Enteroinvasive Escherichia coli

Last updated
Enteroinvasive Escherichia coli
Specialty Infectious disease   Blue pencil.svg

Enteroinvasive Escherichia coli (EIEC) is a type of pathogenic bacteria whose infection causes a syndrome that is identical to shigellosis, with profuse diarrhea and high fever. EIEC are highly invasive, and they use adhesin proteins to bind to and enter intestinal cells. They produce no toxins, but severely damage the intestinal wall through mechanical cell destruction.

Pathogenic bacteria

Pathogenic bacteria are bacteria that can cause disease. This article deals with human pathogenic bacteria. Although most bacteria are harmless or often beneficial, some are pathogenic, with the number of species estimated as fewer than a hundred that are seen to cause infectious diseases in humans. By contrast, several thousand species exist in the human digestive system.

Shigellosis Human disease

Shigellosis is an infection of the intestines caused by Shigella bacteria. Symptoms generally start one to two days after exposure and include diarrhea, fever, abdominal pain, and feeling the need to pass stools even when the bowels are empty. The diarrhea may be bloody. Symptoms typically last five to seven days. Complications can include reactive arthritis, sepsis, seizures, and hemolytic uremic syndrome.


It is closely related to Shigella . [1] [2]

After the E. coli strain penetrates through the epithelial wall, the endocytosis vacuole gets lysed, the strain multiplies using the host cell machinery, and extends to the adjacent epithelial cell. In addition, the plasmid of the strain carries genes for a type III secretion system that is used as the virulent factor. Although it is an invasive disease, the invasion usually does not pass the submucosal layer. The similar pathology to shigellosis may be because both strains of bacteria share some virulent factors. The invasion of the cells can trigger a mild form of diarrhea or dysentery, often mistaken for dysentery caused by Shigella species. The illness is characterized by the appearance of blood and mucus in the stools of infected individuals or a condition called colitis.

Endocytosis A vesicle-mediated transport process in which cells take up external materials or membrane constituents by the invagination of a small region of the plasma membrane to form a new membrane-bounded vesicle.

Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of plasma membrane, which then buds off inside the cell to form a vesicle containing the ingested material. Endocytosis includes pinocytosis and phagocytosis. It is a form of active transport.

Lysis refers to the breaking down of the membrane of a cell, often by viral, enzymic, or osmotic mechanisms that compromise its integrity. A fluid containing the contents of lysed cells is called a lysate. In molecular biology, biochemistry, and cell biology laboratories, cell cultures may be subjected to lysis in the process of purifying their components, as in protein purification, DNA extraction, RNA extraction, or in purifying organelles.

Plasmid small DNA molecule within a cell that is physically separated from a chromosomal DNA and can replicate independently

A plasmid is a small DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism, such as by providing antibiotic resistance. While the chromosomes are big and contain all the essential genetic information for living under normal conditions, plasmids usually are very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation.

Dysentery caused by EIEC usually occurs within 12 to 72 hours following the ingestion of contaminated food. The illness is characterized by abdominal cramps, diarrhea, vomiting, fever, chills, and a generalized malaise. Dysentery caused by this organism is generally self-limiting with no known complications. [3]

Malaise is a feeling of general discomfort, uneasiness, or pain, often the first sign of an infection or other disease. The word has existed in the French language since at least the 12th century.

Enterovirulent classes of E. coli are referred to as the EEC group (enterovirulent E. coli):

  1. Enteroinvasive E. coli (EIEC) invades (passes into) the intestinal wall to produce severe diarrhea.
  2. Enterohemorrhagic E. coli (EHEC): A type of EHEC, E. coli O157:H7, can cause bloody diarrhea and hemolytic uremic syndrome (anemia and kidney failure).
  3. Enterotoxigenic E. coli (ETEC) produces a toxin that acts on the intestinal lining, and is the most common cause of traveler's diarrhea.
  4. Enteropathogenic E. coli (EPEC) can cause diarrhea outbreaks in newborn nurseries.
  5. Enteroaggregative E. coli (EAggEC) can cause acute and chronic (long-lasting) diarrhea in children.

