Helicobacter cinaedi

Last updated

Helicobacter cinaedi
Helicobacter sp 01.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Campylobacterota
Class: "Campylobacteria"
Order: Campylobacterales
Family: Helicobacteraceae
Genus: Helicobacter
Species:
H. cinaedi
Binomial name
Helicobacter cinaedi
(Totten et al. 1988) Vandamme et al. 1991
Synonyms

Campylobacter cinaediTotten et al. 1988

Helicobacter cinaedi is a bacterium in the family Helicobacteraceae, Campylobacterales order, Helicobacteraceae family, Helicobacter genus. It was formerly known as Campylobacter cinaedi until molecular analysis published in 1991 led to a major revision of the genus Campylobacter . [1] H. cinaedi is a curved, spiral (i.e. S-shaped), or fusiform (i.e. spindle-shaped) rod with flagellum at both of its ends (i.e. bipolar flagella) [2] which it uses to dart around. [3] The bacterium is a pathogen. [2]

Contents

Like many other species in the Helicobacter genus (see Helicobacter heilmannii sensu lato ), H. cinaedi infects not only animals, but also humans. While common in animals, it was once thought to be an extremely rare infection in humans and to occur almost always in those who are immunocompromised. However,H. cinaedi infections are now regarded as more common than previously thought and to occur not only in immunocompromised individuals, but also in individuals suffering various types of medical conditions that are not associated with defective immunity, in patients as part of a nosocomial (i.e. hospital-acquired) infection, and, to a lesser extent, in immunocompetent individuals who have no known predisposing medical conditions. [2] In particular, studies conducted in Japan indicate that H. cinaedi infections can occur in groups of individuals who are associated with each other in nonhospital and nonmedical settings. These community-acquired infections occur principally in immunocompetent individuals. [4]

While many H. cinaedi infections in humans involve the gastrointestinal tract [5] and may have a remitting and relapsing course, [2] some of these infections spread to the blood to cause life-threatening bacteremia. [6] This is particularly the case in hospital-borne/medical setting infections that occur in immunocompromised individuals, [6] those with H. cinaedi bacteremia, particularly those who acquire it in a community setting, typically display no life-threatening or other symptoms except fever. [4] In any event, even the severest cases of H. cinaedi infections, especially those occurring in immunocompetent individuals who acquire the bacterium in a community setting, have been successfully treated with antibiotics. [2] [4]

Epidemiology and transmission to humans

Helicobacter cinaedi has been isolated from cats, dogs, hamsters, rats, foxes, and rhesus monkeys; the bacterium is part of the normal intestinal bacterial flora of hamsters. Many species of Helicobacter such as the five species of H. heilmannii sensu lato are transmitted to humans by close contact with infected animals. [7] Reports have suggested that humans are likewise infected with H. cinaedi by direct contact (i.e. zoonotic transmission) with animals (particularly hamsters and farm animals) harboring the bacterium. However, there are no reports of the simultaneous isolation of this bacterium in human patients and their close contact animals. Consequently, the role of zoonotic transmission in the infection of humans with H. cinaedi is unclear and requires further study. [2]

Studies conducted in Japan have reported finding H. cinaedi in the feces of healthy humans, as well as in the blood of 46 persons who were concurrently afflicted with H. cinaedi at a single hospital. Hospital-born, medical setting-born, and community-born infections in smaller numbers of patients have also been reported. [2] [4] These studies allow a possibility that H. cinaedi may be, at least in some cases, transmitted between humans either directly (e.g. through oral contact) [5] or indirectly (e.g. through contaminated surfaces, clothing, bedding, or other objects). [8]

