Mimodactylus

Last updated

Mimodactylus
Temporal range: Late Cretaceous, 95  Ma
O
S
D
C
P
T
J
K
Pg
N
Mimodactylus.png
Holotype specimen with interpretive drawing and inset close-ups of the scapula and coracoid (b), wrist (c), and humerus (d)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Order: Pterosauria
Suborder: Pterodactyloidea
Clade: Istiodactyliformes
Clade: Mimodactylidae
Genus: Mimodactylus
Kellner et al., 2019
Species:
M. libanensis
Binomial name
Mimodactylus libanensis
Kellner et al., 2019

Mimodactylus is a genus of istiodactyliform pterosaur that lived in what is now Lebanon during the Late Cretaceous, 95 million years ago. The only known specimen was discovered in a limestone quarry near the town of Hjoula, belonging to the Sannine Formation. The owner of the quarry allowed the specimen to be prepared and scientifically described by an international team of researchers, and when it was eventually sold, the buyer donated it to the MIM Museum in Beirut. In 2019, the researchers named the new genus and species Mimodactylus libanensis; the generic name refers to the MIM Museum, combined with the Greek word daktylos for "digit", and the specific name refers to Lebanon. The well-preserved holotype specimen is the first complete pterosaur from the Afro-Arabian continent (which consisted of the then joined Arabian Peninsula and Africa), and the third pterosaur fossil known from Lebanon.

Contents

The holotype specimen is comparatively small, with a wingspan of 1.32 metres (4.3 ft), and was probably a young individual. Its snout is broad and the cone-shaped teeth are confined to the front half of the jaws. The tooth crowns are compressed sideways and have a cingulum (a thickened ridge at the base), and lack sharp carinae (cutting edges). The skeleton is distinctive in that the deltopectoral crest of the humerus (ridge for attachment of the deltoid and pectoral muscles) is rectangular and that the humerus is less than half the length of the wing-finger's second phalanx bone. The describers of Mimodactylus classified it in the new clade Mimodactylidae along with Haopterus , this group being part of Istiodactyliformes. The teeth of Mimodactylus suggest its feeding habits differed from other pterosaurs, possibly it foraged for decapod crustaceans from water surfaces. The marine deposits of Hjoula are late Cenomanian in age and are well-known for fish fossils. Lebanon was submerged in the Neotethys ocean at the time, but some small islands were exposed.

History of discovery

Map showing Hjoula (a-b) and position of Lebanon during the late Cenomanian (c) Mimodactylus map.png
Map showing Hjoula (a-b) and position of Lebanon during the late Cenomanian (c)

The only known specimen of this pterosaur was collected from a private limestone quarry near the town of Hjoula, Lebanon, more than fifteen years before its 2019 scientific description. Hjoula is located 35 km (22 mi) northeast of the capital Beirut and 10 km (6.2 mi) inland from the city of Byblos. The locality is considered a Lagerstätte , a place with fossils of exceptional preservation, and belongs to the Sannine Formation, which dates to the late Cenomanian age of the Cretaceous period. Lebanese Cretaceous deposits have been known for well-preserved fish and invertebrates since the Middle Ages, but fossils of tetrapod (ancestrally four-limbed) animals are very rare. Information about Mesozoic fossils of the Afro-Arabian continent (which consisted of the then joined Arabian Peninsula and Africa, also known as the Arabo-African palaeocontinent) is generally very limited, with only South Africa having been systematically studied. [1] [2] [3] [4] [5]

The very fragile but well-preserved pterosaur specimen was split in two pieces when discovered on the limestone slab, and apart from a fracture caused by the pickaxe of a quarry worker, its skull was intact, as were the wings, legs, and body. The owner of the quarry allowed a team of researchers from the University of Alberta in Canada to prepare and describe the specimen, while intending for the fossil to be eventually sold, which is legal in Lebanon. The palaeontological community in Lebanon lacked the technology needed to prepare the fossil material in a way that would most effectively reveal information from the specimen. The specimen spent about eight years at the University of Alberta, where it was prepared, assembled, and studied. Subsequently, the owner of the quarry sold the specimen, but around 2016, after years of negotiations, the anonymous buyer donated it to the MIM Museum (abbreviation of Mineral Museum), part of Saint Joseph University of Beirut, so that it could be kept in Lebanon. [1] [2] [3]

Skeletal diagram; the scale bar is 50 mm (2.0 in) Mimodactylus skeletal.png
Skeletal diagram; the scale bar is 50 mm (2.0 in)

