Progestogen-only pill

Last updated
Progestogen-only pill
Background
TypeHormonal
First use1968 [1] [2]
Failure rates (first year)
Perfect use0.3% [3]
Typical use9% [3]
Usage
Duration effect1 day
ReversibilityYes
User remindersTaken within same 3-hour window each day
Clinic review6 months
Advantages and disadvantages
STI protectionNo
WeightNo proven effect
Period disadvantagesLight spotting may be irregular
Period advantagesOften lighter and less painful
Medical notes
Unaffected by being on most (but not all) antibiotics. May be used, unlike COCPs, in patients with hypertension and history of migraines. Affected by some anti-epileptics.

Progestogen-only pills (POPs), colloquially known as "mini pills", are a type of oral contraceptive that contain synthetic progestogens (progestins) and do not contain estrogens. [4] They are primarily used for the prevention of undesired pregnancy, although additional medical uses also exist. [5]

Contents

Progestogen-only pills differ from combined oral contraceptive pills (COCPs), which instead consist of a combination of synthetic estrogens and progestin hormones. [6]

Terminology

"Progestogen-only pills," "Progestin-only pills," and "Progesterone-only pills" are terms each referring to the same class of synthetic hormone medications. The phrase "Progestogen-only pill" is used by the World Health Organization and much of the international medical community. [7] The phrase "Progestin-only pills" is typically used in the United States and Canada. [8]

Despite sometimes being referred to as "Progesterone-only pills," these medications do not contain progesterone but instead one of several chemically related compounds. [9] For example, the medication Opill contains the synthetic hormone Norgestrel, which has some distinct chemical differences despite producing a similar physiological effect. [10]

Chemical structure of Progesterone, a natural steroid hormone produced in the human body. Progesterone.svg
Chemical structure of Progesterone, a natural steroid hormone produced in the human body.
Chemical structure of Norgestrel, a synthetic steroid hormone used in the brand name medication Opill. Norgestrel Structure.svg
Chemical structure of Norgestrel, a synthetic steroid hormone used in the brand name medication Opill.

Available formulations

Progestogens share the common feature of being able to bind to the body's progesterone receptors and enact a physiological effect similar to naturally occurring progesterone. [11] Still, there are differences between progestogens, and various organizational systems exist to categorize the progestogen hormones used in oral contraception medications.

By Generation - based on when it became available for use, each synthetic hormone can be grouped into 1 of 4 generations of medications. [12] A medication's generation is not necessarily a reflection of safety or efficacy.

By Additional Receptor Activity - each medication may act upon other receptors such as androgen receptors, estrogen receptors, glucocorticoid receptors, and mineralocorticoid receptors. Additional interactions may be positive, increasing activity at a given receptor, or negative, decreasing activity at a given receptor. The overall profile of these additional actions for each medication can be used to describe and contrast progestogens. [13]

Progestogen-only pill formulations: [12] [14] [15] [16] [17]
Generic Formulation (Dose)GenerationBrand name(s)Additional receptor activity
Desogestrel (75 μg)3rdCerazette

Cerelle

Gonadotropin (-)

Estrogen (-)

Androgen (+)

Drospirenone (4 mg)4thSlyndGonadotropin (-)

Estrogen (-)

Androgen (-)

Mineralocorticoid (-)

Norethisterone (350 μg)1stMicronor

Nor-QD

Noriday

Gonadotropin (-)

Estrogen (-/+)

Pro-androgen (+)

Coagulation (+)

Norgestrel (0.075 mg)2ndOpill
Etynodiol diacetate (500 μg)1stFemulen
Levonorgestrel (30 μg)2nd28 mini

Microval

Norgeston

Gonadotropin (-)

Estrogen (-)

Androgen (+)

Lynestrenol (500 μg)1stExluton

Mini-kare

Gonadotropin (-)

Estrogen (-/+)

Androgen (+)

Norethindrone or Norethisterone (300 μg)1stCamila

Mini-Pe

Errin

Heather

Jolivette

Micronor

Nor-QD

Nora-BE

Lyza

Sharobel

Deblitane

Gonadotropin (-)

Estrogen (-/+)

Androgen (+)

Coagulation (+)

Norgestrel (75 μg) or Levonorgestrel (37.5 μg)2ndMinicon

Neogest

Ovrette

Opill

Gonadotropin (-)

Estrogen (-)

Androgen (+)

Chlormadinone acetate (0.5 mg)1stBelara

Lutéran

Prostal

Quingestanol acetate (0.3 mg)-Demovis

Pilomin

In the United States, progestogen-only pills are available in 350-μg Norethisterone, 4-mg Drospirenone and Norgestrel 0.075-mg formulations. [18] Norgestrel is FDA-approved for over-the-counter availability, [19] and Norethindrone and Drospirenone are available by prescription.

