Enteroinvasive Escherichia coli

Last updated
Enteroinvasive Escherichia coli
Specialty Infectious diseases   OOjs UI icon edit-ltr-progressive.svg

Enteroinvasive Escherichia coli (EIEC) is a type of pathogenic bacteria whose infection causes a syndrome that is identical to shigellosis, with profuse diarrhea and high fever. EIEC are highly invasive, and they use adhesin proteins to bind to and enter intestinal cells. They produce no toxins,[ citation needed ] but severely damage the intestinal wall through mechanical cell destruction.

Contents

EIEC are closely related to Shigella , like all E. coli are. [1] [2] Their similarity in disease phenotype come from a homologous large virulence plasmid pINV. They also have in common in their loss of cadaverine synthesis, of ompT , and of curli formation. These features are probably acquired independently, as the two lost cadaverine synthesis in different ways. [3] Moreover, the "EIEC" does not form a monophyletic group in E. coli. [4]

After the E. coli strain penetrates through the epithelial wall, the endocytosis vacuole gets lysed, the strain multiplies using the host cell machinery, and extends to the adjacent epithelial cell. In addition, the plasmid of the strain carries genes for a type III secretion system that is used as the virulent factor. Although it is an invasive disease, the invasion usually does not pass the submucosal layer. The similar pathology to shigellosis may be because both strains of bacteria share some virulent factors. The invasion of the cells can trigger a mild form of diarrhea or dysentery, often mistaken for dysentery caused by Shigella species. The illness is characterized by the appearance of blood and mucus in the stools of infected individuals or a condition called colitis.[ citation needed ]

Dysentery caused by EIEC usually occurs within 12 to 72 hours following the ingestion of contaminated food. The illness is characterized by abdominal cramps, diarrhea, vomiting, fever, chills, and a generalized malaise. Dysentery caused by this organism is generally self-limiting with no known complications. [5]

It is currently unknown what foods may harbor EIEC, but any food contaminated with human feces from an ill individual, either directly or via contaminated water, could cause disease in others. Outbreaks have been associated with hamburger meat and unpasteurized milk. [6]

Enterovirulent classes of E. coli are referred to as the EEC group (enterovirulent E. coli):[ citation needed ]

  1. Enteroinvasive E. coli (EIEC) invades (passes into) the intestinal wall to produce severe diarrhea.
  2. Enterohemorrhagic E. coli (EHEC): A type of EHEC, E. coli O157:H7, can cause bloody diarrhea and hemolytic uremic syndrome (anemia and kidney failure).
  3. Enterotoxigenic E. coli (ETEC) produces a toxin that acts on the intestinal lining, and is the most common cause of traveler's diarrhea.
  4. Enteropathogenic E. coli (EPEC) can cause diarrhea outbreaks in newborn nurseries.
  5. Enteroaggregative E. coli (EAggEC) can cause acute and chronic (long-lasting) diarrhea in children.

See also

Related Research Articles

<i>Escherichia coli</i> Enteric, rod-shaped, gram-negative bacterium

Escherichia coli ( ESH-ə-RIK-ee-ə KOH-lye) is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes such as EPEC and ETEC are pathogenic, can cause serious food poisoning in their hosts and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains are part of the normal microbiota of the gut and are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship—where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

<i>Escherichia coli</i> O157:H7 Serotype of the bacteria Escherichia coli

Escherichia coli O157:H7 is a serotype of the bacterial species Escherichia coli and is one of the Shiga-like toxin–producing types of E. coli. It is a cause of disease, typically foodborne illness, through consumption of contaminated and raw food, including raw milk and undercooked ground beef. Infection with this type of pathogenic bacteria may lead to hemorrhagic diarrhea, and to kidney failure; these have been reported to cause the deaths of children younger than five years of age, of elderly patients, and of patients whose immune systems are otherwise compromised.

<span class="mw-page-title-main">Dysentery</span> Inflammation of the intestine causing diarrhea with blood

Dysentery, historically known as the bloody flux, is a type of gastroenteritis that results in bloody diarrhea. Other symptoms may include fever, abdominal pain, and a feeling of incomplete defecation. Complications may include dehydration.

<span class="mw-page-title-main">Shigellosis</span> Infection of the intestines by Shigella bacteria

Shigellosis is an infection of the intestines caused by Shigella bacteria. Symptoms generally start one to two days after exposure and include diarrhea, fever, abdominal pain, and feeling the need to pass stools even when the bowels are empty. The diarrhea may be bloody. Symptoms typically last five to seven days and it may take several months before bowel habits return entirely to normal. Complications can include reactive arthritis, sepsis, seizures, and hemolytic uremic syndrome.