The Canadian palaeontologists Michael W. Caldwell and Philip J. Currie teamed up with an international group of researchers to scientifically describe the specimen, including the Brazilians Alexander W. A. Kellner, Borja Holgado, and Juliana M. Sayão, Italian Fabio M. Dalla Vecchia, and Lebanese Roy Nohra (Kellner and Dalla Vecchia had previously done fieldwork in Lebanon together). In interviews, the researchers expressed pleasure in the specimen being returned to Lebanon, where it can be used for education and research, and in having the opportunity to collaborate internationally. In 2019, Kellner and colleagues named the new genus and species Mimodactylus libanensis; the generic name refers to the MIM Museum, in recognition of where the specimen is housed and according to the wishes of the philanthropist who acquired the specimen, combined with the Greek word daktylos (δάκτυλος) for "digit". The specific name refers to Lebanon. [1] [2] [3] [6]

The holotype specimen (on which the scientific name is based) is catalogued as MIM F1, and casts are present at the University of Alberta and the National Museum of Brazil. The skeleton is well-preserved and mostly articulated, with some bones slightly displaced from their anatomical position; the skull and lower jaw are exposed from below, and the occipital region at the back of the skull and the jaw joint flattened. The holotype is the first complete and articulated pterosaur specimen known from the Afro-Arabian continent, which had otherwise only yielded a few fragmentary specimens. [1] [6] The previous most completely known pterosaur specimens from the continent were also from Lebanon: a partial forelimb of an unnamed ornithocheiroid (catalogued as MSNM V 3881) from the Hakel Lagerstätte of the same age, and Microtuban , an azhdarchoid consisting mainly of the wings and shoulder girdle, also from Hjoula. Although these specimens are less complete, their anatomical features can be clearly distinguished from Mimodactylus. [1] The specimen has become the centrepiece of the fossil vertebrate collection at the MIM Museum, where it is nicknamed "Mimo" and is exhibited alongside a hologram, a movie, a life-sized reconstruction, and a game. [7] [3]

Description

The only known Mimodactylus specimen is comparatively small, with a wingspan of 1.32 metres (4.3 ft). It was probably a young individual when it died, based on some bones not being fused; the dentary bones (teeth-bearing bones of the lower jaw) are fused at the mandibular symphysis, where the two halves of the lower jaw connect at the front. This indicates the specimen had reached an ontogenetic (growth) stage between stages 2 and 3 out of 6, according to a system for determining the age of pterosaur fossils devised by Kellner in 2015 (some bones of vertebrate animals fuse at different rates as they age). [1] [8] The adult size of Mimodactylus is unknown. [9] As a pterosaur, Mimodactylus would have been covered in hair-like pycnofibres, and had extensive wing-membranes, which were distended by the long wing-finger. [10] In an interview, Caldwell described Mimodactylus as having long, narrow wings, but with a body the size of a sparrow, a head longer than its body, and being rather like "wings with a mouth". [3]

Skull

Skull and jaws, with inset close-up of the upper front teeth Mimodactylus skull.png
Skull and jaws, with inset close-up of the upper front teeth

The preserved part of the skull of Mimodactylus is 99 mm (3.9 in) long, and the preserved part of the lower jaw is 105 mm (4.1 in). The rostrum (snout) is broad when seen from above and has a pointed tip, and not rounded as in the istiodactylid Istiodactylus , and also differs from other istiodactyliforms, the group they both belonged to. The upper jaws have eleven cone-shaped teeth on each side, and the lower jaws have ten on each side, and the teeth are confined to the front half of the jaws, as in the related Haopterus and Linlongopterus . A similar configuration is also seen in other istiodactyliforms. [1]

The tooth crowns are compressed sideways and have a cingulum (a thickened ridge at the crown base), as in Haopterus and other istiodactyliforms. A cingulum is also known from the teeth of istiodactylids and related pterosaurs, but these have wide crowns, which are also compressed sideways. Mimodactylus does not have the lancet-shaped teeth with sideways compressed crowns which are characteristic of istiodactylids, though, and also lacks the sharp carinae (cutting edges) seen in Istiodactylus. The first upper tooth of Mimodactylus is small, with an almost circular cross-section, and the following teeth are the largest of the upper jaw, and have slightly sideways compressed crowns with a cingulum, convex outer surfaces, and thin, needle-like tips which are inclined inwards. [1]

Mimodactylus's dentition is similar to that of more basal (or "primitive") archaeopterodactyloid pterosaurs such as Pterodactylus and Germanodactylus , and the only other derived (or "advanced") pterodactyloid with comparable teeth is Haopterus. The palate of Mimodactylus is concave and has a small palatal ridge, and the choanae (internal nostrils) are large and separated by the vomers. The postpalatinal fenestra (opening behind the palate) is elongated and egg-shaped, as in Hongshanopterus . The lower jaws have an odontoid (or "pseudo-tooth") process at the tip, as seen in Istiodactylus, Haopterus, and Lonchodraco . The ceratobranchials of the hyoid (tongue bone) are thin, elongated, and fork-shaped. [1]