Medical uses

Progestogen-only pills are one management option for the suppression of menstruation to avoid pregnancy. [20]

With "perfect use," the efficacy of progestogen-only pills in avoiding unintended pregnancy has been found to be greater than 99%, meaning that less than 1 out of every 100 patients will experience undesired pregnancy within the first year of use. [16] "Perfect use" means that an individual uses their contraceptive pill at the same time every day without missing a scheduled dose. [21]

Assuming "typical use," the theoretical efficacy of progestogen-only pills in avoiding undesired pregnancy falls to around 91-93%, meaning that approximately 7 to 9 out of every 100 patients will experience an unintended pregnancy within the first year of use. [22] [23] "Typical use" means that an individual uses their contraceptive pill at inconsistent times day to day and/or misses scheduled doses. [21] The study reporting the "typical use" failure rate failed to differentiate COCPs and POPs as distinct medications and instead studied them as a combined group, decreasing the validity of this finding. The results were published before the widespread use of progestogen-only pills other than Norethindrone and may not be applicable to formulations that have since been developed. Reported efficacy varies between types of progestogen-only pills. For example, Norgestrel has a reported failure rate of 2%, [24] and Drosperinone has a reported failure rate of 1.8%. [25]

Some progestogen-only formulations, such as those containing Norethindrone, were thought to have a shorter duration of effect than COCPs. [26] As a result, current guidelines recommend no more than 27 hours between doses to ensure effectiveness, creating a 3-hour window of variability. [27] However, a more recent meta-analysis suggested that there is actually a significantly longer half-life for many of the now available progestogen-only pill formulations. For example, Norgestrel and Drosperinone, in particular, appear to have a longer window of efficacy. More variation in dose timing may still effectively prevent pregnancy. [28] Although the 3-hour window is still widely respected, some researchers have expressed their belief that an update to these guidelines may be beneficial. [29]

Mechanism of action

Depending on the specific progestogen and its corresponding dose, the contraceptive effect of progestogen-only pills is enacted through combinations of the following mechanisms: [30]

Breastfeeding

Patients who have recently given birth may benefit from contraception, as experiencing another pregnancy within six months of delivery is associated with poor outcomes for the second pregnancy. [35] Lactational amenorrhea, although a common and effective method of preventing unwanted pregnancy following childbirth, may not be attainable for mothers who elect for or require supplemental or total child feeding with formula. [36] Combined oral contraceptives are not typically recommended until six months following delivery. Progestogen-only pills, however, can be a viable contraceptive option for patients immediately following delivery regardless of breastfeeding habits. [23]

Comparison to combined oral contraceptives

Patient groups who choose COCPs versus 'progestogen-only pills may also differ in important ways, as progesterone-only pills are often preferentially prescribed to subfertile groups such as recently postpartum women or older women. Progestogen-only pills may also be prescribed for individuals wanting an oral form of birth control but do not wish to use estrogen-containing methods due to medical contraindications, intolerable side effects, or personal preference. [8] Examples of contraindications to estrogen-containing methods of contraception include relatively common conditions such as hypertension, migraine headaches with aura, or a history of pulmonary embolism or deep vein thrombosis. [37] On the other hand, progestogen-only pills are safe for use by all these groups. [38] The progestogen-only pill is also recommended for people who have recently given birth and desire a pill for contraception, given the risk of blood clots for both postpartum patients and people using estrogen-containing methods of contraception. [39]

Abnormal uterine bleeding

Given their ability to impact the menstrual cycle and stabilize the endometrial lining of the uterus, progestogen-only pills may also be used to treat various patterns of abnormal uterine bleeding. [40]

Patients with unexplained, abnormal uterine bleeding should be evaluated by a medical professional either through appointment or through a visit to the emergency department. The initial assessment of abnormal uterine bleeding typically focuses on ensuring the patient is medically stable and not in any immediate danger from the underlying cause or associated blood loss. The PALM-COEIN classification system has been developed to understand well-known causes of abnormal uterine bleeding in reproductive-age patients. [41] Understanding the underlying cause of bleeding is an important part of determining the best next step for treatment in each patient's circumstance. Generally, the treatment of abnormal uterine bleeding focuses on controlling the current episode of bleeding and reducing further blood loss in future menstrual cycles or acute episodes.[ citation needed ]

Depending on the presumed underlying cause of bleeding, medical management with progestogen-only pills, combined oral contraceptives, or tranexamic acid may be appropriate. One study found that 76% of patients who took oral medroxyprogesterone acetate (20 mg) for treatment of bleeding unrelated to pregnancy saw resolution of their bleeding. The median time to resolution was 3 days from beginning medical therapy. [42]

The decision to use POPs to treat abnormal uterine bleeding should be made in consultation with a medical professional who can offer guidance on the appropriateness of this treatment option.[ citation needed ]

Adenomyosis

Patients with adenomyosis may be prescribed progestogen-only pills as a part of their treatment. Through their ability to cause amenorrhea, progestogen-only pills can help reduce the symptoms associated with this condition. Levonorgestrel-IUDs may be more effective than progestogen-only pills and reducing associated bleeding (maintaining healthy hemoglobin levels), uterine volume, and pain, although both methods have shown a beneficial impact. That being said, there is currently no definitive treatment guideline, and management can be tailored based on the patient's medical history, preferences, and response to treatment. [43]

Endometriosis

Patients experiencing mild to moderate pelvic pain from endometriosis may be given non-steroidal anti-inflammatory drugs (NSAIDs) as well as hormonal contraceptives (COCPs or POPs) to help manage their symptoms. For a long time, combined oral contraceptives have been used as the first-line hormonal contraceptive (vs. progestogen-only pills) for the treatment of endometriosis. However, progestogen-only pills, including dienogest, medroxyprogesterone acetate, norethisterone, and cyproterone, are also effective in treating symptoms (i.e., pain, excess uterine bleeding), reducing associated lesions, and improving patient quality of life. [44] [45] Recognizing that some patients cannot receive combined oral contraceptives due to a contraindication to the estrogen component, these findings show promise that progestogens can be an alternative therapy capable of producing adequate symptom relief. Progestogen-only pills are typically not given to patients experiencing severe symptoms.[ citation needed ]

Decreased likelihood of malignancy

Daily progesterone use decreases the risk of endometrial cancer, [46] whereas it is unclear whether POPs provide protection against ovarian cancer to the extent that COCPs do.[ citation needed ]

Side effects

Genitourinary

Breast cancer risk

Epidemiological evidence on POPs and breast cancer risk is based on much smaller populations of users and so is less conclusive than that for COCPs.

