Bartonella quintana

Last updated

Bartonella quintana
Scientific classification
Domain: Bacteria
Phylum: Proteobacteria
Class: Alphaproteobacteria
Order: Rhizobiales
Family: Bartonellaceae
Genus: Bartonella
Species:B. quintana
Binomial name
Bartonella quintana
(Schmincke 1917) Brenner et al. 1993
Synonyms [1]
  • Rochalimaea quintana
    (Schmincke 1917) Krieg 1961
  • Wolhynia qintanae
    Zhdanov and Korenblit 1950
  • Rickettsia wolhynica
    Jungmann and Kuczynski 1918
  • Rickettsia weigli
    Mosing 1936
  • Rickettsia quintana
    Schmincke 1917
  • Rickettsia pediculi
    Munk and da Rocha-Lima 1917
  • Burnetia (Rocha-limae) wolhynica
    Macchiavello 1947

Bartonella quintana, originally known as Rochalimaea quintana, [2] and "Rickettsia quintana", [3] is a micro-organism transmitted by the human body louse. [4] This microorganism is the causative agent of the well known trench fever. [4] This bacterium caused outbreaks of trench fever affecting 1 million soldiers in Europe during World War I. [5]

Microorganism microscopic living organism

A microorganism, or microbe, is a microscopic organism, which may exist in its single-celled form or in a colony of cells.

Trench fever is a moderately serious disease transmitted by body lice. It infected armies in Flanders, France, Poland, Galicia, Italy, Salonika, Macedonia, Mesopotamia, Russia and Egypt in World War I. Three noted sufferers during WWI were the authors J. R. R. Tolkien, A. A. Milne, and C. S. Lewis. From 1915 to 1918 between one-fifth and one-third of all British troops reported ill had trench fever while about one-fifth of ill German and Austrian troops had the disease. The disease persists among the homeless. Outbreaks have been documented, for example, in Seattle and Baltimore in the United States among injection drug users and in Marseille, France, and Burundi.

Bacteria A domain of prokaryotes – single celled organisms without a nucleus

Bacteria are a type of biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. Bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep portions of Earth's crust. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised, and only about half of the bacterial phyla have species that can be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.



B. quintana has an estimated genome size of 1,700 to 2,174 kb. [6]

Genome entirety of an organisms hereditary information; genome of organism (encoded by the genomic DNA) is the (biological) information of heredity which is passed from one generation of organism to the next; is transcribed to produce various RNAs

In the fields of molecular biology and genetics, a genome is the genetic material of an organism. It consists of DNA. The genome includes both the genes and the noncoding DNA, as well as mitochondrial DNA and chloroplast DNA. The study of the genome is called genomics.

Background and characteristics

B. quintana is a fastidious, aerobic, Gram-negative(-), pole rod-shaped (bacillus) bacterium. The infection caused by this microorganism, trench fever, was first documented in soldiers during World War I, but has now been seen Europe, Asia, and North Africa. Its primary vector is known to be Pediculus humanus variety corporis, also known as the human body louse. [7] It was first known to be isolated in axenic culture by J.W. Vinson in 1960, from a patient in Mexico City. He then followed Koch's postulates, infecting volunteers with the bacterium, showing consistent symptoms and clinical manifestations of trench fever. The medium best for growing this bacterium is blood-enriched in an atmosphere containing 5% carbon dioxide. [3]

Bacillus (shape) rod-shaped bacterium (not to be confused with the taxon Bacilli)

A bacillus or bacilliform bacterium is a rod-shaped bacterium or archaeon. Bacilli are found in many different taxonomic groups of bacteria. However, the name Bacillus, capitalized and italicized, refers to a specific genus of bacteria. The name Bacilli, capitalized but not italicized, can also refer to a less specific taxonomic group of bacteria that includes two orders, one of which contains the genus Bacillus. When the word is formatted with lowercase and not italicized, 'bacillus', it will most likely be referring to shape and not to the genus at all. Bacilliform bacteria are also often simply called rods when the bacteriologic context is clear. Sea Bacilli usually divide in the same plane and are solitary, but can combine to form diplobacilli, streptobacilli, and palisades.

Body louse subspecies of insect

The body louse is a louse that infests humans. The condition of being infested with head lice, body lice, or pubic lice is known as pediculosis. Body lice are vectors for the transmission of the human diseases epidemic typhus, trench fever, and relapsing fever. The body louse genome sequence analysis was published in 2010.

