior. In an approximate Nash equilibrium, this requirement is weakened to allow the possibility that a player may have a small incentive to do something different. This may still be considered an adequate solution concept, assuming for example status quo bias. This solution concept may be preferred to Nash equilibrium due to being easier to compute, or alternatively due to the possibility that in games of more than 2 players, the probabilities involved in an exact Nash equilibrium need not be rational numbers.

<span class="mw-page-title-main">Simultaneous game</span>

In game theory, a simultaneous game or static game is a game where each player chooses their action without knowledge of the actions chosen by other players. Simultaneous games contrast with sequential games, which are played by the players taking turns. In other words, both players normally act at the same time in a simultaneous game. Even if the players do not act at the same time, both players are uninformed of each other's move while making their decisions. Normal form representations are usually used for simultaneous games. Given a continuous game, players will have different information sets if the game is simultaneous than if it is sequential because they have less information to act on at each step in the game. For example, in a two player continuous game that is sequential, the second player can act in response to the action taken by the first player. However, this is not possible in a simultaneous game where both players act at the same time.

A Markov perfect equilibrium is an equilibrium concept in game theory. It has been used in analyses of industrial organization, macroeconomics, and political economy. It is a refinement of the concept of subgame perfect equilibrium to extensive form games for which a pay-off relevant state space can be identified. The term appeared in publications starting about 1988 in the work of economists Jean Tirole and Eric Maskin.

References

  1. Kaushik Basu, "The Traveler's Dilemma: Paradoxes of Rationality in Game Theory"; American Economic Review, Vol. 84, No. 2, pp. 391–395; May 1994.
  2. Kaushik Basu,"The Traveler's Dilemma"; Scientific American, June 2007
  3. Wolpert, D (2009). "Schelling Formalized: Strategic Choices of Non-Rational Personas". SSRN   1172602.{{cite journal}}: Cite journal requires |journal= (help)
  4. Capra, C. Monica; Goeree, Jacob K.; Gomez, Rosario; Holt, Charles A. (1999-01-01). "Anomalous Behavior in a Traveler's Dilemma?". The American Economic Review. 89 (3): 678–690. doi:10.1257/aer.89.3.678. JSTOR   117040.
  5. Capraro, V (2013). "A Model of Human Cooperation in Social Dilemmas". PLOS ONE. 8 (8): e72427. arXiv: 1307.4228 . doi: 10.1371/journal.pone.0072427 . PMC   3756993 . PMID   24009679.
  6. Cooper, David J; Kagel, John H (2005-06-01). "Are Two Heads Better Than One? Team versus Individual Play in Signaling Games" (PDF). American Economic Review. 95 (3): 477–509. doi:10.1257/0002828054201431. ISSN   0002-8282.
  7. 1 2 Morone, A.; Morone, P.; Germani, A. R. (2014-04-01). "Individual and group behaviour in the traveler's dilemma: An experimental study". Journal of Behavioral and Experimental Economics. 49: 1–7. doi:10.1016/j.socec.2014.02.001.
  8. 1 2 Becker, T., Carter, M., & Naeve, J. (2005). Experts Playing the Traveler's Dilemma (No. 252/2005). Department of Economics, University of Hohenheim, Germany.
  9. 1 2 Baader, Malte; Vostroknutov, Alexander (October 2017). "Interaction of reasoning ability and distributional preferences in a social dilemma". Journal of Economic Behavior & Organization. 142: 79–91. doi:10.1016/j.jebo.2017.07.025. hdl: 11572/220494 .