Postcranial skeleton

The dorsal vertebrae of the back near the right scapula and coracoid Dorsal vertebrae of Mimodactylus.jpg
The dorsal vertebrae of the back near the right scapula and coracoid

The front dorsal vertebrae of the back are not fused into a notarium (a feature present in other pterosaurs) in Mimodactylus. Seven caudal vertebrae of the tail are visible, which lack a duplex centrum, and quickly diminish in size towards the rear, indicating that the tail of this species was very short. The cristospine (central crest) on the underside of the sternum (breast-bone) is comparatively short and deep, similar to those of Nurhachius and Istiodactylus. The front part of the sternum was more rounded when seen in side view than in istiodactylids, and thereby more similar to those of anhanguerids. When complete, the sternal plate would have been square in shape overall, and probably had a straight side edge and convex hind margin. The scapula (shoulder blade) is 29 mm (1.1 in) long. It is stout and has a constricted shaft, as in istiodactylids and anhanguerids, but differs in being somewhat longer than the coracoid (part of the shoulder-girdle). The coracoid is 31 mm (1.2 in) long. The articulation between the coracoid and the sternum is slightly concave as in Haopterus, with a backward protrusion that is not seen in istiodactylids. [1] [11]

The caudal vertebrae of the tail Caudal vertebrae of Mimodactylus.jpg
The caudal vertebrae of the tail

The humerus (upper arm bone) of Mimodactylus is 52 mm (2.0 in) long. The deltopectoral crest of the humerus (ridge for attachment of the deltoid and pectoral muscles) is distinctive (an autapomorphy) in being rectangular, and has an unusual, straight, lower edge. This crest extends 40% of the humeral shaft's length, more than what is seen in all other ornithocheiroids, except Pteranodon and its relatives. The ulna (a lower arm bone) is 84 mm (3.3 in) long. Some of the wing-bones are longer in relation to the humerus than in istiodactylids, especially the first two phalanx bones of the wing-finger; the humerus is unique in being less than half the length of the second phalanx. The first wing phalanx is 128 mm (5.0 in) long, the second 119 mm (4.7 in), the third 105 mm (4.1 in), and the fourth 92 mm (3.6 in). The outer part of the wing-finger's last phalanx is curved, as in most pterosaurs. [1]

The pteroid bone (a hand-bone unique to pterosaurs which supported the front wing-membrane or propatagium) of Mimodactylus is rather large, and longer than the humerus at 53 mm (2.1 in). The pteroid clearly articulated with the proximal syncarpal and pointed towards the body; the position of the pteroid in pterosaurs had been a point of contention among researchers, but was settled due to the perfect articulation of the forelimbs in Mimodactylus. The humerus is much longer than the femur (thighbone), the preserved part of which is 36 mm (1.4 in) long. The tibiotarsus (lower-leg bone) is 60 mm (2.4 in) long. As in istiodactylids, the feet are relatively small. The exact combination of its various anatomical features also distinguishes Mimodactylus from other ornithocheiroids. [1]

Classification

In their 2019 phylogenetic analysis, Kellner and colleagues found Mimodactylus to be most closely related to Haopterus (a genus from China previously classified in several groups). The two genera formed a clade within the group Lanceodontia, for which they coined the name Mimodactylidae. These researchers characterised mimodactylids by features such as cone-shaped teeth in the upper jaws, crowns slightly compressed sideways, the articular surfaces of the coracoids that connected with the sternum being slightly concave, and widely spaced teeth confined to the front half of the jaws. Kellner and colleagues found Mimodactylidae to be most closely related to Istiodactylidae and grouped the two together in the new clade Istiodactyliformes. They excluded the possibly related Linlongopterus from their analysis for being a "wildcard taxon" (of uncertain placement that changes between analyses). They noted that Mimodactylus is the first istiodactyliform known from Gondwana (the southern supercontinent which included Africa and Arabia), members of the group previously being only known from Early Cretaceous sites in Europe and Asia. [1]

Teeth (above) compared to those of the related Haopterus Teeth comparinson of Mimodactylus and Haopterus.jpg
Teeth (above) compared to those of the related Haopterus

The cladogram below shows the position of Mimodactylus and Mimodactylidae within Istiodactyliformes according to Kellner and colleagues, 2019: [1]

