Agilex is a brand covering several families of FPGA products developed by Altera, and is the branding introduced in 2019 during the Intel era. [1] The initial family of Agilex FPGAs (now rebranded as Agilex 7) began shipping in 2019 and are built using Intel 10nm silicon process. [2] Agilex FPGAs are typically programmed in hardware description languages such as VHDL or Verilog, using the Intel Quartus Prime computer software. Higher level design languages, such as SYCL, are supported as well.
Intel Agilex FPGAs initially focused on performance applications such as data center processing, but the brand has been expanded to include several new series of Agilex FPGAs which have different characteristics, such as lower power and lower logic densities, in order to fit an even wider range of applications. [3] As a result, the Agilex brand is combined with a numerical suffix to organize various FPGA product series into different families of FPGAs and SoC FPGAs.
The Agilex 9 family are FPGAs targeted at Direct RF applications and include wideband data converters with sample rates up to 64Gsps and medium-band data converters with hi-fidelity performance. [4]
The initial family of Agilex FPGAs and SoC FPGAs which began shipping in 2019 were rebranded as Agilex 7 in January 2023 as the Agilex brand was broadened to cover additional FPGA families by using a numerical suffix. Agilex 7 FPGAs are a family of high-performance FPGAs with a focus on delivering industry-leading logic fabric and I/O speeds and targeted at bandwidth- and compute-intensive applications. The Agilex 7 SoC FPGA variants include an ARM Cortex-A53 quad core hard processor system.
The Agilex 5 family are FPGAs and SoC FPGAs with lower power and logic densities than the Agilex 7 FPGA and are generally considered mid-range FPGAs. [5] [6] The Agilex 5 SoC FPGA variants include an ARM Cortex A76/A55 quad core hard processor system.
The Agilex 3 family are power and cost optimized FPGAs that deliver relatively high performance for this class of FPGA. The Agilex 3 SoC FPGA variants offer an ARM Cortex A55 dual core hard processor system. [7] [8]
A field-programmable gate array (FPGA) is a type of configurable integrated circuit that can be repeatedly programmed after manufacturing. FPGAs are a subset of logic devices referred to as programmable logic devices (PLDs). They consist of an array of programmable logic blocks with a connecting grid, that can be configured "in the field" to interconnect with other logic blocks to perform various digital functions. FPGAs are often used in limited (low) quantity production of custom-made products, and in research and development, where the higher cost of individual FPGAs is not as important, and where creating and manufacturing a custom circuit wouldn't be feasible. Other applications for FPGAs include the telecommunications, automotive, aerospace, and industrial sectors, which benefit from their flexibility, high signal processing speed, and parallel processing abilities.
XScale is a microarchitecture for central processing units initially designed by Intel implementing the ARM architecture instruction set. XScale comprises several distinct families: IXP, IXC, IOP, PXA and CE, with some later models designed as system-on-a-chip (SoC). Intel sold the PXA family to Marvell Technology Group in June 2006. Marvell then extended the brand to include processors with other microarchitectures, like Arm's Cortex.
Reconfigurable computing is a computer architecture combining some of the flexibility of software with the high performance of hardware by processing with flexible hardware platforms like field-programmable gate arrays (FPGAs). The principal difference when compared to using ordinary microprocessors is the ability to add custom computational blocks using FPGAs. On the other hand, the main difference from custom hardware, i.e. application-specific integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by "loading" a new circuit on the reconfigurable fabric, thus providing new computational blocks without the need to manufacture and add new chips to the existing system.
Altera Corporation is a manufacturer of programmable logic devices (PLDs) headquartered in San Jose, California. It was founded in 1983 and acquired by Intel in 2015 before becoming independent once again in 2024 as a company focused on development of Field-Programmable Gate Array (FPGA) technology and system on a chip FPGAs.
JTAG is an industry standard for verifying designs of and testing printed circuit boards after manufacture.