Pediculosis corporis is a cutaneous condition caused by body lice that lay their eggs in the seams of clothing.


Humans are the only known animal host for this bacterium in vivo . It infects endothelial cells and can infect erythrocytes by binding and entering with a large vacuole. Once inside, they begin to proliferate and cause nuclear atypia (intraerythrocytic B.quintana colonization). [8] This leads to apoptosis being suppressed, proinflammatory cytokines are released, and vascular proliferation increases. All of these processes result in patients possessing systemic symptoms (chills, fever, diaphoresis), bacteremia, and lymphatic enlargement. A major role in B. quintana infection is its lipopolysaccharide covering which is an antagonist of the toll-like receptor 4. [9] The reason this infection might persist is because this organism also results in monocytes overproducing interleukin-10 (IL-10), thus weakening the immune response. B. quintana also induces lesions seen in bacillary angiomatosis that protrude into vascular lumina, often occluding blood flow. The enhanced growth of these cells is believed to be due to the secretion of angiogenic factors, thus inducing neovascularization. Release of an icosahedral particle, 40 nm in length, has been detected in cultures of B. quintana's close relative, B. henselae. This particle contains a 14-kb linear DNA segment, but its function in Bartonella pathophysiology is still unknown. [10] In trench fever or B. quintana-induced endocarditis patients, bacillary angiomatosis lesions are also seen. Notably, endocarditis is a new manifestation of the infection, not seen in World War I troops.

Studies that are in vivo are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and plants, as opposed to a tissue extract or dead organism. This is not to be confused with experiments done in vitro, i.e., in a laboratory environment using test tubes, Petri dishes, etc. Examples of investigations in vivo include: the pathogenesis of disease by comparing the effects of bacterial infection with the effects of purified bacterial toxins; the development of non-antibiotics, antiviral drugs, and new drugs generally; and new surgical procedures. Consequently, animal testing and clinical trials are major elements of in vivo research. In vivo testing is often employed over in vitro because it is better suited for observing the overall effects of an experiment on a living subject. In drug discovery, for example, verification of efficacy in vivo is crucial, because in vitro assays can sometimes yield misleading results with drug candidate molecules that are irrelevant in vivo.

Bacillary angiomatosis human disease

Bacillary angiomatosis (BA) is a form of angiomatosis associated with bacteria of the genus Bartonella.

Neovascularization is the natural formation of new blood vessels, usually in the form of functional microvascular networks, capable of perfusion by red blood cells, that form to serve as collateral circulation in response to local poor perfusion or ischemia. Neovascularization is conventionally distinguished from angiogenesis in that angiogenesis is mainly characterized by the protrusion and outgrowth of capillary buds and sprouts from pre-existing blood vessels. Vasculogenesis can be synonymous with neovascularization but also often has reference instead to prenatal development and the initial embryologic formation of blood vessels. Growth factors that inhibit neovascularization include those that affect endothelial cell division and differentiation. These growth factors often act in a paracrine or autocrine fashion; they include fibroblast growth factor, placental growth factor, insulin-like growth factor, hepatocyte growth factor, and platelet-derived endothelial growth factor.

Ecology and epidemiology

B. quintana infection has subsequently been seen in every continent except Antarctica. Local infections have been associated with risk factors such as poverty, alcoholism, and homelessness. Serological evidence of B. quintana infection showed, of hospitalized homeless patients, 16% were infected, as opposed to 1.8% of nonhospitalized homeless persons, and 0% of blood donors at large. [11] Lice have been demonstrated, as of recently, to be the key component in transmitting B. quintana. [12] [13] This has been attributed to living in unsanitary conditions and crowded areas, where the risk of coming into contact with other individuals carrying B. quintana and ectoparasites (body lice) is increased. Also noteworthy, the increasing migration worldwide may also play a role in spreading trench fever, from areas where it is endemic to susceptible populations in urban areas. Recent concern is the possibility of the emergence of new strains of B. quintana through horizontal gene transfer, which could result in the acquisition of other virulence factors. [7]

Horizontal gene transfer A type of nonhereditary genetic change involving swapping of DNA or RNA

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms.