It is currently unknown what foods may harbor EIEC, but any food contaminated with human feces from an ill individual, either directly or via contaminated water, could cause disease in others. Outbreaks have been associated with hamburger meat and unpasteurized milk. [4]

See also

Related Research Articles

<i>Escherichia coli</i> species of Gram-negative, rod-shaped bacterium

Escherichia coli, also known as E. coli, is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in their hosts, and are occasionally responsible for product recalls due to food contamination. The harmless strains are part of the normal microbiota of the gut, and can benefit their hosts by producing vitamin K2, and preventing colonization of the intestine with pathogenic bacteria, having a symbiotic relationship. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for 3 days, but its numbers decline slowly afterwards.

<i>Escherichia coli</i> O157:H7 serotype of the bacterial species Escherichia coli and is one of the Shiga toxin–producing types of E. coli

Escherichia coli O157:H7 is a serotype of the bacterial species Escherichia coli and is one of the Shiga toxin–producing types of E. coli. It is a cause of disease, typically foodborne illness, through consumption of contaminated and raw food, including raw milk and undercooked ground beef. Infection with this type of pathogenic bacteria may lead to hemorrhagic diarrhea, and to kidney failure; these have been reported to cause the deaths of children younger than five years of age, of elderly patients, and of patients whose immune systems are otherwise compromised.

Dysentery inflammation of the intestine causing diarrhea with blood

Dysentery is an inflammatory disease of the intestine, especially of the colon, which always results in severe diarrhea and abdominal pains. Other symptoms may include fever and a feeling of incomplete defecation. The disease is caused by several types of infectious pathogens such as bacteria, viruses and parasites.

<i>Shigella</i> genus of bacteria

Shigella is a genus of Gram-negative, facultative aerobic, non-spore-forming, nonmotile, rod-shaped bacteria genetically closely related to E. coli. The genus is named after Kiyoshi Shiga, who first discovered it in 1897.

Shiga toxin

Shiga toxins are a family of related toxins with two major groups, Stx1 and Stx2, expressed by genes considered to be part of the genome of lambdoid prophages. The toxins are named after Kiyoshi Shiga, who first described the bacterial origin of dysentery caused by Shigella dysenteriae. Shiga-like toxin (SLT) is a historical term for similar or identical toxins produced by Escherichia coli. The most common sources for Shiga toxin are the bacteria S. dysenteriae and the some serotypes of Escherichia coli (STEC), which includes serotypes O157:H7, and O104:H4.

Virulence is a pathogen's or microbe's ability to infect or damage a host.

Hemolytic-uremic syndrome Human disease

Hemolytic-uremic syndrome (HUS) is a group of blood disorders characterized by low red blood cells, acute kidney failure, and low platelets. Initial symptoms typically include bloody diarrhea, fever, vomiting, and weakness. Kidney problems and low platelets then occur as the diarrhea is improving. While children are more commonly affected adults may have worse outcomes. Complications may include neurological problems and heart failure.

<i>Shigella dysenteriae</i> species of bacterium

Shigella dysenteriae is a species of the rod-shaped bacterial genus Shigella. Shigella species can cause shigellosis. Shigellae are Gram-negative, non-spore-forming, facultatively anaerobic, nonmotile bacteria.

Bacillary dysentery is a type of dysentery, and is a severe form of shigellosis.

Adhesins are cell-surface components or appendages of bacteria that facilitate adhesion or adherence to other cells or to surfaces, usually the host they are infecting or living in. Adhesins are a type of virulence factor.