<i>Shigella</i> Genus of bacteria

Shigella is a genus of bacteria that is Gram negative, facultatively anaerobic, non–spore-forming, nonmotile, rod shaped, and is genetically nested within Escherichia. The genus is named after Kiyoshi Shiga, who discovered it in 1897.

<span class="mw-page-title-main">Shiga toxin</span> Family of related toxins

Shiga toxins are a family of related toxins with two major groups, Stx1 and Stx2, expressed by genes considered to be part of the genome of lambdoid prophages. The toxins are named after Kiyoshi Shiga, who first described the bacterial origin of dysentery caused by Shigella dysenteriae. Shiga-like toxin (SLT) is a historical term for similar or identical toxins produced by Escherichia coli. The most common sources for Shiga toxin are the bacteria S. dysenteriae and some serotypes of Escherichia coli, which include serotypes O157:H7, and O104:H4.

Virulence is a pathogen's or microorganism's ability to cause damage to a host.

<span class="mw-page-title-main">Hemolytic–uremic syndrome</span> Group of blood disorders related to bacterial infection

Hemolytic–uremic syndrome (HUS) is a group of blood disorders characterized by low red blood cells, acute kidney injury, and low platelets. Initial symptoms typically include bloody diarrhea, fever, vomiting, and weakness. Kidney problems and low platelets then occur as the diarrhea progresses. Children are more commonly affected, but most children recover without permanent damage to their health, although some children may have serious and sometimes life-threatening complications. Adults, especially the elderly, may show a more complicated presentation. Complications may include neurological problems and heart failure.

Pathogenicity islands (PAIs), as termed in 1990, are a distinct class of genomic islands acquired by microorganisms through horizontal gene transfer. Pathogenicity islands are found in both animal and plant pathogens. Additionally, PAIs are found in both gram-positive and gram-negative bacteria. They are transferred through horizontal gene transfer events such as transfer by a plasmid, phage, or conjugative transposon. Although the general makeup of pathogenicity islands (PAIs) might vary throughout bacterial pathogen strains, all PAIs are known to have characteristics with all genomic islands, which includes virulence genes, functional mobility elements, and areas of homology to tRNA genes and direct repeats. Therefore, PAIs enables microorganisms to induce disease and also contribute to microorganisms' ability to evolve. The spread of antibiotic resistance and, more generally, the conversion of non-pathogenic strains in natural environments to strains that infect animal and plant hosts with disease are two examples of the evolutionary and ecological changes brought about by the transmission and acquisition of PAIs among bacterial species. However, It is impossible to overlook their impact on bacterial evolution, though, since if a PAI is acquired and is stably absorbed, it can irreversibly change the bacterial genome.

<span class="mw-page-title-main">Coliform bacteria</span> Group of bacterial species

Coliform bacteria are defined as either motile or non-motile Gram-negative non-spore forming bacilli that possess β-galactosidase to produce acids and gases under their optimal growth temperature of 35–37 °C. They can be aerobes or facultative aerobes, and are a commonly used indicator of low sanitary quality of foods, milk, and water. Coliforms can be found in the aquatic environment, in soil and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals as they are known to inhabit the gastrointestinal system. While coliform bacteria are not normally the cause of serious illness, they are easy to culture, and their presence is used to infer that other pathogenic organisms of fecal origin may be present in a sample, or that said sample is not safe to consume. Such pathogens include disease-causing bacteria, viruses, or protozoa and many multicellular parasites. Every drinking water source must be tested for the presence of these total coliform bacteria.

<i>Shigella dysenteriae</i> Bacterial species

Shigella dysenteriae is a species of the rod-shaped bacterial genus Shigella. Shigella species can cause shigellosis. Shigellae are Gram-negative, non-spore-forming, facultatively anaerobic, nonmotile bacteria. S. dysenteriae has the ability to invade and replicate in various species of epithelial cells and enterocytes.

Bacillary dysentery is a type of dysentery, and is a severe form of shigellosis. It is associated with species of bacteria from the family Enterobacteriaceae. The term is usually restricted to Shigella infections.