Pteranodontoidea

A 2021 study by the Chinese paleontologist Jiang Shunxing and colleagues found Mimodactylus in a polytomy (a group that is unresolved due to having more than two branches) with Haopterus, Yixianopterus , and Linlongopterus. [12] The Chinese paleontologist Yizhi Xu and colleagues found Mimodactylus to be the sister taxon of Linlongopterus in 2022, with Haopterus at the base of their clade. [13] The American palaeontologist Gregory S. Paul considered Yixianopterus part of Mimodactylidae in 2022. [9] A 2023 article by the British paleontologist Steven C. Sweetman noted that Mimodactylus was the latest occurring member of Istiodactyliformes. [14]

Palaeobiology

Feeding and diet

Life restoration of Mimodactylus in its environment, by Julius Csotonyi Mimodactylus in life.png
Life restoration of Mimodactylus in its environment, by Julius Csotonyi

As they have no modern analogues, it is difficult to determine the diet of pterosaurs. Suggestions have been made for the derived groups based on their dentition, such as piscivory, frugivory, durophagy, insectivory, and in the case of the related Istiodactylus, scavenging. As the dentition of Mimodactylus differs from all of these, Kellner and colleagues suggested in 2019 that it probably had different feeding habits. Insectivorous species often have slim teeth that can more easily break down arthropods, and among pterosaurs, anurognathids are thought to be adapted for this with their well-spaced, isodont (of equal length) teeth. Though Mimodactylus had wider teeth, they may otherwise have fit this mode of feeding by being able to break down the exoskeletons of arthropods. [1]

Extant vertebrate animals that feed on insects while flying have short wings with low aspect ratios that make them highly manoeuvrable in the air, unlike Mimodactylus, which had long wings with a high aspect ratio. The ability to manoeuvre during flight appears to have been limited in Mimodactylus as in open-sea fliers, and it was probably highly stable when flying, like albatrosses and some other birds. Such dynamic soaring (flying with little flapping) may also have been the mode of flying of large pterosaurs such as anhanguerians, istiodactylids and pteranodontians. Kellner and colleagues therefore suggested that instead of being insectivorous, Mimodactylus and its relatives may have foraged for decapod crustaceans from water surfaces, similar to how some albatrosses feed on shrimp. [1] The broad rostrum and widely spaced, relatively robust, and pointed teeth of Mimodactylus would have been helpful for seizing shrimp in the water. [1]

Insects had not been discovered at Hjoula or the other Cretaceous Lagerstätten of Lebanon by the time Mimodactylus was described, and fossils of terrestrial plants are very rare at Hjoula. This indicated to Kellner and colleagues that the area was very far from land, and the continent several hundreds of kilometres away. They stated that Mimodactylus lived in archipelagos and scattered islands situated on the plateau extending into the Neotethys ocean. Decapod crustaceans are the most common invertebrate fossils found at Hjoula, and fish and zooplankton could also have provided food for pterosaurs in the area. Kellner and colleagues noted that although insectivory could not be ruled out, the broad rostrum of Mimodactylus was consistent with a faunivorous diet, or primarily a diet of crustaceans, like in some extant ducks, boat-billed herons, and shoebills. They concluded that this expanded the spectrum of feeding strategies known in derived pterodactyloid pterosaurs. [1]

Fossils of Carpopenaeus, a genus of shrimp known from Hjoula; it has been proposed that Mimodactylus fed on such decapod crustaceans Carpopenaeus species shrimp, Hjoula Lebanon.jpg
Fossils of Carpopenaeus , a genus of shrimp known from Hjoula; it has been proposed that Mimodactylus fed on such decapod crustaceans

The first two fossil dragonfly species from Lebanon (including Libanoliupanshania mimi , also named for the MIM Museum) and a beetle were reported by the Lebanese palaeontologist Dany Azar and colleagues in 2019, showing that Hjoula does have potential for preserving insects. The describers pointed out that it is unusual to find only large insect fossils in marine outcrops, but noted that quarry workers at Hjoula are used to collecting larger fossils, such as fish, so collection bias may have occurred (as is also the case in Jurassic outcrops of Bavaria, where dragonflies are more frequently collected than other insects). There may also be taphonomic bias in favour of preserving strong fliers. These researchers stated that although the Hjoula outcrop represents a marine environment, fossils of terrestrial organisms (including the then newly discovered insects and pterosaurs) indicate they were deposited close to a shoreline during the early late Cenomanian. [4] More insects have since been discovered in Hjoula, supporting the idea that the area was close to the shore at the time. [15] [16]

Palaeoenvironment

Fossil of Libanopristis, a genus of ray known from Hjoula Libanopristis hiram - Milano - Museo storia naturale 22-Apr-2007.jpg
Fossil of Libanopristis , a genus of ray known from Hjoula