In the largest (1996) reanalysis of previous studies of hormonal contraceptives and breast cancer risk, less than 1% were POP users. Current or recent POP users had a slightly increased relative risk (RR 1.17) of breast cancer diagnosis that just missed being statistically significant. The relative risk was similar to that found for current or recent COCP users (RR 1.16), and, as with COCPs, the increased relative risk decreased over time after stopping, vanished after 10 years, and was consistent with being due to earlier diagnosis or promoting the growth of a preexisting cancer. [51] [52]

The most recent (1999) IARC evaluation of progestogen-only hormonal contraceptives reviewed the 1996 reanalysis as well as 4 case-control studies of POP users included in the reanalysis. They concluded that: "Overall, there was no evidence of an increased risk of breast cancer". [53]

Recent anxieties about the contribution of progestogens to the increased risk of breast cancer associated with HRT in postmenopausal women such as found in the WHI trials [54] have not spread to progestogen-only contraceptive use in premenopausal women. [30]

Depression

There is a growing body of research investigating the links between hormonal contraception, such as the progestogen-only pill, and potential adverse effects on women's psychological health. [55] [56] [57] The findings from a large Danish study of one million women (followed-up from January 2000 to December 2013) were published in 2016, and reported that the use of hormonal contraception, particularly amongst adolescents, was associated with a statistically significant increased risk of subsequent depression. [56] The authors found that women on the progestogen-only pill in particular, were 34% more likely to subsequently take anti-depressants or be given a diagnosis of depression, in comparison with those not on hormonal contraception. [56] In 2018, a similarly large nationwide cohort study in Sweden amongst women aged 12–30 (n=815,662) found an association, particularly amongst adolescents aged 12–19, between hormonal contraception and subsequent use of psychotropic drugs. [55] Still, the results of these studies are inconclusive because they are observational and cannot establish causality. Additionally, the studies do not account for the possibility of confounding factors, such as preexisting health conditions, which could influence the results. [58]

Weight gain

There is some evidence that progestogen-only contraceptives may lead to slight weight gain (on average less than 2 kg in the first year) compared to women not using any hormonal contraception. [59]

History

The first POP to be introduced contained 0.5 mg chlormadinone acetate and was marketed in Mexico and France in 1968. [1] [2] [17] However, it was withdrawn in 1970 due to safety concerns pertaining to long-term animal toxicity studies. [1] [2] [17] Subsequently, levonorgestrel 30 μg (brand name Microval) was marketed in Germany in 1971. [60] [61] It was followed by a number of other POPs shortly thereafter in the early 1970s, including etynodiol diacetate, lynestrenol, norethisterone, norgestrel, and quingestanol acetate. [60] [62] Desogestrel 75 μg (brand name Cerzette) was marketed in Europe in 2002 and was the most recent POP to be introduced. [63] [62] [64] It differs from earlier POPs in that it is able to inhibit ovulation in 97% of cycles. [62] [64]

In July 2023, the USA Food and Drug Administration (FDA) approved the first over-the-counter (OTC) POP birth control pill to be sold without a prescription in the United States. The pill, marketed under the brand name Opill, is once daily 0.075 mg oral norgestrel. [65]

See also

Related Research Articles

<span class="mw-page-title-main">Emergency contraception</span> Birth control measures taken after sexual intercourse

Emergency contraception (EC) is a birth control measure, used after sexual intercourse to prevent pregnancy.

<span class="mw-page-title-main">Combined oral contraceptive pill</span> Birth control method which is taken orally

The combined oral contraceptive pill (COCP), often referred to as the birth control pill or colloquially as "the pill", is a type of birth control that is designed to be taken orally by women. It is the oral form of combined hormonal contraception. The pill contains two important hormones: a progestin and estrogen. When taken correctly, it alters the menstrual cycle to eliminate ovulation and prevent pregnancy.

<span class="mw-page-title-main">Progestogen (medication)</span> Medication producing effects similar to progesterone

A progestogen, also referred to as a progestagen, gestagen, or gestogen, is a type of medication which produces effects similar to those of the natural female sex hormone progesterone in the body. A progestin is a synthetic progestogen. Progestogens are used most commonly in hormonal birth control and menopausal hormone therapy. They can also be used in the treatment of gynecological conditions, to support fertility and pregnancy, to lower sex hormone levels for various purposes, and for other indications. Progestogens are used alone or in combination with estrogens. They are available in a wide variety of formulations and for use by many different routes of administration. Examples of progestogens include natural or bioidentical progesterone as well as progestins such as medroxyprogesterone acetate and norethisterone.

<span class="mw-page-title-main">Levonorgestrel</span> Hormonal medication used for birth control

Levonorgestrel is a hormonal medication which is used in a number of birth control methods. It is combined with an estrogen to make combination birth control pills. As an emergency birth control, sold under the brand names Plan B One-Step and Julie, among others, it is useful within 72 hours of unprotected sex. The more time that has passed since sex, the less effective the medication becomes, and it does not work after pregnancy (implantation) has occurred. Levonorgestrel works by preventing ovulation or fertilization from occurring. It decreases the chances of pregnancy by 57–93%. In an intrauterine device (IUD), such as Mirena among others, it is effective for the long-term prevention of pregnancy. A levonorgestrel-releasing implant is also available in some countries.