The AB5 toxins are six-component protein complexes secreted by certain pathogenic bacteria known to cause human diseases such as cholera, dysentery, and hemolytic-uremic syndrome. One component is known as the A subunit, and the remaining five components are B subunits. All of these toxins share a similar structure and mechanism for entering targeted host cells. The B subunit is responsible for binding to receptors to open up a pathway for the A subunit to enter the cell. The A subunit is then able to use its catalytic machinery to take over the host cell's regular functions.

The Sereny test is a test used to test the invasiveness of enteroinvasive Escherichia coli, Shigella species, and Listeria monocytogenes.

<i>Shigella sonnei</i> species of bacterium

Shigella sonnei is a species of Shigella. Together with Shigella flexneri, it is responsible for 90% of shigellosis cases. Shigella sonnei is named for the Danish bacteriologist Carl Olaf Sonne. It is a Gram-negative, rod-shaped, nonmotile, non-spore-forming bacterium.

Escherichia coli O104:H4 is an enteroaggregative Escherichia coli strain of the bacterium Escherichia coli, and the cause of the 2011 Escherichia coli O104:H4 outbreak. The "O" in the serological classification identifies the cell wall lipopolysaccharide antigen, and the "H" identifies the flagella antigen.

Shigatoxigenic Escherichia coli (STEC) and verotoxigenic E. coli (VTEC) are strains of the bacterium Escherichia coli that produce either Shiga toxin or Shiga-like toxin (verotoxin). Only a minority of the strains cause illness in humans. The ones that do are collectively known as enterohemorrhagic E. coli (EHEC) and are major causes of foodborne illness. When infecting humans, they often cause gastroenteritis, enterocolitis, and bloody diarrhea and sometimes cause a severe complication called hemolytic-uremic syndrome (HUS). The group and its subgroups are known by various names. They are distinguished from other strains of intestinal pathogenic E. coli including enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and diffusely adherent E. coli (DAEC).

Antimotility agents are drugs used to alleviate the symptoms of diarrhea. These include loperamide (Imodium), diphenoxylate with atropine (Lomotil), and opiates such as paregoric, tincture of opium, codeine, and morphine. In diarrhea caused by invasive pathogens such as Salmonella, Shigella, and Campylobacter, the use of such agents has generally been strongly discouraged, though evidence is lacking that they are harmful when administered in combination with antibiotics in Clostridium difficile cases. Use of antimotility agents in children and the elderly has also been discouraged in treatment of EHEC due to an increased rate of hemolytic uremic syndrome.

Pathogenic <i>Escherichia coli</i>

Escherichia coli ( Anglicized to ; commonly abbreviated E. coli) is a gram-negative, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but some serotypes are pathogenic and can cause serious food poisoning in humans, and are occasionally responsible for product recalls. E. coli are also responsible for a majority of cases of urinary tract infections. The harmless strains are part of the normal flora of the gut, and can benefit their hosts by producing vitamin K2, and by preventing the establishment of pathogenic bacteria within the intestine.

Enteroaggregative <i>Escherichia coli</i>

Enteroaggregative Escherichia coli are a pathotype of Escherichia coli associated with acute and chronic diarrhea in both the developed and developing world. EAEC are defined by their "stacked-brick" pattern of adhesion to the human laryngeal epithelial cell line HEp-2. The pathogenesis of EAEC involves the aggregation of and adherence of the bacteria to the intestinal mucosa, where they elaborate enterotoxins and cytotoxins that damage host cells and induce inflammation that results in diarrhea.


  1. Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR (September 2004). "Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp". Infect. Immun. 72 (9): 5080–8. doi:10.1128/IAI.72.9.5080-5088.2004. PMC   517479 . PMID   15322001.
  2. Rolland K, Lambert-Zechovsky N, Picard B, Denamur E (September 1998). "Shigella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli". Microbiology. 144. (Pt 9): 2667–72. doi:10.1099/00221287-144-9-2667. PMID   9782516.
  3. "Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins (PDF)" (PDF). Food and Drug Administration. Retrieved June 8, 2015.
  4. Escherichia coli, enteroinvasive Material Data Safety Sheets