This article includes a list of general references, but it lacks sufficient corresponding inline citations .(April 2021) |
Fungal isolates have been researched for decades. Because fungi often exist in thin mycelial monolayers, with no protective shell, immune system, and limited mobility, they have developed the ability to synthesize a variety of unusual compounds for survival. Researchers have discovered fungal isolates with anticancer, antimicrobial, immunomodulatory, and other bio-active properties. The first statins, β-Lactam antibiotics, as well as a few important antifungals, were discovered in fungi.
BMS manufactures paclitaxel using Penicillium and plant cell fermentation. Fungi can synthesize podophyllotoxin and camptothecin, precursors to etoposide, teniposide, topotecan, and irinotecan.
Lentinan, PSK, and PSP, are registered anticancer immunologic adjuvants. Irofulven and acylfulvene are anticancer derivatives of illudin S. Clavaric acid is a reversible farnesyltransferase inhibitor. Inonotus obliquus creates betulinic acid precursor betulin. Flammulina velutipes creates asparaginase. Plinabulin is a fungal isolate derivative currently being researched for anticancer applications.
The statins lovastatin, mevastatin, and simvastatin precursor monacolin J, are fungal isolates. Additional fungal isolates that inhibit cholesterol are zaragozic acids, eritadenine, and nicotinamide riboside.
Ciclosporin, mycophenolic acid, mizoribine, FR901483, and gliotoxin, are immunosuppressant fungal isolates.
Penicillin, cephalosporins, fusafungine, usnic acid, fusidic acid, fumagillin, brefeldin A, verrucarin A, alamethicin, are antibiotic fungal isolates. Antibiotics retapamulin, tiamulin, and valnemulin are derivatives of the fungal isolate pleuromutilin. Griseofulvin, echinocandins, strobilurin, azoxystrobin, caspofungin, micafungin, are fungal isolates with antifungal activity.
The headache medications cafergot, dihydroergotamine, methysergide, methylergometrine, the dementia medications hydergine, nicergoline, the Parkinson's disease medications lisuride, bromocriptine, cabergoline, and pergolide were all derived from Claviceps isolates. Polyozellus multiplex synthesizes prolyl endopeptidase inhibitors polyozellin, thelephoric acid, and kynapcins. Boletus badius synthesizes L-theanine.
Researchers have discovered other interesting fungal isolates like the antihyperglycemic compounds ternatin, aspergillusol A, sclerotiorin, and antimalarial compounds codinaeopsin, efrapeptins, and antiamoebin. The fungal isolate ergothioneine is actively absorbed and concentrated by the human body via SLC22A4. Other notable fungal isolates include vitamin D1, vitamin D2, and vitamin D4.
Isolate | Source | Researched activity / Chemical description |
---|---|---|
9-Deacetoxyfumigaclavine C | endophytic Aspergillus fumigatus | potent, selective, anticancer activity comparable to doxorubicin (IC50 = 3.1 μM against K562) [1] |
14-Norpseurotin A | Aspergillus | antiparasitic/anticancer [1] |
3-O-Methylfunicone | Penicillium pinophilum | in vitro cancer stem cell inhibitor |
Anicequol | Penicillium aurantiogriseum | in vitro anchorage-independent cancer inhibitor |
Anomalin A | sponge-derived Arthrinium | angiogenesis inhibitor |
Antiamoebin | Emericellopsis | anti-microbial/protozoan polypeptide |
Arugosin C | Aspergillus versicolor isolated from Red Sea green alga | bio-active anthraquinone [2] |
Aspergillides A-C | marine Aspergillus ostianus | anticancer/cytotoxic |
Aspergillusene | "sea fan"-derived Aspergillus sydowii | antioxidant sesquiterpene |
Aspergilone A | "sea fan"-derived Aspergillus | anticancer and antifouling activity [3] |
Aspergillusol A | marine Aspergillus | alpha-glucosidase inhibitor |
Asperterrestide A | marine Aspergillus terreus | cytotoxic and antiviral cyclic tetrapeptide |
Asterric acid | Antarctic Geomyces | endothelin binding inhibitor |
Auranthine | Penicillium | antimicrobial |
Aurantiamine | Penicillium aurantiogriseum | valine and histidine derived diketopiperazine |
Aurantiomide | sponge-derived Penicillium aurantiogriseum | quinazoline alkaloid with cytotoxic/anticancer activity |
