Bartonella quintana

Last updated

Bartonella quintana
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Hyphomicrobiales
Family: Bartonellaceae
Genus: Bartonella
Species:
B. quintana
Binomial name
Bartonella quintana
(Schmincke 1917) Brenner et al. 1993
Synonyms [1]
  • Rochalimaea quintana
    (Schmincke 1917) Krieg 1961
  • Wolhynia qintanae
    Zhdanov and Korenblit 1950
  • Rickettsia wolhynica
    Jungmann and Kuczynski 1918
  • Rickettsia weigli
    Mosing 1936
  • Rickettsia quintana
    Schmincke 1917
  • Rickettsia pediculi
    Munk and da Rocha-Lima 1917
  • Burnetia (Rocha-limae) wolhynica
    Macchiavello 1947

Bartonella quintana, originally known as Rochalimaea quintana, [2] and "Rickettsia quintana", [3] is a bacterium transmitted by the human body louse that causes trench fever. [4] This bacterial species caused outbreaks of trench fever affecting 1 million soldiers in Europe during World War I. [5]

Contents

Genome

B. quintana had an estimated genome size of 1,700 to 2,174 kilo-base pairs., [6] but the first genome sequence (of strain RM-11) contains a single circular chromosome of 1,587,646 base pairs. [7]

Background and characteristics

B. quintana is a fastidious, aerobic, Gram-negative(−), pole rod-shaped (bacillus) bacterium. The infection caused by this microorganism, trench fever, was first documented in soldiers during World War I. It occurs in Europe, Asia, and North Africa. Its primary vector is Pediculus humanus variety corporis, also known as the human body louse. [8]

It was first isolated in axenic culture by J.W. Vinson in 1960, from a patient in Mexico City and named Rickettsia quintana. He infected volunteers with the bacterium, showing consistent symptoms and clinical manifestations of trench fever, proving etiology via Koch's postulates.

The best medium for growing Bartonella quintana is blood-enriched agar at an atmosphere containing 5% carbon dioxide. [3]

Rickettsia quintana was later reclassified as Rochalimaea quintana and subsequently Bartonella quintana. [9] [10] [11]

Pathophysiology

Although lice are animal vectors, humans (and some other primates) are the only known animal reservoir hosts for this bacterium in vivo . [7] It infects endothelial cells and can infect erythrocytes by binding and entering with a large vacuole. Once inside, they begin to proliferate and cause nuclear atypia (intraerythrocytic B.quintana colonization). [12] This leads to apoptosis being suppressed, proinflammatory cytokines are released, and vascular proliferation increases. All of these processes result in patients possessing systemic symptoms (chills, fever, diaphoresis), bacteremia, and lymphatic enlargement. A major role in B. quintana infection is its lipopolysaccharide covering which is an antagonist of the toll-like receptor 4. [13] The reason this infection might persist is because this organism also results in monocytes overproducing interleukin-10 (IL-10), thus weakening the immune response.

B. quintana also induces lesions seen in bacillary angiomatosis that protrude into vascular lumina, often occluding blood flow; they are seen in B. quintana-induced endocarditis patients. The enhanced growth of these cells is believed to be due to the secretion of angiogenic factors, thus inducing neovascularization. Release of an icosahedral particle, 40 nm in length, has been detected in cultures of B. quintana's close relative, B. henselae. This particle contains a 14-kb linear DNA segment, but its function in Bartonella pathophysiology is still unknown. [14]

Notably, endocarditis is a new manifestation of the infection, not seen in World War I troops.[ citation needed ]

Ecology and epidemiology

B. quintana infection occurs on every continent except Antarctica. Infections have been associated with risk factors such as poverty, alcoholism and homelessness. In a French seroprevalence study from 1996, 16% of hospitalized homeless patients were infected, as opposed to 1.8% of nonhospitalized homeless persons, and 0% of blood donors at large. [15] Lice are the key component in transmitting B. quintana. [16] [17] This has been attributed to living in unsanitary conditions,i.e. without consistent access to shower and laundry, and living in crowded areas, where the risk of coming into contact with other individuals carrying B. quintana and ectoparasites like body lice is increased. Also noteworthy, the increasing migration worldwide may also play a role in spreading trench fever, from areas where it is endemic to susceptible populations in urban areas. Recent concern is the possibility of the emergence of new strains of B. quintana through horizontal gene transfer, which could result in the acquisition of other virulence factors. [8]