<span class="mw-page-title-main">Hormonal intrauterine device</span> Intrauterine device

A hormonal intrauterine device (IUD), also known as an intrauterine system (IUS) with progestogen and sold under the brand name Mirena among others, is an intrauterine device that releases a progestogenic hormonal agent such as levonorgestrel into the uterus. It is used for birth control, heavy menstrual periods, and to prevent excessive build of the lining of the uterus in those on estrogen replacement therapy. It is one of the most effective forms of birth control with a one-year failure rate around 0.2%. The device is placed in the uterus and lasts three to eight years. Fertility often returns quickly following removal.

<span class="mw-page-title-main">Ethinylestradiol</span> Estrogen medication

Ethinylestradiol (EE) is an estrogen medication which is used widely in birth control pills in combination with progestins. In the past, EE was widely used for various indications such as the treatment of menopausal symptoms, gynecological disorders, and certain hormone-sensitive cancers. It is usually taken by mouth but is also used as a patch and vaginal ring.

Extended or continuous cycle combined oral contraceptive pills are a packaging of combined oral contraceptive pills (COCPs) that reduce or eliminate the withdrawal bleeding that would occur once every 28 days in traditionally packaged COCPs. It works by reducing the frequency of the pill-free or placebo days. Extended cycle use of COCPs may also be called menstrual suppression, although other hormonal medications or medication delivery systems may also be used to suppress menses. Any brand of combined oral contraceptive pills can be used in an extended or continuous manner by simply discarding the placebo pills; this is most commonly done with monophasic pills in which all of the pills in a package contain the same fixed dosing of a synthetic estrogen and a progestin in each active pill.

<span class="mw-page-title-main">Desogestrel</span> Medication

Desogestrel is a progestin medication which is used in birth control pills. It is also used in the treatment of menopausal symptoms in women. The medication is available and used alone or in combination with an estrogen. It is taken by mouth.

<span class="mw-page-title-main">Drospirenone</span> Medication drug

Drospirenone is a progestin and antiandrogen medication which is used in birth control pills to prevent pregnancy and in menopausal hormone therapy, among other uses. It is available both alone under the brand name Slynd and in combination with an estrogen under the brand name Yasmin among others. The medication is an analog of the drug spironolactone. Drospirenone is taken by mouth.

<span class="mw-page-title-main">Norethisterone acetate</span> Chemical compound

Norethisterone acetate (NETA), also known as norethindrone acetate and sold under the brand name Primolut-Nor among others, is a progestin medication which is used in birth control pills, menopausal hormone therapy, and for the treatment of gynecological disorders. The medication available in low-dose and high-dose formulations and is used alone or in combination with an estrogen. It is ingested orally.

<span class="mw-page-title-main">Norgestrel</span> Progestin medication used for birth control

Norgestrel, sold under the brand name Opill among others, is a progestin which is used in birth control pills. It is often combined with the estrogen ethinylestradiol, marketed as Ovral. It is also used in menopausal hormone therapy. It is taken by mouth.

Intermenstrual bleeding (IMB), or metrorrhagia, is vaginal bleeding at irregular intervals between expected menstrual periods. It may be associated with bleeding with sexual intercourse. The term metrorrhagia, in which metro means measure and -rrhagia means abnormal flow, is no longer recommended.

<span class="mw-page-title-main">Hormonal contraception</span> Birth control methods that act on the endocrine system

Hormonal contraception refers to birth control methods that act on the endocrine system. Almost all methods are composed of steroid hormones, although in India one selective estrogen receptor modulator is marketed as a contraceptive. The original hormonal method—the combined oral contraceptive pill—was first marketed as a contraceptive in 1960. In the ensuing decades, many other delivery methods have been developed, although the oral and injectable methods are by far the most popular. Hormonal contraception is highly effective: when taken on the prescribed schedule, users of steroid hormone methods experience pregnancy rates of less than 1% per year. Perfect-use pregnancy rates for most hormonal contraceptives are usually around the 0.3% rate or less. Currently available methods can only be used by women; the development of a male hormonal contraceptive is an active research area.

<span class="mw-page-title-main">Dienogest</span> Chemical compound

Dienogest, sold under the brand name Visanne among others, is a progestin medication which is used in birth control pills and in the treatment of endometriosis. It is also used in menopausal hormone therapy and to treat heavy periods. Dienogest is available both alone and in combination with estrogens. It is taken by mouth.

<span class="mw-page-title-main">Medroxyprogesterone acetate</span> Injectable form of birth control

Medroxyprogesterone acetate (MPA), also known as depot medroxyprogesterone acetate (DMPA) in injectable form and sold under the brand name Depo-Provera among others, is a hormonal medication of the progestin type. It is used as a method of birth control and as a part of menopausal hormone therapy. It is also used to treat endometriosis, abnormal uterine bleeding, paraphilia, and certain types of cancer. The medication is available both alone and in combination with an estrogen. It is taken by mouth, used under the tongue, or by injection into a muscle or fat.

<span class="mw-page-title-main">Nomegestrol acetate</span> Chemical compound

Nomegestrol acetate (NOMAC), sold under the brand names Lutenyl and Zoely among others, is a progestin medication which is used in birth control pills, menopausal hormone therapy, and for the treatment of gynecological disorders. It is available both alone and in combination with an estrogen. NOMAC is taken by mouth. A birth control implant for placement under the skin was also developed but ultimately was not marketed.