Berkeleydione | fungal extremophile (Berkeley Pit, Montana) | anticancer polyketide-terpenoid |
Berkeleytrione | fungal extremophile (Berkeley Pit, Montana) | anticancer polyketide-terpenoid |
Berkelic acid | fungal extremophile (Berkeley Pit, Montana) | spiroketal anticancer compound |
beta-Ergocryptine | ergot | dopaminergic ergot alkaloid |
Bisvertinolone | Trichoderma | anticancer [4] |
Botryodiplodin | Penicillium | antibiotic mycotoxin |
Botryosphaeran | Botryosphaeria rhodina | free-radical scavenging and antioxidant [5] |
Brevianamide S | marine Aspergillus versicolor | antimicrobial dimeric diketopiperazine |
Brevicompanines D-H | deep ocean sediment Penicillium | lipopolysaccharide (LPS)-induced nitric oxide inhibitor |
Cephalosporolide | marine Penicillium | novel lactones |
Chaetoglobosin A | Chaetomium | anticancer [6] |
Chaetoxanthone | marine-derived Chaetomium | bio-active xanthone |
Chanoclavine | ergot | dopamine agonist |
Chanoclavine II | ergot | |
Chetracins B | Antarctic psychrophilic Oidiodendron truncatum | in vitro anticancer (nanomolar) |
Chrysophanic acid | antiviral/anticancer anthraquinone | |
Chrysosporide | Sepedonium chrysospermum | |
Citreorosein | Penicillium | antimicrobial polyketide |
Citrinolactone D | marine-derived Penicillium | citrinin derivative |
Citromycetin | Australian Penicillium | bio-active polyketide |
Citromycin | Penicillium | antibiotic |
Communesin B | Mediterranean Axinella -derived Penicillium | anticancer |
Costaclavin | ergot | |
Cryptoechinuline D | mangrove rhizosphere soil-derived Aspergillus | anticancer |
Curvularin | Penicillium | antimicrobial |
Cycloprop-2-ene carboxylic acid | Russula subnigricans | causes rhabdomyolysis [7] |
Decumbenone C | marine Aspergillus sulphureus | anticancer |
Dehydroaltenusin | Alternaria tenuis | inhibitor of mammalian DNA polymerase α |
Dehydrocurvularin | Penicillium | antimicrobial |
Disydonols A-C | marine Aspergillus | anticancer |
Duclauxin | Penicillium duclauxi | anticancer [8] |
Epicoccins | Cordyceps -colonizing Epicoccum nigrum | antiviral |
Epolactaene | marine fungus | antiinflammatory, inhibitory activity of DNA polymerases and DNA topoisomerase II, active synthetic analogs [9] |
Epoxyagroclavine | permafrost Penicillium | ergot alkaloid |
Epoxyphomalins A-B | marine Paraconiothyrium | potent cytotoxics |
Ergosine | ergot | dopaminergic ergot alkaloid |
Ergostane | mushrooms | steroid |
Ergostine | ergot | alpha-adrenergic blocking, vasoconstrictive ergot alkaloid |
Eupenifeldin | Eupenicillium brefeldianum | antimicrobial cytotoxic bistropolone |
Evariquinone | Emericella variecolor (derived from the marine sponge Haliclona ) | |
Fecosterol | fungi and lichens | steroid |
Fellutanine | Penicillium | bio-active diketopiperazine alkaloids |
Festuclavine | Aspergillus fumigatus | bio-active ergoline |
Fumigaclavine A | endophytic Aspergillus | bio-active ergoline |
Fumigaclavine B | endophytic Aspergillus | bio-active ergoline |
Fumigaclavine C | endophytic Aspergillus | bio-active ergoline |
Fumiquinazoline | soft coral Sinularia -derived Aspergillus fumigatus | cytotoxic/anticancer |
Fungisterol | Cordyceps sinensis | steroid |
Glionitrin A | mine-dwelling Aspergillus fumigatus | antibiotic-anticancer |
Glionitrin B | Aspergillus fumigatus KMC-901 | anticancer diketopiperazine |
Hymenosetin | Hymenoscyphus pseudoalbidus | antimicrobial (active against MRSA) [10] |
Integrasone | Unknown | inhibits HIV-1 integrase enzyme [11] |
Isoemericellin | marine Emericella variecolor | |
Leporizines A-C | Aspergillus | cytotoxic epithiodiketopiperazines |
Leptosphaerin | marine Leptosphaeria oraemaris | antifungal |
Lichesterol | fungi and lichens | steroid |
Luteoalbusins A-B | deep sea Acrostalagmus luteoalbus | anticancer indole diketopiperazines |
Luteusin A | Talaromyces luteus | monoamine oxidase inhibitor |
Malettinin | Hypoxylon | polyketide/antimicrobial |
Maximiscin | Tolypocladium (Salcha, Alaska) [12] | anticancer polyketide-shikimate compound |
Meleagrin | deep ocean Penicillium | anticancer |
Methylenolactocin | Penicillium | anticancer |
Neoxaline | Aspergillus japonicus | antimitotic and antiplatelet |
Nigerapyrones A-E | marine mangrove-derived, endophytic Aspergillus niger | anticancer |