Clinical manifestations

B. quintana and Mycobacterium avium complex coinfecting an AIDS patient Bacteria on Warthin-Starry stain.jpg
B. quintana and Mycobacterium avium complex coinfecting an AIDS patient

The clinical manifestations of B. quintana infection are highly variable. The incubation period is now known to be 5–20 days; [18] [19] it was originally thought to be 3–38 days. The infection can start as an acute onset of a febrile episode, relapsing febrile episodes, or as a persistent typhoidal illness; commonly seen are maculopapular rashes, conjunctivitis, headache, and myalgias, with splenomegaly being less common. Most patients present with pain in the lower legs (shins), sore muscles of the legs and back, and hyperaesthesia of the shins. Rarely is B. quintana infection fatal, unless endocarditis develops and goes untreated. Weight loss, and thrombocytopenia are sometimes also seen. Recovery can take up to a month.

Diagnosis and treatment

A definite diagnosis of infection with B. quintana requires either serum antibodies or positive nucleic acid amplification. To differentiate between different species, immunofluorescence assays that use mouse antisera are used, as well as DNA hybridization and restriction fragment length polymorphisms, or citrate synthase gene sequencing. [20]

Treatment usually consists of a 4- to 6-week course of doxycycline as first-line, or erythromycin, or azithromycin. [21] [22]

Related Research Articles

<span class="mw-page-title-main">Epidemic typhus</span> Medical condition

Epidemic typhus, also known as louse-borne typhus, is a form of typhus so named because the disease often causes epidemics following wars and natural disasters where civil life is disrupted. Epidemic typhus is spread to people through contact with infected body lice, in contrast to endemic typhus which is usually transmitted by fleas.

Trench fever is a moderately serious infectious disease caused by the bacterium Bartonella quintana and transmitted by body lice. From 1915 to 1918 between one-fifth and one-third of all British troops reported ill had trench fever while about one-fifth of ill German and Austrian troops had the disease. The disease persists among the homeless. Outbreaks have been documented, for example, in Seattle and Baltimore in the United States among injecting drug users and in Marseille, France, and Burundi.

<span class="mw-page-title-main">Infective endocarditis</span> Infection of the hearts inner surface (endocardium)

Infective endocarditis is an infection of the inner surface of the heart (endocardium), usually the valves. Signs and symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cell count. Complications may include backward blood flow in the heart, heart failure – the heart struggling to pump a sufficient amount of blood to meet the body's needs, abnormal electrical conduction in the heart, stroke, and kidney failure.

<i>Rickettsia rickettsii</i> Species of bacterium

Rickettsia rickettsii is a Gram-negative, intracellular, cocco-bacillus bacterium that was first discovered in 1902. Having a reduced genome, the bacterium harvests nutrients from its host cell to carry out respiration, making it an organo-heterotroph. Maintenance of its genome is carried out through vertical gene transfer where specialization of the bacterium allows it to shuttle host sugars directly into its TCA cycle.

<i>Bartonella henselae</i> Species of bacterium

Bartonella henselae, formerly Rochalimæa henselae, is a bacterium that is the causative agent of cat-scratch disease (bartonellosis).

<i>Bartonella</i> Genus of bacteria

Bartonella is a genus of Gram-negative bacteria. It is the only genus in the family Bartonellaceae. Facultative intracellular parasites, Bartonella species can infect healthy people, but are considered especially important as opportunistic pathogens. Bartonella species are transmitted by vectors such as fleas, sand flies, and mosquitoes. At least eight Bartonella species or subspecies are known to infect humans.

<span class="mw-page-title-main">Carrion's disease</span> Infectious disease caused by Bartonella bacilliformis

Carrion's disease is an infectious disease produced by Bartonella bacilliformis infection.

Bartonellosis is an infectious disease produced by bacteria of the genus Bartonella. Bartonella species cause diseases such as Carrión's disease, trench fever, cat-scratch disease, bacillary angiomatosis, peliosis hepatis, chronic bacteremia, endocarditis, chronic lymphadenopathy, and neurological disorders.