Progestogen-only injectable contraceptives (POICs) are a form of hormonal contraception and progestogen-only contraception that are administered by injection and providing long-lasting birth control. As opposed to combined injectable contraceptives, they contain only a progestogen without an estrogen, and include two progestin preparations:

<span class="mw-page-title-main">Progesterone (medication)</span> Medication and naturally occurring steroid hormone

Progesterone (P4), sold under the brand name Prometrium among others, is a medication and naturally occurring steroid hormone. It is a progestogen and is used in combination with estrogens mainly in hormone therapy for menopausal symptoms and low sex hormone levels in women. It is also used in women to support pregnancy and fertility and to treat gynecological disorders. Progesterone can be taken by mouth, vaginally, and by injection into muscle or fat, among other routes. A progesterone vaginal ring and progesterone intrauterine device used for birth control also exist in some areas of the world.

<span class="mw-page-title-main">Combined hormonal contraception</span> Form of hormonal contraception combining both an estrogen and a progestogen

Combined hormonal contraception (CHC), or combined birth control, is a form of hormonal contraception which combines both an estrogen and a progestogen in varying formulations.

Menstrual suppression refers to the practice of using hormonal management to stop or reduce menstrual bleeding. In contrast to surgical options for this purpose, such as hysterectomy or endometrial ablation, hormonal methods to manipulate menstruation are reversible.