Human infections

Individuals (age range: newborn to elderly [2] ) with H. cinaedi infections have presented with acute or chronic gastroenteritis (i.e. inflammation of the stomach and/or intestines), [5] cellulitis (i.e. bacterial infection and inflammation of the inner layers of the skin), and/or bacteremia (i.e. the bacterium circulating in the blood). [9] This bacteremia may be associated with no symptoms except fever [4] or with full-blown sepsis symptoms. [6] Less commonly, infected individuals have presented with septic arthritis, [5] infection of an artificial joint, [10] infection of a vascular bypass graft, [2] or meningitis. [4] Cases of bacteremia are often (~30% of all cases) accompanied by cellulitis at multiple sites in the skin. [5] These infections have tended to occur in persons who are immunocompromised due to HIV/AIDS, X-linked agammaglobulinemia, [11] common variable immunodeficiency, various malignancies (e.g. lung cancer, multiple myeloma, leukemia, lymphoma, [5] or the myelodysplastic syndrome [10] ), chemotherapy treatments, or splenectomy. [8] H. cinaedi infection has also occurred in persons whose immune function may be defective as a result of, or in association with, chronic renal failure or autoimmune diseases (i.e. systemic lupus erythematosus and rheumatoid arthritis). [5]

Diagnosis

The diagnosis of H. cinaedei infection is made difficult by the fastidiousness of this organism; in culture, it grows very slowly and requires high humidity and microaerobic conditions. [2] Furthermore, the bacterium, while being able to be cultured from blood specimens, is far harder to culture from tissue lesions such as those in the skin. [5] Consequently, the diagnosis of H. cinaedie infection has been heavily based on patient clinical presentations, [2] [5] histology of lesions including special staining for the bacterium, and analyses of tissue specimens by DNA sequencing and species-specific polymerase chain reactions to identify nucleotide gene sequences specific to the bacterium. [2]

Treatment

The various types of human H. cinaedi infections, including the more severe ones such as bacteremia, meningitis, and artificial joint infection, have been successfully treated with regimens that include a single or multiple antibiotics. The bacterium is highly sensitive to carbapenem, aminoglycoside, cephalosporin, and tetracycline antibiotics and moderately sensitive to β-lactam antibiotics, but has often been found to be resistant to macrolides, quinolones, and metronidazole. [2] However, the infection has frequently recurred even in patients who have been treated with an appropriate antibiotic regimen. For example, one patient with H. cinaedi bacteremia had been successfully treated with cephazolin (a β-lactam antibiotic) and panipenem (a carbapenem antibiotic), but had two symptom recurrences, each of which was successfully retreated with the same antibiotic regimen. [5] Longer-term initial antibiotic treatments may reduce these recurrences. [2]

Prevention

Careful monitoring of H. cinaedi in the hospital/medical setting may prevent nosocomial infections. Monitoring may be particularly helpful in sections or wards of hospitals that treat immunocompromised patients, e.g. cancer or other wards that focus on treating patients with chemotherapy. [6]

Prognosis

The prognosis of patients with H. cinaedi infections is generally good, with many symptoms showing improvements within 2–3 days of starting antibiotics. However, patients receiving short-term (e.g. ≤10 days) antibiotic treatments experience recurrent symptoms in 30 to 60% of cases. The Centers for Disease Control now recommends that initial antibiotic treatment regimens for infections with this bacterium be extended to 2–6 weeks. [2] Conventional antibiotic regimens used to treat H. cinaedi bacteremia in immune-incompetent individuals is reported to have a mortality rate after 30 days of treatment of 6.3%. [6]

Related Research Articles

<span class="mw-page-title-main">Candidiasis</span> Fungal infection due to any type of Candida

Candidiasis is a fungal infection due to any type of Candida. When it affects the mouth, in some countries it is commonly called thrush. Signs and symptoms include white patches on the tongue or other areas of the mouth and throat. Other symptoms may include soreness and problems swallowing. When it affects the vagina, it may be referred to as a yeast infection or thrush. Signs and symptoms include genital itching, burning, and sometimes a white "cottage cheese-like" discharge from the vagina. Yeast infections of the penis are less common and typically present with an itchy rash. Very rarely, yeast infections may become invasive, spreading to other parts of the body. This may result in fevers along with other symptoms depending on the parts involved.

<i>Helicobacter pylori</i> Species of bacteria

Helicobacter pylori, previously known as Campylobacter pylori, is a gram-negative, microaerophilic, spiral (helical) bacterium usually found in the stomach. Its helical shape is thought to have evolved in order to penetrate the mucoid lining of the stomach and thereby establish infection. The bacterium was first identified in 1982 by the Australian doctors Barry Marshall and Robin Warren. H. pylori has been associated with cancer of the mucosa-associated lymphoid tissue in the stomach, esophagus, colon, rectum, or tissues around the eye, and of lymphoid tissue in the stomach.