<i>Shigella flexneri</i> Species of bacterium

Shigella flexneri is a species of Gram-negative bacteria in the genus Shigella that can cause diarrhea in humans. Several different serogroups of Shigella are described; S. flexneri belongs to group B. S. flexneri infections can usually be treated with antibiotics, although some strains have become resistant. Less severe cases are not usually treated because they become more resistant in the future. Shigella are closely related to Escherichia coli, but can be differentiated from E.coli based on pathogenicity, physiology and serology.

<i>Shigella sonnei</i> Species of bacterium

Shigella sonnei is a species of Shigella. Together with Shigella flexneri, it is responsible for 90% of shigellosis cases. Shigella sonnei is named for the Danish bacteriologist Carl Olaf Sonne. It is a Gram-negative, rod-shaped, nonmotile, non-spore-forming bacterium.

In bacteriology, a taxon in disguise is a species, genus or higher unit of biological classification whose evolutionary history reveals has evolved from another unit of a similar or lower rank, making the parent unit paraphyletic. That happens when rapid evolution makes a new species appear so radically different from the ancestral group that it is not (initially) recognised as belonging to the parent phylogenetic group, which is left as an evolutionary grade.

Escherichia coli O104:H4 is an enteroaggregative Escherichia coli strain of the bacterium Escherichia coli, and the cause of the 2011 Escherichia coli O104:H4 outbreak. The "O" in the serological classification identifies the cell wall lipopolysaccharide antigen, and the "H" identifies the flagella antigen.

Shigatoxigenic Escherichia coli (STEC) and verotoxigenic E. coli (VTEC) are strains of the bacterium Escherichia coli that produce Shiga toxin. Only a minority of the strains cause illness in humans. The ones that do are collectively known as enterohemorrhagic E. coli (EHEC) and are major causes of foodborne illness. When infecting the large intestine of humans, they often cause gastroenteritis, enterocolitis, and bloody diarrhea and sometimes cause a severe complication called hemolytic-uremic syndrome (HUS). Cattle are an important natural reservoir for EHEC because the colonised adult ruminants are asymptomatic. This is because they lack vascular expression of the target receptor for Shiga toxins. The group and its subgroups are known by various names. They are distinguished from other strains of intestinal pathogenic E. coli including enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and diffusely adherent E. coli (DAEC).

Pathogenic <i>Escherichia coli</i> Strains of E. coli that can cause disease

Escherichia coli is a gram-negative, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but pathogenic varieties cause serious food poisoning, septic shock, meningitis, or urinary tract infections in humans. Unlike normal flora E. coli, the pathogenic varieties produce toxins and other virulence factors that enable them to reside in parts of the body normally not inhabited by E. coli, and to damage host cells. These pathogenic traits are encoded by virulence genes carried only by the pathogens.

Enteroaggregative Escherichia coli are a pathotype of Escherichia coli which cause acute and chronic diarrhea in both the developed and developing world. They may also cause urinary tract infections. EAEC are defined by their "stacked-brick" pattern of adhesion to the human laryngeal epithelial cell line HEp-2. The pathogenesis of EAEC involves the aggregation of and adherence of the bacteria to the intestinal mucosa, where they elaborate enterotoxins and cytotoxins that damage host cells and induce inflammation that results in diarrhea.

References

  1. Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR (September 2004). "Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp". Infect. Immun. 72 (9): 5080–8. doi:10.1128/IAI.72.9.5080-5088.2004. PMC   517479 . PMID   15322001.
  2. Rolland K, Lambert-Zechovsky N, Picard B, Denamur E (September 1998). "Shigella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli". Microbiology. 144 (9): 2667–72. doi: 10.1099/00221287-144-9-2667 . PMID   9782516.
  3. Strockbine, Nancy A.; Maurelli, Anthony T. (17 April 2015). "Shigella". Bergey's Manual of Systematics of Archaea and Bacteria. pp. 1–26. doi:10.1002/9781118960608.gbm01168. ISBN   9781118960608.
  4. Pasqua, Martina; Michelacci, Valeria; Di Martino, Maria Letizia; Tozzoli, Rosangela; Grossi, Milena; Colonna, Bianca; Morabito, Stefano; Prosseda, Gianni (5 December 2017). "The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity". Frontiers in Microbiology. 8: 2390. doi: 10.3389/fmicb.2017.02390 . PMC   5723341 . PMID   29259590.
  5. "Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins (PDF)" (PDF). Food and Drug Administration. Retrieved June 8, 2015.
  6. Escherichia coli, enteroinvasive Material Data Safety Sheets