References

  1. 1 2 3 Annetine Gelijns (1991). Innovation in Clinical Practice: The Dynamics of Medical Technology Development. National Academies. pp. 172–. NAP:13513. Development of the minipill, which contains only a progestin, was another result of concerns over the thromboembolic side effects of combination oral contraceptives.36 This development was also driven by the expectation that lower steroid doses would diminish effects on the metabolic and reproductive systems, lessen complaints about nausea and headache, and improve compliance (because it offered a regimen of continuous pill taking rather than the cyclic regimen of earlier pill formulations).37 Syntex was the first to introduce a 0.5 milligram chlor- madinone acetate minipill in 1968 in France, although this pill was withdrawn from the market in 1970 when long-term animal toxicity tests for the FDA revealed the occurrence of breast nodules in beagles.38 Nevertheless, other manufacturers began to pursue minipill development using their own progestogens, and since 1970 a variety of compounds have been introduced.
  2. 1 2 3 Bennett, John P. (1974). "The Second Generation of Hormonal Contraceptives". Chemical Contraception. pp. 39–62. doi:10.1007/978-1-349-02287-8_4. ISBN   978-1-349-02289-2. Chlormadinone acetate was the first minipill contraceptive to be marketed, in Mexico during July 1968. This compound was removed from clinical use in February 1970 because it produced nodules in the breast tissues of beagle dogs [...]
  3. 1 2 Trussell, James (2011). "Contraceptive efficacy". In Hatcher, Robert A.; Trussell, James; Nelson, Anita L.; Cates, Willard Jr.; Kowal, Deborah; Policar, Michael S. (eds.). Contraceptive technology (20th revised ed.). New York: Ardent Media. pp. 779–863. ISBN   978-1-59708-004-0. ISSN   0091-9721. OCLC   781956734. Table 26–1 = Table 3–2 Percentage of women experiencing an unintended pregnancy during the first year of typical use and the first year of perfect use of contraception, and the percentage continuing use at the end of the first year. United States. Archived 2013-11-12 at the Wayback Machine
  4. Dhont, Marc (December 2010). "History of oral contraception". The European Journal of Contraception & Reproductive Health Care. 15 (Suppl 2): S12–18. doi: 10.3109/13625187.2010.513071 . ISSN   1473-0782. PMID   21091163.
  5. "Progestin-Only Hormonal Birth Control: Pill and Injection". www.acog.org. Retrieved 2023-11-14.
  6. Whitaker, Amy K.; Gilliam, Melissa (June 2008). "Contraceptive care for adolescents". Clinical Obstetrics and Gynecology. 51 (2): 268–280. doi:10.1097/GRF.0b013e31816d713e. ISSN   1532-5520. PMID   18463458. S2CID   13450620.
  7. World Health Organization (2015). Medical eligibility criteria for contraceptive use (5th ed.). Geneva: World Health Organization. ISBN   978-92-4-154915-8.
  8. 1 2 Hatcher, Robert A. (2018). Contraceptive technology (21st ed.). New York, NY: Ayer Company Publishers, Inc. ISBN   9781732055605.
  9. "Contraception | CDC". www.cdc.gov. 2023-05-01. Retrieved 2023-11-14.
  10. "Opill OTC Birth Control: Usage, Side Effects & Warnings". Drugs.com. Retrieved 2023-11-14.
  11. Cannon, Joseph G. (2006-01-11). "Chapter 44: Estrogens, Progestins, and the Female Reproductive Tract. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 11th Edition Edited by Laurence Brunton, John Lazo, and Keith Parker. McGraw Hill, New York. 2005. xxiii + 2021 pp. 21 × 26 cm. ISBN 0-07-142280-3. $149.95". Journal of Medicinal Chemistry. 49 (3). doi:10.1021/jm058286b. ISSN   0022-2623.
  12. 1 2 3 Regidor, Pedro-Antonio (2018-10-02). "The clinical relevance of progestogens in hormonal contraception: Present status and future developments". Oncotarget. 9 (77): 34628–34638. doi: 10.18632/oncotarget.26015 . ISSN   1949-2553. PMC   6195370 . PMID   30349654.
  13. Sitruk-Ware, Regine (2008). "Pharmacological profile of progestins". Maturitas. 61 (1–2): 151–157. doi:10.1016/j.maturitas.2008.11.011. ISSN   0378-5122. PMID   19434887.
  14. Grimes DA, Lopez LM, O'Brien PA, Raymond EG (2013). "Progestin-only pills for contraception". Cochrane Database Syst Rev (11): CD007541. doi:10.1002/14651858.CD007541.pub3. PMID   24226383.
  15. Hussain SF (2004). "Progestogen-only pills and high blood pressure: is there an association? A literature review". Contraception. 69 (2): 89–97. doi:10.1016/j.contraception.2003.09.002. PMID   14759612.
  16. 1 2 Sylvia K. Rosevear (15 April 2008). Handbook of Gynaecology Management. John Wiley & Sons. pp. 2–. ISBN   978-1-4051-4742-2.
  17. 1 2 3 M.R. Henzl (1978). "Natural and Synthetic Female Sex Hormones". In S.S.C. Yen; R.B. Jaffe (eds.). Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management. W.B. Saunders Co. pp. 421–468. ISBN   978-0-7216-9625-6.
  18. "Drugs@FDA: FDA Approved Drug Products". United States Food and Drug Administration. Retrieved 6 January 2018.
  19. Commissioner, Office of the (2023-07-13). "FDA Approves First Nonprescription Daily Oral Contraceptive". FDA. Retrieved 2023-07-14.
  20. American College of Obstetricians and Gynecologists' Committee on Clinical Consensus–Gynecology (2022-09-01). "General Approaches to Medical Management of Menstrual Suppression: ACOG Clinical Consensus No. 3". Obstetrics and Gynecology. 140 (3): 528–541. doi: 10.1097/AOG.0000000000004899 . ISSN   1873-233X. PMID   36356248.
  21. 1 2 Cooper, Danielle B.; Patel, Preeti; Mahdy, Heba (2023), "Oral Contraceptive Pills", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   28613632 , retrieved 2023-11-09
  22. Trussell, James (May 2011). "Contraceptive failure in the United States". Contraception. 83 (5): 397–404. doi:10.1016/j.contraception.2011.01.021. ISSN   1879-0518. PMC   3638209 . PMID   21477680.