<i>Helicobacter</i> Genus of bacteria

Helicobacter is a genus of Gram-negative bacteria possessing a characteristic helical shape. They were initially considered to be members of the genus Campylobacter, but in 1989, Goodwin et al. published sufficient reasons to justify the new genus name Helicobacter. The genus Helicobacter contains about 35 species.

<i>Campylobacter jejuni</i> Species of bacterium

Campylobacter jejuni is a species of pathogenic bacteria, one of the most common causes of food poisoning in Europe and in the US. The vast majority of cases occur as isolated events, not as part of recognized outbreaks. Active surveillance through the Foodborne Diseases Active Surveillance Network (FoodNet) indicates that about 20 cases are diagnosed each year for each 100,000 people in the US, while many more cases are undiagnosed or unreported; the CDC estimates a total of 1.5 million infections every year. The European Food Safety Authority reported 246,571 cases in 2018, and estimated approximately nine million cases of human campylobacteriosis per year in the European Union.

<span class="mw-page-title-main">Campylobacteriosis</span> Medical condition

Campylobacteriosis is an infection by the Campylobacter bacterium, most commonly C. jejuni. It is among the most common bacterial infections of humans, often a foodborne illness. It produces an inflammatory, sometimes bloody, diarrhea or dysentery syndrome, mostly including cramps, fever and pain.

Limosilactobacillus reuteri is a lactic acid bacterium found in a variety of natural environments, including the gastrointestinal tract of humans and other animals. It does not appear to be pathogenic and may have health effects.

Timeline of peptic ulcer disease and <i>Helicobacter pylori</i>

This is a timeline of the events relating to the discovery that peptic ulcer disease and some cancers are caused by H. pylori. In 2005, Barry Marshall and Robin Warren were awarded the Nobel Prize in Physiology or Medicine for their discovery that peptic ulcer disease (PUD) was primarily caused by Helicobacter pylori, a bacterium with affinity for acidic environments, such as the stomach. As a result, PUD that is associated with H. pylori is currently treated with antibiotics used to eradicate the infection. For decades prior to their discovery, it was widely believed that PUD was caused by excess acid in the stomach. During this time, acid control was the primary method of treatment for PUD, to only partial success. Among other effects, it is now known that acid suppression alters the stomach milieu to make it less amenable to H. pylori infection.

<i>Elizabethkingia meningoseptica</i> Species of bacterium

Elizabethkingia meningoseptica is a Gram-negative, rod-shaped bacterium widely distributed in nature. It may be normally present in fish and frogs; it may be isolated from chronic infectious states, as in the sputum of cystic fibrosis patients. In 1959, American bacteriologist Elizabeth O. King was studying unclassified bacteria associated with pediatric meningitis at the Centers for Disease Control and Prevention in Atlanta, when she isolated an organism that she named Flavobacterium meningosepticum. In 1994, it was reclassified in the genus Chryseobacterium and renamed Chryseobacterium meningosepticum(chryseos = "golden" in Greek, so Chryseobacterium means a golden/yellow rod similar to Flavobacterium). In 2005, a 16S rRNA phylogenetic tree of Chryseobacteria showed that C. meningosepticum along with C. miricola were close to each other but outside the tree of the rest of the Chryseobacteria and were then placed in a new genus Elizabethkingia named after the original discoverer of F. meningosepticum.