Nigrosporin B | Nigrospora | antimicrobial |
Nocapyrones E-G | Nocardiopsis dassonvillei | antimicrobial alpha-pyrones |
Notoamide | marine Aspergillus | bio-active prenylated indole alkaloid |
Oxaline | Penicillium oxalicum and Aspergillus japonicus | anticancer (tubulin polymerization inhibitor), O-methylated derivative of meleagrin |
Pencolide | seaweed-derived endophytic fungi | bio-active maleimide |
Penicitrinol J | marine-derived Penicillium | bio-active citrinin dimer |
Penicitrinol K | marine-derived Penicillium | bio-active citrinin derivative |
Penicitrinone E | marine-derived Penicillium | bio-active citrinin dimer |
Penochalasin A | endophytic Chaetomium | cytotoxic/anticancer cytochalasan-based alkaloid |
Penostatin A | Penicillium | cytotoxic metabolite |
Pestalamides A-C | Pestalotiopsis theae | antiviral and antifungal |
Petrosifungin | sponge-derived Penicillium brevicompactum | novel cyclodepsipeptide |
Phillyrin | endophytic fungus (isolated from Forsythia ) | antiobesity |
Piscarinine | Penicillium piscarium westling | bio-active polycyclic diketopiperazine alkaloid |
Prenylterphenyllins | marine Aspergillus candidus | anticancer |
Protuboxepins A and B | Aspergillus SF-5044 | anticancer diketopiperazines |
Pseurotin A | endophytic Aspergillus | antiparasitic and anticancer |
Pyrenocine | marine Penicillium paxilli | antibiotic/antiinflammatory mycotoxin [13] |
Questiomycin A | Penicillium expansum | antibiotic |
Quinocitrinine | permafrost Penicillium | quinoline alkaloid |
RES-1149-2 | Aspergillus | non-peptidic endothelin receptor antagonist |
Retigeric acid B | Lobaria (lichen) | anticancer |
Rubratoxin B | Penicillium rubrum | anticancer |
Rugulovasine | Penicillium | |
Sch 642305 | Penicillium verrucosum and Rhizoctonia solani | bacterial DNA primase inhibitor |
Sclerotides A-B | Aspergillus sclerotiorum PT06-1 | bio-active cyclic hexapeptides |
Secalonic acid | marine fungi | nootropic |
Shamixanthone | Aspergillus | bio-active prenylated xanthone |
Shearinine | marine Penicillium janthinellum | anticancer |
Siderin | Aspergillus versicolor isolated from Red Sea green alga | bio-active anthraquinone |
Sorbicillactone A | sponge-derived fungus | novel bio-active alkaloid |
Spiculisporic acid | marine Aspergillus | bioactive γ-butenolide |
Spiropreussione | Preussia | anticancer |
Stephacidin | Aspergillus ochraceus WC76466 | anticancer/cytotoxic |
Stromemycin | marine Emericella | C-glycosidic depside matrix metalloproteinase inhibitor |
Terpestacin | endophytic fungus Drechslera ravenelii | anticancer |
Terrestrols | marine Penicillium terrestre | cytotoxic/anticancer [14] |
Terreulactone A | Aspergillus terreus | anti-acetylcholinesterase terpenoid |
Topopyrone C | Phoma and Penicillium | anticancer human topoisomerase I inhibitor |
Trachyspic acid | Talaromyces trachyspermus | heparanase inhibitor |
Trichodimerol | Trichoderma | bio-active pentacycle |
Ustusolates | marine Aspergillus ustus | anticancer |
Variecolactone | Emericella purpurea mycelium | immunomodulatory sesterterpene |
Variecolol | Emericella aurantio-brunnea | immunosuppressant/antiviral alkaloid |
Varixanthone | marine Emericella variecolor | antimicrobial |
Vermiculine | Penicillium vermiculatum | antibiotic |
Vermistatin | fungal extremophile (Berkeley Pit, Montana) | anticancer [15] |
Vermixocin | Penicillium vermiculatum | cytotoxic metabolite |
Verrucosidin | Penicillium verrucosum | cytotoxic pyrone-type polyketide |
Verrulactone A | Penicillium | antimicrobial alternariol |
Versicolamide B | marine Aspergillus | a paraherquamide-stephacidin |
Viscumamide | mangrove-derived endophytic fungi | cyclic peptide |
Yaequinolone J1 | Penicillium sp. FKI-2140 | antibiotic |
A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.
Penicillium is a genus of ascomycetous fungi that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.
Aspergillus is a genus consisting of several hundred mould species found in various climates worldwide.
Penicillium roqueforti is a common saprotrophic fungus in the genus Penicillium. Widespread in nature, it can be isolated from soil, decaying organic matter, and plants.