<span class="mw-page-title-main">Bacillary angiomatosis</span> Medical condition

Bacillary angiomatosis (BA) is a form of angiomatosis associated with bacteria of the genus Bartonella.

A rickettsiosis is a disease caused by intracellular bacteria.

Bartonella rochalimae is a recently discovered strain of Gram-negative bacteria in the genus Bartonella, isolated by researchers at the University of California, San Francisco (UCSF), Massachusetts General Hospital, and the United States Centers for Disease Control and Prevention. The bacterium is a close relative of Bartonella quintana, the microbe which caused trench fever in thousands of soldiers during World War I. Named after Brazilian scientist Henrique da Rocha Lima, B. rochalimae is also closely related to Bartonella henselae, a bacterium identified in the mid-1990s during the AIDS epidemic in San Francisco as the cause of cat scratch fever, which still infects more than 24,000 people in the United States each year.

<i>Rickettsia conorii</i> Species of bacterium

Rickettsia conorii is a Gram-negative, obligate intracellular bacterium of the genus Rickettsia that causes human disease called boutonneuse fever, Mediterranean spotted fever, Israeli tick typhus, Astrakhan spotted fever, Kenya tick typhus, Indian tick typhus, or other names that designate the locality of occurrence while having distinct clinical features. It is a member of the spotted fever group and the most geographically dispersed species in the group, recognized in most of the regions bordering on the Mediterranean Sea and Black Sea, Israel, Kenya, and other parts of North, Central, and South Africa, and India. The prevailing vector is the brown dog tick, Rhipicephalus sanguineus. The bacterium was isolated by Emile Brumpt in 1932 and named after A. Conor, who in collaboration with A. Bruch, provided the first description of boutonneuse fever in Tunisia in 1910.

Rickettsia typhi is a small, aerobic, obligate intracellular, rod shaped gram negative bacterium. It belongs to the typhus group of the Rickettsia genus, along with R. prowazekii. R. typhi has an uncertain history, as it may have long gone shadowed by epidemic typhus. This bacterium is recognized as a biocontainment level 2/3 organism. R. typhi is a flea-borne disease that is best known to be the causative agent for the disease murine typhus, which is an endemic typhus in humans that is distributed worldwide. As with all rickettsial organisms, R. typhi is a zoonotic agent that causes the disease murine typhus, displaying non-specific mild symptoms of fevers, headaches, pains and rashes. There are two cycles of R. typhi transmission from animal reservoirs containing R. typhi to humans: a classic rat-flea-rat cycle that is most well studied and common, and a secondary periodomestic cycle that could involve cats, dogs, opossums, sheep, and their fleas.

<span class="mw-page-title-main">African tick bite fever</span> Medical condition

African tick bite fever (ATBF) is a bacterial infection spread by the bite of a tick. Symptoms may include fever, headache, muscle pain, and a rash. At the site of the bite there is typically a red skin sore with a dark center. The onset of symptoms usually occurs 4–10 days after the bite. Complications are rare but may include joint inflammation. Some people do not develop symptoms.

Rickettsia australis is a bacterium that causes a medical condition called Queensland tick typhus. The probable vectors are the tick species, Ixodes holocyclus and Ixodes tasmani. Small marsupials are suspected reservoirs of this bacterium.

Rickettsia helvetica, previously known as the Swiss agent, is a bacterium found in Dermacentor reticulatus and other ticks, which has been implicated as a suspected but unconfirmed human pathogen. First recognized in 1979 in Ixodes ricinus ticks in Switzerland as a new member of the spotted fever group of Rickettsia, the R. helvetica bacterium was eventually isolated in 1993. Although R. helvetica was initially thought to be harmless in humans and many animal species, some individual case reports suggest that it may be capable of causing a nonspecific fever in humans. In 1997, a man living in eastern France seroconverted to Rickettsia 4 weeks after onset of an unexplained febrile illness. In 2010, a case report indicated that tick-borne R. helvetica can also cause meningitis in humans.

<span class="mw-page-title-main">BH11960</span>

Bartonella henselae hypothetical protein 11960 (BH11960) is encoded by the BH11960 gene. This hypothetical protein is conserved in all Bartonella species whose genomes have been sequenced to date, and are highlighted in the picture below.