Mimodactylus is known from the Sannine Formation in Hjoula, Lebanon, which is dated to the late Cenomanian age of the Late Cretaceous, about 95 million years ago. This age was determined via biostratigraphy, by comparing with fossils from localities elsewhere in the world whose dates are known. Lebanon was mostly submerged on a large, shallow carbonate platform during the middle Cenomanian, which bordered the northeastern part of the Afro-Arabian continent with the Neotethys ocean, but some small islands were exposed. Deposits of the Hjoula outcrops are marine, but terrestrial fossils indicate that it was close to a palaeoshore during the late Cenomanian. [1] [4] The limestone of Hajoula is compact, soft, and laminated rock, which is characterised by being light yellow or grey-yellow in colour, and in not having flint nodules. [17]

The Cenomanian flora of Lebanon (which included pteridophytes, gymnosperms, and angiosperms) was similar to the contemporary fossil floras known from North America, Central Europe, and Crimea, and indicates a climate similar to that of the current day Mediterranean region. [4] Hjoula is known for its well-preserved fish fossils, but other organisms have been found there. One other pterosaur is known from the locality, the azhdarchoid Microtuban. [18] [1] Fish include the shark Cretalamna , the ray Libanopristis , the pachycormiform Eubiodectes , the polymixiiform Aipichthys , and the pycnodontid Nursallia . [19] [20] [21] Insects include the dragonflies Libanoliupanshania and Libanocordulia , the lacewing Lebanosmylus , a scarabaeoid beetle, and a cicadellid. [15] [22] Crustaceans include the achelatan Charbelicaris , the palinuran Palibacus , the penaeid shrimp Libanocaris and Carpopenaeus , and the lobster Notahomarus . [23] [24] Octopuses include Keuppia and Styletoctopus . [17] Many of the fossil taxa found in Hjoula are also found in the Hakel locality of the same age. [1] [23] [19]

See also

Related Research Articles

<i>Irritator</i> Spinosaurid theropod dinosaur genus from the Early Cretaceous Period

Irritator is a genus of spinosaurid dinosaur that lived in what is now Brazil during the Albian stage of the Early Cretaceous Period, about 113 to 110 million years ago. It is known from a nearly complete skull found in the Romualdo Formation of the Araripe Basin. Fossil dealers had acquired this skull and sold it to the State Museum of Natural History Stuttgart. In 1996, the specimen became the holotype of the type species Irritator challengeri. The genus name comes from the word "irritation", reflecting the feelings of paleontologists who found the skull had been heavily damaged and altered by the collectors. The species name is a homage to the fictional character Professor Challenger from Arthur Conan Doyle's novels.

<i>Batrachognathus</i> Genus of anurognathid pterosaur

Batrachognathus is an extinct genus of anurognathid pterosaur from the Late Jurassic Karabastau Formation of the central Asian republic of Kazakhstan. The genus was named in 1948 by the Russian paleontologist Anatoly Nicolaevich Ryabinin. The type species is Batrachognathus volans. The genus name is derived from Greek batrakhos, "frog" and gnathos, "jaw", in reference to the short wide head. The specific epithet means "flying" in Latin.

<i>Istiodactylus</i> Genus of istiodactylid pterosaur from the Early Cretaceous

Istiodactylus is a genus of pterosaur that lived during the Early Cretaceous period, about 120 million years ago. The first fossil was discovered on the English Isle of Wight in 1887, and in 1901 became the holotype specimen of a new species, O. latidens, in the genus Ornithodesmus. This species was moved to its own genus, Istiodactylus, in 2001; this name is Greek for "sail finger". More specimens were described in 1913, and Istiodactylus was the only pterosaur known from three-dimensionally preserved fossils for much of the 20th century. In 2006, a species from China, I. sinensis, was assigned to Istiodactylus, but it has also been suggested to belong to a different genus.

<i>Phosphatodraco</i> Late Cretaceous genus of pterosaur

Phosphatodraco is a genus of azhdarchid pterosaur that lived during the Late Cretaceous of what is now Morocco. In 2000, a pterosaur specimen consisting of five cervical (neck) vertebrae was discovered in the Ouled Abdoun Phosphatic Basin. The specimen was made the holotype of the new genus and species Phosphatodraco mauritanicus in 2003; the genus name means "dragon from the phosphates", and the specific name refers to the region of Mauretania. Phosphatodraco was the first Late Cretaceous pterosaur known from North Africa, and the second pterosaur genus described from Morocco. It is one of the only known azhdarchids preserving a relatively complete neck, and was one of the last known pterosaurs. Additional cervical vertebrae have since been assigned to the genus, and it has been suggested that fossils of the pterosaur Tethydraco represent wing elements of Phosphatodraco.

<i>Haopterus</i> Genus of pteranodontoid pterosaur from the Early Cretaceous

Haopterus is a genus of pterodactyloid pterosaur from the Barremian-Aptian-age Lower Cretaceous Yixian Formation of Liaoning, China. Its fossil remains dated back 124.6 million years ago.