Clinical manifestations

B. quintana and Mycobacterium avium complex coinfecting an AIDS patient Bacteria on Warthin-Starry stain.jpg
B. quintana and Mycobacterium avium complex coinfecting an AIDS patient

The clinical manifestations of B. quintana infection are highly variable. The incubation period is now known to be 5–20 days, as opposed to original thought which was 3–38 days. The infection can start as an acute onset of a febrile episode, relapsing febrile episodes, or as a persistent typhoidal illness; commonly seen are maculopapular rashes, conjunctivitis, headache, and myalgias, with splenomegaly being less common. Most patients present with pain in the lower legs (shins), sore muscles of the legs and back, and hyperaesthesia of the shins. Rarely is B. quintana infection fatal, unless endocarditis develops and goes untreated. Weight loss, and thrombocytopenia are sometimes also seen. Recovery can take up to a month.

Incubation period time between an infection and the onset of disease symptoms

Incubation period is the time elapsed between exposure to a pathogenic organism, a chemical, or radiation, and when symptoms and signs are first apparent. In a typical infectious disease, incubation period signifies the period taken by the multiplying organism to reach a threshold necessary to produce symptoms in the host.

A maculopapular rash is a type of rash characterized by a flat, red area on the skin that is covered with small confluent bumps. It may only appear red in lighter-skinned people. The term "maculopapular" is a compound: macules are small, flat discolored spots on the surface of the skin; and papules are small, raised bumps. It is also described as erythematous, or red.

Conjunctivitis inflammation of the outermost layer of the eye and the inner surface of the eyelids

Conjunctivitis, also known as pink eye, is inflammation of the outermost layer of the white part of the eye and the inner surface of the eyelid. It makes the eye appear pink or reddish. Pain, burning, scratchiness, or itchiness may occur. The affected eye may have increased tears or be "stuck shut" in the morning. Swelling of the white part of the eye may also occur. Itching is more common in cases due to allergies. Conjunctivitis can affect one or both eyes.

Diagnosis and treatment

To have a definite diagnosis of infection with B. quintana requires either serological cultures or nucleic acid amplification techniques. To differentiate between different species, immunofluorescence assays that use mouse antisera are used, as well as DNA hybridization and restriction fragment length polymorphisms, or citrate synthase gene sequencing. [14] Treatment usually consists of a 4- to 6-week course of doxycycline, erythromycin, or azithromycin. [15] [16]

Related Research Articles

Q fever disease caused by infection with Coxiella burnetii, a bacterium that affects humans and other animals; the most common manifestation is flu-like symptoms; the name Q stands for “query”, so named when the pathogen was unknown

Q fever is a disease caused by infection with Coxiella burnetii, a bacterium that affects humans and other animals. This organism is uncommon, but may be found in cattle, sheep, goats, and other domestic mammals, including cats and dogs. The infection results from inhalation of a spore-like small-cell variant, and from contact with the milk, urine, feces, vaginal mucus, or semen of infected animals. Rarely, the disease is tick-borne. The incubation period is 9–40 days. Humans are vulnerable to Q fever, and infection can result from even a few organisms. The bacterium is an obligate intracellular pathogenic parasite.

Bacteremia is the presence of bacteria in the blood. Blood is normally a sterile environment, so the detection of bacteria in the blood is always abnormal. It is distinct from sepsis, which is the host response to the bacteria.

Infective endocarditis endocarditis that is characterized by inflammation of the endocardium caused by infectious agents.

Infective endocarditis is an infection of the inner surface of the heart, usually the valves. Symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cell count. Complications may include valvular insufficiency, heart failure, stroke, and kidney failure.

Tick-borne diseases, which afflict humans and other animals, are caused by infectious agents transmitted by tick bites. Tick-borne illnesses are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa. Because individual ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment. As of 2016, 16 tick-borne diseases of humans are known.

<i>Bartonella</i> genus of bacteria

Bartonella is a genus of Gram-negative bacteria. It is the only genus in the family Bartonellaceae. Facultative intracellular parasites, Bartonella species can infect healthy people, but are considered especially important as opportunistic pathogens. Bartonella species are transmitted by vectors such as ticks, fleas, sand flies, and mosquitoes. At least eight Bartonella species or subspecies are known to infect humans.

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

Bartonellosis is an infectious disease produced by bacteria of the genus Bartonella. Bartonella species cause diseases such as Carrión´s disease, trench fever, cat-scratch disease, bacillary angiomatosis, peliosis hepatis, chronic bacteremia, endocarditis, chronic lymphadenopathy, and neurological disorders.