<span class="mw-page-title-main">Cat-scratch disease</span> Bacterial infection from a cat

Cat-scratch disease (CSD) is an infectious disease that most often results from a scratch or bite of a cat. Symptoms typically include a non-painful bump or blister at the site of injury and painful and swollen lymph nodes. People may feel tired, have a headache, or a fever. Symptoms typically begin within 3–14 days following infection.

Bartonella alsatica is a bacterium. Like other Bartonella species, it can cause disease in animals. It is small, aerobic, oxidase-negative, and Gram-negative. Its rod-like cells were localized within wild rabbit erythrocytes when first described. The type strain is IBS 382T. It is associated with cases of lymphadenitis and endocarditis.

Bartonella elizabethae, formerly known as Rochalimaea elizabethae, is a bacterium in the genus Bartonella. Like other Bartonella species, it causes the diseases bartonellosis.

References

  1. "Bartonella quintana". National Center for Biotechnology Information. Retrieved November 10, 2013.
  2. "Definition of Bartonella quintana". MedicineNet. Archived from the original on 5 June 2011. Retrieved May 3, 2011.
  3. 1 2 Ohl, ME; Spach, DH (2000). "Bartonella quintana and urban trench fever". Clinical Infectious Diseases. 31 (1): 131–5. doi:10.1086/313890. PMID   10913410.
  4. O'Rourke, Laurie G.; Pitulle, Christian; Hegarty, Barbara C.; Kraycirik, Sharon; Killary, Karen A.; Grosenstein, Paul; Brown, James W.; Breitschwerdt, Edward B. (2005). "Bartonella quintana in Cynomolgus Monkey (Macaca fascicularis)". Emerging Infectious Diseases. 11 (12): 1931–4. doi:10.3201/eid1112.030045. PMC   3367614 . PMID   16485482.
  5. Jackson, Lisa A.; Spach, David H. (1996). "Emergence of Bartonella quintana Infection among Homeless Persons". Emerging Infectious Diseases. 2 (2): 141–4. doi:10.3201/eid0202.960212. PMC   2639836 . PMID   8903217.
  6. Roux, V; Raoult, D (1995). "Inter- and intraspecies identification of Bartonella (Rochalimaea) species". Journal of Clinical Microbiology. 33 (6): 1573–9. doi:10.1128/JCM.33.6.1573-1579.1995. PMC   228218 . PMID   7650189.
  7. 1 2 Li H, Tong Y, Huang Y, Bai J, Yang H, Liu W, Cao W (2012). "Complete Genome Sequence of Bartonella quintana, a Bacterium Isolated from Rhesus Macaques". J. Bacteriol. 194 (22): 6347. doi:10.1128/JB.01602-12. PMC   3486344 . PMID   23105078.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. 1 2 Maurin, M; Raoult, D (1996). "Bartonella (Rochalimaea) quintana infections". Clinical Microbiology Reviews. 9 (3): 273–92. doi:10.1128/CMR.9.3.273. PMC   172893 . PMID   8809460.
  9. Anstead, Gregory M (2016-08-01). "The centenary of the discovery of trench fever, an emerging infectious disease of World War 1". The Lancet Infectious Diseases. 16 (8): e164–e172. doi:10.1016/S1473-3099(16)30003-2. ISSN   1473-3099. PMC   7106389 . PMID   27375211.
  10. Raoult, D.; Ndihokubwayo, J. B.; Tissot-Dupont, H.; Roux, V.; Faugere, B.; Abegbinni, R.; Birtles, R. J. (1998-08-01). "Outbreak of epidemic typhus associated with trench fever in Burundi". Lancet (London, England). Vol. 352, no. 9125. pp. 353–358. doi:10.1016/s0140-6736(97)12433-3. ISSN   0140-6736. PMID   9717922 . Retrieved 2024-11-27.