Liaoxipterus is a genus of pterodactyloid pterosaur from the Barremian-Aptian-age Lower Cretaceous Jiufotang Formation of Chaoyang, Liaoning, China. The type species is Liaoxipterus brachyognathus. The genus name is derived from the discovery locality Liaoxi and a Latinised Greek pteron, "wing". The specific name is derived from Greek brachys, "short" and gnathos, "jaw".

<i>Nurhachius</i> Genus of istiodactylid pterosaur from the Early Cretaceous

Nurhachius is a genus of istiodactylid pterodactyloid pterosaur from the Barremian to Aptian-age Lower Cretaceous Jiufotang Formation of Chaoyang, Liaoning, China. Its fossil remains date back about 120 million years ago.

Longchengpterus, sometimes misspelled as "Lonchengopterus", is a genus of istiodactylid pterodactyloid pterosaur from the Barremian-Aptian-age Lower Cretaceous Jiufotang Formation of Chaoyang, Liaoning, China. Its fossil remains dated back about 120 million years ago.

<span class="mw-page-title-main">Ornithocheiridae</span> Family of ornithocheiran pterosaurs

Ornithocheiridae is a group of pterosaurs within the suborder Pterodactyloidea. These pterosaurs were among the last to possess teeth. Members that belong to this group lived from the Early to Late Cretaceous periods, around 140 to 90 million years ago.

Hongshanopterus is a genus of pterodactyloid pterosaur from the Lower Cretaceous Jiufotang Formation of Liaoning, China.

<span class="mw-page-title-main">Istiodactylidae</span> Family of istiodactyliform pterosaurs

Istiodactylidae is a small family of pterosaurs. This family was named in 2001 after the type genus Istiodactylus was discovered not to be a member of the genus Ornithodesmus.

Gwawinapterus beardi is a species of saurodontid ichthyodectiform fish from the Late Cretaceous period of British Columbia, Canada. While initially described as a very late-surviving member of the pterosaur family Istiodactylidae, further examination has cast doubt on the identification of the specimen as a pterosaur, and research published in 2012 identified the remains as having come from a saurodontid fish.

<i>Oxalaia</i> Extinct genus of dinosaurs

Oxalaia is a genus of spinosaurid dinosaur that lived in what is now the Northeast Region of Brazil during the Cenomanian stage of the Late Cretaceous period, sometime between 100.5 and 93.9 million years ago. Its only known fossils were found in 1999 on Cajual Island in the rocks of the Alcântara Formation, which is known for its abundance of fragmentary, isolated fossil specimens. The remains of Oxalaia were described in 2011 by Brazilian palaeontologist Alexander Kellner and colleagues, who assigned the specimens to a new genus containing one species, Oxalaia quilombensis. The species name refers to the Brazilian quilombo settlements. Oxalaia quilombensis is the eighth officially named theropod species from Brazil and the largest carnivorous dinosaur discovered there. It is closely related to the African genus Spinosaurus, and/or may be a junior synonym of this taxon.

<i>Microtuban</i> Genus of azhdarchoid pterosaur from the Late Cretaceous

Microtuban is an extinct genus of azhdarchoid pterosaur known from the Late Cretaceous of northern Lebanon.

<i>Bellubrunnus</i> Genus of rhamphorhynchid pterosaur from the Late Jurassic

Bellubrunnus is an extinct genus of rhamphorhynchid pterosaur from the Late Jurassic of southern Germany. It contains a single species, Bellubrunnus rothgaengeri. Bellubrunnus is distinguished from other rhamphorhynchids by its lack of long projections on the vertebrae of the tail, fewer teeth in the jaws, and wingtips that curve forward rather than sweep backward as in other pterosaurs.

<i>Cimoliopterus</i> Genus of pterosaur from the Cretaceous period

Cimoliopterus is a genus of pterosaur that lived during the Late Cretaceous in what is now England and the United States. The first known specimen, consisting of the front part of a snout including part of a crest, was discovered in the Grey Chalk Subgroup of Kent, England, and described as the new species Pterodactylus cuvieri in 1851. The specific name cuvieri honours the palaeontologist George Cuvier, whereas the genus Pterodactylus was then used for many pterosaur species that are not thought to be closely related today. It was among the first pterosaurs to be depicted as sculptures, in Crystal Palace Park in the 1850s. The species was subsequently assigned to various other genera, including Ornithocheirus and Anhanguera. In 2013, the species was moved to a new genus, as Cimoliopterus cuvieri; the generic name Cimoliopterus is derived from the Greek words for "chalk" and "wing". Other specimens and species have also been assigned to or synonymised with the species with various levels of certainty. In 2015, a snout discovered in the Britton Formation of Texas, US, was named as a new species in the genus, C. dunni; the specific name honours its collector, Brent Dunn.