Helicobacter pylori eradication protocols is a standard name for all treatment protocols for peptic ulcers and gastritis in the presence of Helicobacter pylori infection. The primary goal of the treatment is not only temporary relief of symptoms but also total elimination of H. pylori infection. Patients with active duodenal or gastric ulcers and those with a prior ulcer history should be tested for H. pylori. Appropriate therapy should be given for eradication. Patients with MALT lymphoma should also be tested and treated for H. pylori since eradication of this infection can induce remission in many patients when the tumor is limited to the stomach. Several consensus conferences, including the Maastricht Consensus Report, recommend testing and treating several other groups of patients but there is limited evidence of benefit. This includes patients diagnosed with gastric adenocarcinoma, patients found to have atrophic gastritis or intestinal metaplasia, as well as first-degree relatives of patients with gastric adenocarcinoma since the relatives themselves are at increased risk of gastric cancer partly due to the intrafamilial transmission of H. pylori. To date, it remains controversial whether to test and treat all patients with functional dyspepsia, gastroesophageal reflux disease, or other non-GI disorders as well as asymptomatic individuals.

<span class="mw-page-title-main">Marginal zone B-cell lymphoma</span> Group of lymphomas

Marginal zone B-cell lymphomas, also known as marginal zone lymphomas (MZLs), are a heterogeneous group of lymphomas that derive from the malignant transformation of marginal zone B-cells. Marginal zone B cells are innate lymphoid cells that normally function by rapidly mounting IgM antibody immune responses to antigens such as those presented by infectious agents and damaged tissues. They are lymphocytes of the B-cell line that originate and mature in secondary lymphoid follicles and then move to the marginal zones of mucosa-associated lymphoid tissue, the spleen, or lymph nodes. Mucosa-associated lymphoid tissue is a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body such as the gastrointestinal tract, mouth, nasal cavity, pharynx, thyroid gland, breast, lung, salivary glands, eye, skin and the human spleen.

Helicobacter cellulitis is a cutaneous condition caused by Helicobacter cinaedi. H. cinaedi can cause cellulitis and bacteremia in immunocompromised people.

Perianal cellulitis, also known as perianitis or perianal streptococcal dermatitis, is a bacterial infection affecting the lower layers of the skin (cellulitis) around the anus. It presents as bright redness in the skin and can be accompanied by pain, difficulty defecating, itching, and bleeding. This disease is considered a complicated skin and soft tissue infection (cSSTI) because of the involvement of the deeper soft tissues.

<span class="mw-page-title-main">Herpes esophagitis</span> Medical condition

Herpes esophagitis is a viral infection of the esophagus caused by Herpes simplex virus (HSV).

Helicobacter canis is a bacterium in the Helicobacteraceae family, Campylobacterales order. Its type strain is NCTC 12739T. It colonises the lower bowel, but is also present in cases of hepatitis. Besides infecting dogs, this bacterium is known to cause infections in immunocompromised humans.

Helicobacter felis is a bacterial species in the Helicobacteraceae family, Campylobacterales order, Helicobacter genus. This bacterium is Gram-negative, microaerophilic, urease-positive, and spiral-shaped. Its type strain is CS1T. It can be pathogenic.

Helicobacter salomonis is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far the best known Helicobacter species primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the nonlymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases, although its role in the development of many of these other diseases requires further study. Humans infected with H. salomonis may develop some of the same gastrointestinal diseases viz., stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter bizzozeronii, Helicobacter suis, Helicobacter felis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus H. salomonis are often group together and termed Helicobacter heilmannii sensu lato.

Helicobacter heilmannii sensu lato refers to a group of bacterial species within the Helicobacter genus. The Helicobacter genus consists of at least 40 species of spiral-shaped flagellated, Gram-negative bacteria of which the by far most prominent and well-known species is Helicobacter pylori. H. pylori is associated with the development of gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and various subtypes of extranodal marginal zone lymphomas, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori has also been associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study.

Helicobacter bizzozeronii is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far the best known Helicobacter species, primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the nonlymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study. Humans infected with H. bizzozeronii are prone to develop some of the same gastrointestinal diseases viz., stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter felis, Helicobacter salomonis, Helicobacter suis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus H. bizzozeronii are often grouped together and termed Helicobacter heilmannii sensu lato.

Helicobacter suis is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far the best known Helicobacter species, primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the nonlymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study. Humans infected with H. suis may develop some of the same gastrointestinal diseases - stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter bizzozeronii, Helicobacter salomonis, Helicobacter felis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus H. suis are often group together and termed Helicobacter heilmannii sensu lato.