  23. 1 2 "Family Planning: A Global Handbook For Providers" (PDF). WHO. 2022. Retrieved November 9, 2023.
  24. Food and Drug Administration (FDA). "Opill Tablets" (PDF).
  25. Food and Drug Administration (FDA). "SLYND (drosperione), tablets for oral use" (PDF).
  26. Cox, H. J. E. (1968). "The pre-coital use of mini-dosage progestagens". Journal of Reproduction and Fertility (6): 167–172.
  27. Bowman, J. A. (1968-12-01). "The effect of norethindrone-mestranol on cervical mucus". American Journal of Obstetrics and Gynecology. 102 (7): 1039–1040. doi:10.1016/0002-9378(68)90467-5. ISSN   0002-9378. PMID   5724391.
  28. Wollum, Alexandra; Zuniga, Carmela; Blanchard, Kelly; Teal, Stephanie (June 2023). "A commentary on progestin-only pills and the "three-hour window" guidelines: Timing of ingestion and mechanisms of action". Contraception. 122: 109978. doi:10.1016/j.contraception.2023.109978. ISSN   1879-0518. PMID   36801392. S2CID   257068251.
  29. Wollum, Alexandra; Zuniga, Carmela; Blanchard, Kelly; Teal, Stephanie (June 2023). "A commentary on progestin-only pills and the "three-hour window" guidelines: Timing of ingestion and mechanisms of action". Contraception. 122: 109978. doi:10.1016/j.contraception.2023.109978. ISSN   0010-7824. PMID   36801392. S2CID   257068251.
  30. 1 2 Glasier, Anna (March 20, 2015). "Chapter 134. Contraception". In Jameson, J. Larry; De Groot, Leslie J.; de Krester, David; Giudice, Linda C.; Grossman, Ashley; Melmed, Shlomo; Potts, John T. Jr.; Weir, Gordon C. (eds.). Endocrinology: Adult and Pediatric (7th ed.). Philadelphia: Saunders Elsevier. p. 2306. ISBN   978-0-323-18907-1.
  31. Mackay, E. V.; Khoo, S. K.; Adam, R. R. (August 1971). "Contraception with a six-monthly injection of progestogen. 2. Effects on cervical mucus secretion and endocrine function". The Australian & New Zealand Journal of Obstetrics & Gynaecology. 11 (3): 156–163. doi:10.1111/j.1479-828x.1971.tb00470.x. ISSN   0004-8666. PMID   5286757. S2CID   38037168.
  32. Landgren, B. M.; Balogh, A.; Shin, M. W.; Lindberg, M.; Diczfalusy, E. (December 1979). "Hormonal effects of the 300 microgram norethisterone (NET) minipill. 2. Daily gonadotrophin levels in 43 subjects during a pretreatment cycle and during the second month of NET administration". Contraception. 20 (6): 585–605. doi:10.1016/s0010-7824(79)80038-4. ISSN   0010-7824. PMID   535366.
  33. Pattman, Richard; Sankar, K. Nathan; Elewad, Babiker; Handy, Pauline; Price, David Ashley, eds. (November 19, 2010). "Chapter 33. Contraception including contraception in HIV infection and infection reduction". Oxford Handbook of Genitourinary Medicine, HIV, and Sexual Health (2nd ed.). Oxford: Oxford University Press. p.  360 . ISBN   978-0-19-957166-6. Ovulation may be suppressed in 15–40% of cycles by POPs containg levonorgestrel, norethisterone, or etynodiol diacetate, but in 97–99% by those containing desogestrel.
  34. 1 2 Brunton, Laurence L.; Hilal-Dandan, Randa; Knollmann, Björn C.; Goodman, Louis Sanford; Gilman, Alfred; Gilman, Alfred Goodman, eds. (2018). Goodman & Gilman's The pharmacological basis of therapeutics (Thirteenth ed.). New York: McGraw Hill Education. ISBN   978-1-259-58473-2.
  35. Porter, Luz S.; Holness, Nola A. (2011). "Breaking the repeat teen pregnancy cycle". Nursing for Women's Health. 15 (5): 368–381. doi:10.1111/j.1751-486X.2011.01661.x. ISSN   1751-486X. PMID   22900650.
  36. "Lactational Amenorrhea Method". Centers for Disease Control and Prevention. March 27, 2023.
  37. "US Medical Eligibility Criteria for Contraceptive Use, 2016 (US MEC) | CDC". www.cdc.gov. 2023-09-14. Retrieved 2023-11-14.
  38. "US Medical Eligibility Criteria for Contraceptive Use, 2016 (US MEC) | CDC". www.cdc.gov. 2023-03-27. Retrieved 2023-07-13.
  39. "US Medical Eligibility Criteria for Contraceptive Use, 2016 (US MEC) | CDC". www.cdc.gov. 2023-03-27. Retrieved 2023-07-13.
  40. "Management of Acute Abnormal Uterine Bleeding in Nonpregnant Reproductive-Aged Women". www.acog.org. Retrieved 2023-11-13.
  41. Munro, Malcolm G.; Critchley, Hilary O. D.; Broder, Michael S.; Fraser, Ian S.; FIGO Working Group on Menstrual Disorders (April 2011). "FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age". International Journal of Gynaecology and Obstetrics. 113 (1): 3–13. doi: 10.1016/j.ijgo.2010.11.011 . ISSN   1879-3479. PMID   21345435.
  42. Munro, Malcolm G.; Mainor, Nakia; Basu, Romie; Brisinger, Mikael; Barreda, Lorena (October 2006). "Oral medroxyprogesterone acetate and combination oral contraceptives for acute uterine bleeding: a randomized controlled trial". Obstetrics and Gynecology. 108 (4): 924–929. doi:10.1097/01.AOG.0000238343.62063.22. ISSN   0029-7844. PMID   17012455. S2CID   26316422.
  43. Sharara, Fady I.; Kheil, Mira H.; Feki, Anis; Rahman, Sara; Klebanoff, Jordan S.; Ayoubi, Jean Marc; Moawad, Gaby N. (2021-07-30). "Current and Prospective Treatment of Adenomyosis". Journal of Clinical Medicine. 10 (15): 3410. doi: 10.3390/jcm10153410 . ISSN   2077-0383. PMC   8348135 . PMID   34362193.
  44. Andres, Marina de Paula; Lopes, Livia Alves; Baracat, Edmund Chada; Podgaec, Sergio (2015-09-01). "Dienogest in the treatment of endometriosis: systematic review". Archives of Gynecology and Obstetrics. 292 (3): 523–529. doi:10.1007/s00404-015-3681-6. ISSN   1432-0711. PMID   25749349. S2CID   22168242.
  45. Mitchell JB, Chetty S, Kathrada F (September 7, 2022). "Progestins in the symptomatic management of endometriosis: a meta-analysis on their effectiveness and safety" (PDF). BMC Women's Health. 22 (1): 52. doi: 10.1186/s12912-023-01246-4 . PMC   10061877 . PMID   36997958.