<i>Ikrandraco</i> Genus of lonchodraconid pterosaur from the Early Cretaceous

Ikrandraco is a genus of lonchodraconid pterodactyloid pterosaur known from the Lower Cretaceous Jiufotang Formation of northeastern China, and the Cambridge Greensand of England. It is notable for its unusual skull, which features a crest on the lower jaw.

<span class="mw-page-title-main">Ornithocheiromorpha</span> Clade of pteranodontoid pterosaurs

Ornithocheiromorpha is a group of pterosaurs within the suborder Pterodactyloidea. Fossil remains of this group date back from the Early to Late Cretaceous periods, around 140 to 92.5 million years ago. Ornithocheiromorphs were discovered worldwide except Antarctica, though most genera were recovered in Europe, Asia and South America. They were the most diverse and successful pterosaurs during the Early Cretaceous, but throughout the Late Cretaceous they were replaced by better adapted and more advanced pterosaur species such the pteranodontids and azhdarchoids. The Ornithocheiromorpha was defined in 2014 by Andres and colleagues, and they made Ornithocheiromorpha the most inclusive clade containing Ornithocheirus, but not Pteranodon.

<i>Forfexopterus</i> Genus of ctenochasmatid pterosaur from the Early Cretaceous

Forfexopterus is a genus of ctenochasmatid pterosaur from the Early Cretaceous Jiufotang Formation in China. It contains a single species, F. jeholensis, named from a mostly complete skeleton by Shunxing Jiang and colleagues in 2016. A second specimen, consisting of a wing, was described in 2020. While the first specimen is larger, it shows signs of being less mature than the second specimen, indicating that the developmental trajectories of Forfexopterus were variable. Like other ctenochasmatids, Forfexopterus had a long, low skull filled with many slender teeth; unlike other members of the group, however, it did not have a spatula-shaped snout tip or crests, and its teeth were more curved. A single characteristic distinguishes Forfexopterus from all other members of the wider group Archaeopterodactyloidea: of the four phalanx bones in its wing finger, the first was shorter than the second but longer than the third.

Linlongopterus is a genus of pteranodontoid pterodactyloid pterosaur from the Early Cretaceous of China. It is known from a partial skull and mandible first named and described in 2015 by Rodrigues et al.. The only known specimen was found in the Jiufotang Formation of the Liaoning Province or China, and lived around 120 million years ago. The full binomial of the taxon is Linlongopterus jennyae, with the generic name translating from the Chinese "forest" (lin) and "dragon" (long), and the Greek "wing" (pteros), while the species name honours Elfriede Kellner, nicknamed Jenny, a supporter of paleontology. The proper word for wing in ancient Greek is however pteron (πτερόν).