Helicobacter heilmannii s.s. is a species within the Helicobacter genus of Gram negative bacteria. Helicobacter pylori is by far the best known Helicobacter species primarily because humans infected with it may develop gastrointestinal tract diseases such as stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers of the non-lymphoma type, and various subtypes of extranodal marginal zone lymphomass, e.g. those of the stomach, small intestines, large intestines, and rectumn. H. pylori is also associated with the development of bile duct cancer and has been associated with a wide range of other diseases although its role in the development of many of these other diseases requires further study. Humans infected with H. heilmannii s.s. may develop some of the same gastrointestinal diseases viz., stomach inflammation, stomach ulcers, duodenal ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphomas of the stomach. Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter bizzozeronii, Helicobacter suis, Helicobacter felis, and Helicobacter salomonis. Because of their disease associations, these four Helicobacter species plus H. heilmannii s.s. are often group together and termed Helicobacter heilmannii sensu lato.

References

  1. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, De Ley J (1991). "Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen-nov". International Journal of Systematic Bacteriology. 41 (1): 88–103. doi: 10.1099/00207713-41-1-88 . PMID   1704793.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kawamura Y, Tomida J, Morita Y, Fujii S, Okamoto T, Akaike T (September 2014). "Clinical and bacteriological characteristics of Helicobacter cinaedi infection". Journal of Infection and Chemotherapy. 20 (9): 517–26. doi: 10.1016/j.jiac.2014.06.007 . PMID   25022901.
  3. Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds.) (2005). Bergey's Manual of Systematic Bacteriology, Volume Two: The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. New York, New York: Springer. ISBN   978-0-387-24145-6.
  4. 1 2 3 4 5 6 Uwamino Y, Muranaka K, Hase R, Otsuka Y, Hosokawa N (February 2016). "Clinical Features of Community-Acquired Helicobacter cinaedi Bacteremia". Helicobacter. 21 (1): 24–8. doi:10.1111/hel.12236. PMID   25997542. S2CID   26977318.
  5. 1 2 3 4 5 6 7 8 9 10 Shimizu S, Shimizu H (July 2016). "Cutaneous manifestations of Helicobacter cinaedi: a review". The British Journal of Dermatology. 175 (1): 62–8. doi:10.1111/bjd.14353. PMID   26678698. S2CID   207074255.
  6. 1 2 3 4 5 Ménard A, Péré-Védrenne C, Haesebrouck F, Flahou B (September 2014). "Gastric and enterohepatic helicobacters other than Helicobacter pylori". Helicobacter. 19 (Suppl 1): 59–67. doi: 10.1111/hel.12162 . PMID   25167947.
  7. Bento-Miranda M, Figueiredo C (December 2014). "Helicobacter heilmannii sensu lato: an overview of the infection in humans". World Journal of Gastroenterology. 20 (47): 17779–87. doi: 10.3748/wjg.v20.i47.17779 . PMC   4273128 . PMID   25548476.
  8. 1 2 Flahou B, Rimbara E, Mori S, Haesebrouck F, Shibayama K (September 2015). "The Other Helicobacters". Helicobacter. 20 (Suppl 1): 62–7. doi: 10.1111/hel.12259 . PMID   26372827.
  9. Kiehlbauch JA, Tauxe RV, Baker CN, Wachsmuth IK (1994). "Helicobacter cinaedi-associated bacteremia and cellulitis in immunocompromised patients". Annals of Internal Medicine. 121 (2): 90–93. doi:10.7326/0003-4819-121-2-199407150-00002. PMID   8017741. S2CID   24060399.
  10. 1 2 Ménard A, Smet A (September 2019). "Review: Other Helicobacter species". Helicobacter. 24 (Suppl 1): e12645. doi: 10.1111/hel.12645 . PMID   31486233.
  11. Péré-Védrenne C, Flahou B, Loke MF, Ménard A, Vadivelu J (September 2017). "Other Helicobacters, gastric and gut microbiota". Helicobacter. 22 (Suppl 1): e12407. doi:10.1111/hel.12407. PMID   28891140. S2CID   30040441.