  46. Weiderpass, E.; Adami, H. O.; Baron, J. A.; Magnusson, C.; Bergström, R.; Lindgren, A.; Correia, N.; Persson, I. (1999-07-07). "Risk of endometrial cancer following estrogen replacement with and without progestins". Journal of the National Cancer Institute. 91 (13): 1131–1137. doi: 10.1093/jnci/91.13.1131 . ISSN   0027-8874. PMID   10393721.
  47. Belsey, E. M. (August 1988). "Vaginal bleeding patterns among women using one natural and eight hormonal methods of contraception". Contraception. 38 (2): 181–206. doi:10.1016/0010-7824(88)90038-8. ISSN   0010-7824. PMID   2971505.
  48. Steiner, Mitchell (September 1998). "Campbell's Urology, 7th ed.WalshP.C.: Philadelphia: Lippincott Williams & Wilkins. Philadelphia: W. B. Saunders Co.1998. 210 pages.RetikA.B.: Philadelphia: Lippincott Williams & Wilkins. Philadelphia: W. B. Saunders Co.1998. 210 pages.VaughanE.D.: Philadelphia: Lippincott Williams & Wilkins. Philadelphia: W. B. Saunders Co.1998. 3,426 pages.WeinA.J.: Philadelphia: Lippincott Williams & Wilkins. Philadelphia: Isis Medical Media Ltd.1998. 3,426 pages". Journal of Urology. 160 (3 Part 1): 967–968. doi:10.1016/s0022-5347(01)62878-7. ISSN   0022-5347.
  49. Worly, Brett L.; Gur, Tamar L.; Schaffir, Jonathan (June 2018). "The relationship between progestin hormonal contraception and depression: a systematic review". Contraception. 97 (6): 478–489. doi:10.1016/j.contraception.2018.01.010. ISSN   1879-0518. PMID   29496297.
  50. Tayob, Y.; Adams, J.; Jacobs, H. S.; Guillebaud, J. (October 1985). "Ultrasound demonstration of increased frequency of functional ovarian cysts in women using progestogen-only oral contraception". British Journal of Obstetrics and Gynaecology. 92 (10): 1003–1009. doi:10.1111/j.1471-0528.1985.tb02994.x. ISSN   0306-5456. PMID   3902074. S2CID   24930690.
  51. Collaborative Group on Hormonal Factors in Breast Cancer (1996). "Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53,297 women with breast cancer and 100,239 women without breast cancer from 54 epidemiological studies". Lancet. 347 (9017): 1713–27. doi: 10.1016/S0140-6736(96)90806-5 . PMID   8656904. S2CID   36136756.
  52. Collaborative Group on Hormonal Factors in Breast Cancer (1996). "Breast cancer and hormonal contraceptives: further results". Contraception. 54 (3 Suppl): 1S –106S. doi:10.1016/s0010-7824(15)30002-0. PMID   8899264.
  53. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1999). "Hormonal contraceptives, progestogens only". Hormonal contraception and post-menopausal hormonal therapy; IARC monographs on the evaluation of carcinogenic risks to humans, Volume 72. Lyon: IARC Press. pp. 339–397. ISBN   92-832-1272-X.
  54. Chlebowski R, Hendrix S, Langer R, Stefanick M, Gass M, Lane D, Rodabough R, Gilligan M, Cyr M, Thomson C, Khandekar J, Petrovitch H, McTiernan A (2003). "Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial". JAMA. 289 (24): 3243–53. doi:10.1001/jama.289.24.3243. PMID   12824205.
  55. 1 2 Zettermark, Sofia; Vicente, Raquel Perez; Merlo, Juan (2018-03-22). "Hormonal contraception increases the risk of psychotropic drug use in adolescent girls but not in adults: A pharmacoepidemiological study on 800 000 Swedish women". PLOS ONE. 13 (3): e0194773. Bibcode:2018PLoSO..1394773Z. doi: 10.1371/journal.pone.0194773 . ISSN   1932-6203. PMC   5864056 . PMID   29566064.
  56. 1 2 3 Skovlund, Charlotte Wessel; Mørch, Lina Steinrud; Kessing, Lars Vedel; Lidegaard, Øjvind (2016-11-01). "Association of Hormonal Contraception With Depression". JAMA Psychiatry. 73 (11): 1154–1162. doi: 10.1001/jamapsychiatry.2016.2387 . ISSN   2168-6238. PMID   27680324.
  57. Kulkarni, Jayashri (July 2007). "Depression as a side effect of the contraceptive pill". Expert Opinion on Drug Safety. 6 (4): 371–374. doi:10.1517/14740338.6.4.371. ISSN   1744-764X. PMID   17688380. S2CID   8836005.
  58. Martell S, Marini C, Kondas CA, Deutch AB (January 2023). "Psychological side effects of hormonal contraception: a disconnect between patients and providers". Contracept Reprod Med. 8 (1): 9. doi: 10.1186/s40834-022-00204-w . PMC   9842494 . PMID   36647102.
  59. Lopez, LM; Ramesh, S; Chen, M; Edelman, A; Otterness, C; Trussell, J; Helmerhorst, FM (28 August 2016). "Progestin-only contraceptives: effects on weight". The Cochrane Database of Systematic Reviews. 2016 (8): CD008815. doi:10.1002/14651858.CD008815.pub4. PMC   5034734 . PMID   27567593.
  60. 1 2 Population Reports: Oral contraceptives. Department of Medical and Public Affairs, George Washington Univ. Medical Center. 1975. p. A-64. Distribution and Use of the Minipill. [...] Progestogen & Dose in mg: d-Norgestrel 0.03. Manufacturer: Schering AG. Brand Names: Microlut, Nordrogest. Where & When First Marketed: Federal Republic of Germany 1971.
  61. Greenberg (19 February 2016). Exploring the Dimensions of Human Sexuality. Jones & Bartlett Learning. pp. 481–. ISBN   978-1-284-11474-4. The progestin-only pill was introduced in 1972.
  62. 1 2 3 Amy Whitaker; Melissa Gilliam (27 June 2014). Contraception for Adolescent and Young Adult Women. Springer. pp. 26, 97. ISBN   978-1-4614-6579-9.
  63. Kathy French (9 November 2009). Sexual Health. John Wiley & Sons. pp. 92–93. ISBN   978-1-4443-2257-6.
  64. 1 2 J. Larry Jameson; Leslie J. De Groot (18 May 2010). Endocrinology - E-Book: Adult and Pediatric. Elsevier Health Sciences. pp. 2424–. ISBN   978-1-4557-1126-0. In 2002, a POP containing desogestrel 75 ug/day, a dose sufficient to inhibit ovulation in almost every cycle, was introduced in Europe.51
  65. Commissioner, Office of the (2023-07-13). "FDA Approves First Nonprescription Daily Oral Contraceptive". FDA. Retrieved 2023-07-13.