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Kellner, Alexander W. A.; Caldwell, Michael W.; Holgado, Borja; Vecchia, Fabio M. Dalla; Nohra, Roy; Sayão, Juliana M.; Currie, Philip J. (2019). "First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity". Scientific Reports. 9 (1): 17875. Bibcode:2019NatSR...917875K. doi: 10.1038/s41598-019-54042-z . PMC   6884559 . PMID   31784545.
  2. 1 2 3 "Pterosaur flies safely home after 95 million years". The Archaeology News Network. 2016. Archived from the original on August 25, 2022. Retrieved 3 August 2023.
  3. 1 2 3 4 5 Bartko, Karen (2019). "New kind of pterodactyl uncovered with help from U of A paleontologist". Global News. Retrieved 3 August 2023.
  4. 1 2 3 4 Azar, Dany; Maksoud, Sibelle; Huang, Diying; Nel, André (2019). "First Lebanese dragonflies (Insecta: Odonata, Aeshnoptera, Cavilabiata) from the Arabo-African mid-Cretaceous paleocontinent" (PDF). Cretaceous Research. 93: 78–89. Bibcode:2019CrRes..93...78A. doi:10.1016/j.cretres.2018.08.025. S2CID   134308438.
  5. Capasso, Luigi (2017). "The history and the situation of the world famous fossil fish quarries in Lebanon". Bollettino del Museo Civico di Storia Naturale di Verona. 41: 53–76.
  6. 1 2 Sousa, Thais (2019). "Brazilians find new species of flying reptile in Lebanon". Agência de Notícias Brasil-Árabe. Retrieved 24 July 2023.
  7. "Interactive map of MIM - Pterosaur Area". www.mim.museum. Retrieved 24 July 2023.
  8. Kellner, Alexander W.A. (2015). "Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa". Anais da Academia Brasileira de Ciências. 87 (2): 669–689. doi: 10.1590/0001-3765201520150307 . PMID   26131631.
  9. 1 2 Paul, Gregory S. (2022). The Princeton Field Guide to Pterosaurs. Princeton: Princeton University Press. p. 143. ISBN   9780691180175.
  10. Witton, Mark P. (2013). Pterosaurs: Natural History, Evolution, Anatomy (1st ed.). Princeton and Oxford: Princeton University Press. pp. 51–52. ISBN   978-0-691-15061-1.
  11. Hone, David W. E. (2023). "The anatomy and diversity of the pterosaurian sternum". Palaeontologia Electronica. 26 (1): 13–14. doi: 10.26879/1261 . S2CID   258273168.
  12. Shunxing, Jiang; Shunxing, Zhang; Xin, Cheng; Xiao-Lin, Wang (2021). "A new pteranodontoid pterosaur forelimb from the upper Yixian Formation, with a revision of Yixianopterus jingangshanensis". Vertebrata PalAsiatica. 59 (2): 81. doi:10.19615/j.cnki.1000-3118.201124. ISSN   2096-9899.
  13. Xu, Yizhi; Jiang, Shunxing; Wang, Xiaolin (2022). "A new istiodactylid pterosaur, Lingyuanopterus camposi gen. et sp. nov., from the Jiufotang Formation of western Liaoning, China". PeerJ. 10: e13819. doi: 10.7717/peerj.13819 . PMC   9336611 . PMID   35910775.
  14. Sweetman, Steven C. (2023). "Pterosaur teeth from the Lower Cretaceous (Valanginian) Cliff End Bone Bed, Wadhurst Clay Formation, Wealden Supergroup of southern England, and their possible affinities". Cretaceous Research. 151: 105622. doi: 10.1016/j.cretres.2023.105622 .
  15. 1 2 Maksoud, Sibelle; Granier, Bruno R.C.; Azar, Dany (2022). "Palaeoentomological (fossil insects) outcrops in Lebanon". Carnets de géologie (Notebooks on geology). 22 (16): 699–743. doi:10.2110/carnets.2022.2216. S2CID   253513442.
  16. Maksoud, Sibelle; Azar, Dany (2021). "Hjoula: A remarkable mid-Cenomanian Lebanese fossil fish Lagerstätte now promising also for fossil insects". Palaeoentomology. 4 (3): 223–227. doi:10.11646/palaeoentomology.4.3.8. ISSN   2624-2834. S2CID   237877058.
  17. 1 2 Fuchs, Dirk; Bracchi, Giacomo; Weis, Robert (2009). "New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon". Palaeontology. 52 (1): 65–81. Bibcode:2009Palgy..52...65F. doi: 10.1111/j.1475-4983.2008.00828.x . S2CID   129082916.
  18. Elgin, Ross A.; Frey, Eberhard (2011). "A new azhdarchoid pterosaur from the Cenomanian (Late Cretaceous) of Lebanon". Swiss Journal of Geosciences. 104 (S1): 21–33. doi: 10.1007/s00015-011-0081-1 . S2CID   128405107.
  19. 1 2 Hay, Oliver P. (1903). "On a collection of Upper Cretaceous fishes from Mount Lebanon, Syria, with descriptions of four new genera and nineteen new species". Bulletin of the American Museum of Natural History. 19: 395–452.
  20. Capasso, Luigi L.; Abi Saad, Pierre; Taverne, Louis (2009). "Nursallia tethysensis sp. nov., a new pycnodont fish (Neopterygii: †halecostomi) from the Cenomanian of Lebanon". Bulletin de l'Institut Royal des Sciences Naturelles de Belqique, Sciences de la Terre. 79: 117–136.
  21. Greenfield, Tyler (2022). "Additions to "List of skeletal material from megatooth sharks", with a response to Shimada (2022)". Paleoichthys. 6: 6–11. ISSN   2748-8721.
  22. Azar, Dany; Nel, André (2022). "The youngest and first Lebanese representative of the family Saucrosmylidae (Insecta, Neuroptera) from the Cenomanian". Palaeoentomology. 5 (2): 155–160. doi:10.11646/palaeoentomology.5.2.8.
  23. 1 2 Garassino, Alessandro (1994). "The macruran decapod crustaceans of the Upper Creataceous of Lebanon". Paleontologia Lombarda. III: 5.
  24. Haug, Joachim T.; Audo, Denis; Charbonnier, Sylvain; Palero, Ferran; Petit, Gilles; Abi Saad, Pierre; Haug, Carolin (2016). "The evolution of a key character, or how to evolve a slipper lobster" (PDF). Arthropod Structure & Development. 45 (2): 97–107. doi:10.1016/j.asd.2015.08.003. PMID   26319267.