Gliotoxin is a sulfur-containing mycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines produced by several species of fungi, especially those of marine origin. It is the most prominent member of the epipolythiopiperazines, a large class of natural products featuring a diketopiperazine with di- or polysulfide linkage. These highly bioactive compounds have been the subject of numerous studies aimed at new therapeutics. Gliotoxin was originally isolated from Gliocladium fimbriatum, and was named accordingly. It is an epipolythiodioxopiperazine metabolite that is one of the most abundantly produced metabolites in human invasive Aspergillosis (IA).
Aspergillus ochraceus is a mold species in the genus Aspergillus known to produce the toxin ochratoxin A, one of the most abundant food-contaminating mycotoxins, and citrinin. It also produces the dihydroisocoumarin mellein. It is a filamentous fungus in nature and has characteristic biseriate conidiophores. Traditionally a soil fungus, has now began to adapt to varied ecological niches, like agricultural commodities, farmed animal and marine species. In humans and animals the consumption of this fungus produces chronic neurotoxic, immunosuppressive, genotoxic, carcinogenic and teratogenic effects. Its airborne spores are one of the potential causes of asthma in children and lung diseases in humans. The pig and chicken populations in the farms are the most affected by this fungus and its mycotoxins. Certain fungicides like mancozeb, copper oxychloride, and sulfur have inhibitory effects on the growth of this fungus and its mycotoxin producing capacities.
Cerevisterol (5α-ergosta-7,22-diene-3β,5,6β-triol) is a sterol. Originally described in the 1930s from the yeast Saccharomyces cerevisiae, it has since been found in several other fungi and, recently, in deep water coral. Cerevisterol has some in vitro bioactive properties, including cytotoxicity to some mammalian cell lines.
Throughout human history, fungi have been utilized as a source of food and harnessed to ferment and preserve foods and beverages. In the 20th century, humans have learned to harness fungi to protect human health, while industry has utilized fungi for large scale production of enzymes, acids, and biosurfactants. With the advent of modern nanotechnology in the 1980s, fungi have remained important by providing a greener alternative to chemically synthesized nanoparticle.
Chaetoglobosin A is a fungal isolate with anticancer activity in vitro. Derivatives of the compound include MBJ-0038, MBJ-0039, and MBJ-0040.
Vermistatin is an organic compound and a metabolite of mine-dwelling Penicillium vermiculatum found in Berkeley Pit Lake, Butte, Montana. Penisimplicissin is a vermistatin analog with anticancer activity.
Shearinines A,D,E,and F, are marine fungal isolates with anticancer activity in vitro. They were isolated from a stain of Penicillium janthinellum Biourge. Their potential anticancer activity has been suggested by their induction of apoptosis in HL-60 cells. Shearinines D, E and G have also been found to block activity on large-conductance calcium-activated potassium channels.
Meleagrin and its derivatives such as oxaline are bio-active benzylisoquinoline alkaloids made by various species of Penicillium fungi. It is similar to other fungal alkaloids, such as Roquefortine C, which is made as an intermediate in the same biosynthetic pathway.
14-Norpseurotin A is an alkaloid and a bio-active metabolite of Aspergillus, featuring an oxa-spiro-lactam core.
Aspergillus penicillioides is a species of fungus in the genus Aspergillus, and is among the most xerophilic fungi.
Dideoxyverticillin A, also known as (+)-11,11′-dideoxyverticillin A, is a complex epipolythiodioxopiperazine initially isolated from the marine fungus Penicillium sp. in 1999. It has also been found in the marine fungus Bionectriaceae, and belongs to a class of naturally occurring 2,5-diketopiperazines.
Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.
9-Deacetoxyfumigaclavine C is an ergoline alkaloid. It is a potent, selective, anticancer compound, with in vitro activity comparable to doxorubicin (IC50 = 3.1 μM against K562). 9-Deacetoxyfumigaclavine C is a compound made by a variety of fungi.
Medicinal fungi are fungi that contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.
Human interactions with fungi include both beneficial uses, whether practical or symbolic, and harmful interactions such as when fungi damage crops, timber, food, or are pathogenic to animals.
The phomoxanthones are a loosely defined class of natural products. The two founding members of this class are phomoxanthone A and phomoxanthone B. Other compounds were later also classified as phomoxanthones, although a unifying nomenclature has not yet been established. The structure of all phomoxanthones is derived from a dimer of two covalently linked tetrahydroxanthones, and they differ mainly in the position of this link as well as in the acetylation status of their hydroxy groups. The phomoxanthones are structurally closely related to other tetrahydroxanthone dimers such as the secalonic acids and the eumitrins. While most phomoxanthones were discovered in fungi of the genus Phomopsis, most notably in the species Phomopsis longicolla, some have also been found in Penicillium sp.