Subacute bacterial endocarditis Human disease

Subacute bacterial endocarditis is a type of endocarditis. Subacute bacterial endocarditis can be considered a form of type III hypersensitivity.

Streptococcus bovis, is a species of Gram-positive bacteria that in humans is associated with urinary tract infections, endocarditis, sepsis, and colorectal cancer. S. gallolyticus is commonly found in the alimentary tract of cattle, sheep, and other ruminants, and may cause ruminal acidosis or feedlot bloat. It is also associated with spontaneous bacterial peritonitis, a frequent complication occurring in patients affected by cirrhosis.

Bartonella rochalimae is a recently discovered strain of Gram-negative bacteria in the genus Bartonella, isolated by researchers at the University of California, San Francisco (UCSF), Massachusetts General Hospital, and the United States Centers for Disease Control and Prevention. The bacterium is a close relative of Bartonella quintana, the microbe which caused trench fever in thousands of soldiers during World War I. Named after Brazilian scientist Henrique da Rocha Lima, B. rochalimae is also closely related to Bartonella henselae, a bacterium identified in the mid-1990s during the AIDS epidemic in San Francisco as the cause of cat scratch fever, which still infects more than 24,000 people in the United States each year.

Bartonella bacilliformis is a proteobacterium, Gram negative aerobic, pleomorphic, flagellated, motile, coccobacillary, 2–3 μm long, 0.2–0.5 μm wide, and a facultative intracellular bacterium.

African tick bite fever spotted fever that has material basis in Rickettsia africae, which is transmitted by ticks

African tick bite fever (ATBF) is a bacterial infection spread by the bite of a tick. Symptoms may include fever, headache, muscles pains, and a rash. At the site of the bite there is typically a red skin sore with a dark center. Onset usually occur 4–10 days after the bite. Complications are rare, however may include joint inflammation. Some people do not develop symptoms.

Rickettsia helvetica, previously known as the Swiss Agent, is a bacterium found in Dermacentor reticulatus and other ticks which has been implicated as a suspected but unconfirmed human pathogen. First recognized in 1979 in Ixodes ricinus ticks in Switzerland as a new member of the spotted fever group of Rickettsia, the Rickettsia helvetica bacterium was eventually isolated in 1993. Although R. helvetica was initially thought to be harmless in humans and many animal species, some individual case reports suggest that it may be capable of causing a non-specific fever in humans. In 1997 a man living in eastern France seroconverted to Rickettsia 4 weeks after onset of an unexplained febrile illness. In 2010, a case report indicated that tick-borne R. helvetica can also cause meningitis in humans.

Didier Raoult is a French biologist. He holds MD and Ph.D. degrees and specializes in infectious diseases.

Cat-scratch disease Human disease

Cat-scratch disease (CSD) is an infectious disease that results from a scratch or bite of a cat. Symptoms typically include a non-painful bump or blister at the site of injury and painful and swollen lymph nodes. People may feel tired, have a headache, or a fever. Symptoms typically begin within 3-14 days following infection.

Dental antibiotic prophylaxis is the administration of antibiotics to a dental patient for prevention of harmful consequences of bacteremia, that may be caused by invasion of the oral flora into an injured gingival or peri-apical vessel during dental treatment.

Bartonella alsatica is a proteobacterium. Like other Bartonella species, it can cause disease in animals. It is small, aerobic, oxidase-negative, and Gram-negative. Its rod-like cells were localized within wild rabbit erythrocytes when first described. The type strain is IBS 382T. It is associated with cases of lymphadenitis and endocarditis.