  11. Okorji, Onyinyechukwu; Olarewaju, Olubunmi; Smith, Travis; Pace, William C. (13 March 2024). "Trench Fever". StatPearls. Treasure Island, Florida: StatPearls Publishing. PMID   32965930. NLM Bookshelf Identification NBK562259. Retrieved 22 November 2024 via National Library of Medicine, National Center for Biotechnology Information.
  12. Hadfield, T.L.; Warren, R.; Kass, M.; Brun, E.; Levy, C. (1993). "Endocarditis caused by Rochalimaea henselae". Human Pathology. 24 (10): 1140–1. doi:10.1016/0046-8177(93)90196-N. PMID   8406424.
  13. Popa, C.; Abdollahi-Roodsaz, S.; Joosten, L. A. B.; Takahashi, N.; Sprong, T.; Matera, G.; Liberto, M. C.; Foca, A.; et al. (2007). "Bartonella quintana Lipopolysaccharide Is a Natural Antagonist of Toll-Like Receptor 4". Infection and Immunity. 75 (10): 4831–7. doi:10.1128/IAI.00237-07. PMC   2044526 . PMID   17606598.
  14. Leboit, Philip E.; Berger, Timothy G.; Egbert, Barbara M.; Beckstead, Jay H.; Benedict Yen, T. S.; Stoler, Mark H. (1989). "Bacillary Angiomatosis: The Histopathology and Differential Diagnosis of a Pseudoneoplastic Infection in Patients with Human Immunodeficiency Virus Disease". The American Journal of Surgical Pathology. 13 (11): 909–20. doi:10.1097/00000478-198911000-00001. PMID   2802010. S2CID   25225247.
  15. Brouqui, P.; Houpikian, P.; Dupont, H. T.; Toubiana, P.; Obadia, Y.; Lafay, V.; Raoult, D. (1996). "Survey of the Seroprevalence of Bartonella quintana in Homeless People". Clinical Infectious Diseases. 23 (4): 756–9. doi:10.1093/clinids/23.4.756. PMID   8909840.
  16. Koehler, Jane E.; Sanchez, Melissa A.; Garrido, Claudia S.; Whitfeld, Margot J.; Chen, Frederick M.; Berger, Timothy G.; Rodriguez-Barradas, Maria C.; Leboit, Philip E.; Tappero, Jordan W. (1997). "Molecular Epidemiology of Bartonella Infections in Patients with Bacillary Angiomatosis–Peliosis". New England Journal of Medicine. 337 (26): 1876–83. doi: 10.1056/NEJM199712253372603 . PMID   9407154.
  17. Brouqui, Philippe; Lascola, Bernard; Roux, Veronique; Raoult, Didier (1999). "Chronic Bartonella quintana Bacteremia in Homeless Patients". New England Journal of Medicine. 340 (3): 184–9. doi: 10.1056/NEJM199901213400303 . PMID   9895398.
  18. Vinson JW, Varela G, Molina-Pasquel C (September 1969). "Trench fever. 3. Induction of clinical disease in volunteers inoculated with Rickettsia quintana propagated on blood agar". Am. J. Trop. Med. Hyg. 18 (5): 713–22. doi:10.4269/ajtmh.1969.18.713. PMID   5810799.
  19. Badiaga S, Brouqui P (April 2012). "Human louse-transmitted infectious diseases". Clin. Microbiol. Infect. 18 (4): 332–7. doi: 10.1111/j.1469-0691.2012.03778.x . PMID   22360386.
  20. Cooper, M. D.; Hollingdale, M. R.; Vinson, J. W.; Costa, J. (1976). "A Passive Hemagglutination Test for Diagnosis of Trench Fever Due to Rochalimaea quintana". Journal of Infectious Diseases. 134 (6): 605–9. doi:10.1093/infdis/134.6.605. PMID   63526.
  21. Slater, Leonard N.; Welch, David F.; Hensel, Diane; Coody, Danese W. (1990). "A Newly Recognized Fastidious Gram-negative Pathogen as a Cause of Fever and Bacteremia". New England Journal of Medicine. 323 (23): 1587–93. doi: 10.1056/NEJM199012063232303 . PMID   2233947.
  22. Myers, WF; Grossman, DM; Wisseman Jr, CL (1984). "Antibiotic susceptibility patterns in Rochalimaea quintana, the agent of trench fever". Antimicrobial Agents and Chemotherapy. 25 (6): 690–3. doi:10.1128/aac.25.6.690. PMC   185624 . PMID   6742814.