Xilinx, Inc. was an American technology and semiconductor company that primarily supplied programmable logic devices. The company is renowned for inventing the first commercially viable field-programmable gate array (FPGA). It also pioneered the first fabless manufacturing model.
Nios II is a 32-bit embedded processor architecture designed specifically for the Altera family of field-programmable gate array (FPGA) integrated circuits. Nios II incorporates many enhancements over the original Nios architecture, making it more suitable for a wider range of embedded computing applications, from digital signal processing (DSP) to system-control.
A multi-core processor (MCP) is a microprocessor on a single integrated circuit (IC) with two or more separate central processing units (CPUs), called cores to emphasize their multiplicity. Each core reads and executes program instructions, specifically ordinary CPU instructions. However, the MCP can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single IC die, known as a chip multiprocessor (CMP), or onto multiple dies in a single chip package. As of 2024, the microprocessors used in almost all new personal computers are multi-core.
The transistor count is the number of transistors in an electronic device. It is the most common measure of integrated circuit complexity. The rate at which MOS transistor counts have increased generally follows Moore's law, which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a die, transistor count does not represent how advanced the corresponding manufacturing technology is. A better indication of this is transistor density which is the ratio of a semiconductor's transistor count to its die area.
The ARM Cortex-A9 MPCore is a 32-bit multi-core processor that provides up to 4 cache-coherent cores, each implementing the ARM v7 architecture instruction set. It was introduced in 2007.
Rockchip is a Chinese fabless semiconductor company based in Fuzhou, Fujian province. It has offices in Shanghai, Beijing, Shenzhen, Hangzhou and Hong Kong. It designs system on a chip (SoC) products, using the ARM architecture licensed from ARM Holdings for the majority of its projects.
Allwinner Technology Co., Ltd is a Chinese fabless semiconductor company specialized in mixed-signal systems on a chips (SoC). The company is headquartered in Zhuhai, Guangdong, China.
Heterogeneous computing refers to systems that use more than one kind of processor or core. These systems gain performance or energy efficiency not just by adding the same type of processors, but by adding dissimilar coprocessors, usually incorporating specialized processing capabilities to handle particular tasks.
Amlogic Inc. is a fabless semiconductor company that was founded on March 14, 1995, in Santa Clara, California and is predominantly focused on designing and selling system on a chip integrated circuits. Like most fabless companies in the industry, the company outsources the actual manufacturing of its chips to third-party independent chip manufacturers such as TSMC. Its main target applications as of 2021 are entertainment devices such as Android TV-based devices and IPTV/OTT set-top boxes, media dongles, smart TVs and tablets. It has offices in Shanghai, Shenzhen, Beijing, Xi'an, Chengdu, Hefei, Nanjing, Qingdao, Taipei, Hong Kong, Seoul, Mumbai, London, Munich, Indianapolis, Milan, Novi Sad and Santa Clara, California.
This is a comparison of ARM instruction set architecture application processor cores designed by ARM Holdings and 3rd parties. It does not include ARM Cortex-R, ARM Cortex-M, or legacy ARM cores.
The ARM Cortex-A55 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Cambridge design centre. The Cortex-A55 is a 2-wide decode in-order superscalar pipeline.
The ARM Cortex-A76 is a central processing unit implementing the ARMv8.2-A 64-bit instruction set designed by ARM Holdings' Austin design centre. ARM states a 25% and 35% increase in integer and floating point performance, respectively, over a Cortex-A75 of the previous generation.
Shakti is an open-source initiative by the Reconfigurable Intelligent Systems Engineering (RISE) group at Indian Institute of Technology, Madras to develop the first indigenous Indian industrial-grade processor. The aims of the Shakti initiative include building an open source production-grade processor, complete systems on a chip (SoCs), microprocessor development boards, and a Shakti-based software platform. The main focus of the team is computer architecture research to develop SoCs, which are competitive with commercial offerings in the market in area, power, and performance. All the source codes for Shakti are open-sourced under the Modified BSD License. The project was funded by the Ministry of Electronics and Information Technology (MeITY), Government of India.