  1. "Bartonella quintana". National Center for Biotechnology Information. Retrieved November 10, 2013.
  2. "Definition of Bartonella quintana". MedicineNet. Archived from the original on 5 June 2011. Retrieved May 3, 2011.
  3. 1 2 Ohl, ME; Spach, DH (2000). "Bartonella quintana and urban trench fever". Clinical Infectious Diseases. 31 (1): 131–5. doi:10.1086/313890. PMID   10913410.
  4. 1 2 O'Rourke, Laurie G.; Pitulle, Christian; Hegarty, Barbara C.; Kraycirik, Sharon; Killary, Karen A.; Grosenstein, Paul; Brown, James W.; Breitschwerdt, Edward B. (2005). "Bartonella quintana in Cynomolgus Monkey (Macaca fascicularis)". Emerging Infectious Diseases. 11 (12): 1931–4. doi:10.3201/eid1112.030045. PMID   16485482.
  5. Jackson, Lisa A.; Spach, David H. (1996). "Emergence of Bartonella quintana Infection among Homeless Persons". Emerging Infectious Diseases. 2 (2): 141–4. doi:10.3201/eid0202.960212. PMC   2639836 Lock-green.svg. PMID   8903217.
  6. Roux, V; Raoult, D (1995). "Inter- and intraspecies identification of Bartonella (Rochalimaea) species". Journal of Clinical Microbiology. 33 (6): 1573–9. PMC   228218 Lock-green.svg. PMID   7650189.
  7. 1 2 Maurin, M; Raoult, D (1996). "Bartonella (Rochalimaea) quintana infections". Clinical Microbiology Reviews. 9 (3): 273–92. PMC   172893 Lock-green.svg. PMID   8809460.
  8. Hadfield, T.L.; Warren, R.; Kass, M.; Brun, E.; Levy, C. (1993). "Endocarditis caused by Rochalimaea henselae". Human Pathology. 24 (10): 1140–1. doi:10.1016/0046-8177(93)90196-N. PMID   8406424.
  9. Popa, C.; Abdollahi-Roodsaz, S.; Joosten, L. A. B.; Takahashi, N.; Sprong, T.; Matera, G.; Liberto, M. C.; Foca, A.; et al. (2007). "Bartonella quintana Lipopolysaccharide Is a Natural Antagonist of Toll-Like Receptor 4". Infection and Immunity. 75 (10): 4831–7. doi:10.1128/IAI.00237-07. PMC   2044526 Lock-green.svg. PMID   17606598.
  10. Leboit, Philip E.; Berger, Timothy G.; Egbert, Barbara M.; Beckstead, Jay H.; Benedict Yen, T. S.; Stoler, Mark H. (1989). "Bacillary Angiomatosis: The Histopathology and Differential Diagnosis of a Pseudoneoplastic Infection in Patients with Human Immunodeficiency Virus Disease". The American Journal of Surgical Pathology. 13 (11): 909–20. doi:10.1097/00000478-198911000-00001. PMC   1003203 Lock-green.svg. PMID   2802010.
  11. Brouqui, P.; Houpikian, P.; Dupont, H. T.; Toubiana, P.; Obadia, Y.; Lafay, V.; Raoult, D. (1996). "Survey of the Seroprevalence of Bartonella quintana in Homeless People". Clinical Infectious Diseases. 23 (4): 756–9. doi:10.1093/clinids/23.4.756. PMID   8909840.
  12. Koehler, Jane E.; Sanchez, Melissa A.; Garrido, Claudia S.; Whitfeld, Margot J.; Chen, Frederick M.; Berger, Timothy G.; Rodriguez-Barradas, Maria C.; Leboit, Philip E.; Tappero, Jordan W. (1997). "Molecular Epidemiology of Bartonella Infections in Patients with Bacillary Angiomatosis–Peliosis". New England Journal of Medicine. 337 (26): 1876–83. doi:10.1056/NEJM199712253372603. PMID   9407154.
  13. Brouqui, Philippe; Lascola, Bernard; Roux, Veronique; Raoult, Didier (1999). "Chronic Bartonella quintana Bacteremia in Homeless Patients". New England Journal of Medicine. 340 (3): 184–9. doi:10.1056/NEJM199901213400303. PMID   9895398.
  14. Cooper, M. D.; Hollingdale, M. R.; Vinson, J. W.; Costa, J. (1976). "A Passive Hemagglutination Test for Diagnosis of Trench Fever Due to Rochalimaea quintana". Journal of Infectious Diseases. 134 (6): 605–9. doi:10.1093/infdis/134.6.605. PMID   63526.
  15. Slater, Leonard N.; Welch, David F.; Hensel, Diane; Coody, Danese W. (1990). "A Newly Recognized Fastidious Gram-negative Pathogen as a Cause of Fever and Bacteremia". New England Journal of Medicine. 323 (23): 1587–93. doi:10.1056/NEJM199012063232303. PMID   2233947.
  16. Myers, WF; Grossman, DM; Wisseman Jr, CL (1984). "Antibiotic susceptibility patterns in Rochalimaea quintana, the agent of trench fever". Antimicrobial Agents and Chemotherapy. 25 (6): 690–3. doi:10.1128/aac.25.6.690. PMC   185624 Lock-green.svg. PMID   6742814.