Liebig's law of the minimum

Last updated

Liebig's law of the minimum, often simply called Liebig's law or the law of the minimum, is a principle developed in agricultural science by Carl Sprengel (1840) and later popularized by Justus von Liebig. It states that growth is dictated not by total resources available, but by the scarcest resource (limiting factor). The law has also been applied to biological populations and ecosystem models for factors such as sunlight or mineral nutrients.

Contents

Applications

This was originally applied to plant or crop growth, where it was found that increasing the amount of plentiful nutrients did not increase plant growth. Only by increasing the amount of the limiting nutrient (the one most scarce in relation to "need") was the growth of a plant or crop improved. This principle can be summed up in the aphorism, "The availability of the most abundant nutrient in the soil is only as good as the availability of the least abundant nutrient in the soil." Or the rough analog, "A chain is only as strong as its weakest link." Though diagnosis of limiting factors to crop yields is a common study, the approach has been criticized. [1]

Scientific applications

Liebig's law has been extended to biological populations (and is commonly used in ecosystem modelling). For example, the growth of an organism such as a plant may be dependent on a number of different factors, such as sunlight or mineral nutrients (e.g., nitrate or phosphate). The availability of these may vary, such that at any given time one is more limiting than the others. Liebig's law states that growth only occurs at the rate permitted by the most limiting factor. [2]

For instance, in the equation below, the growth of population is a function of the minimum of three Michaelis-Menten terms representing limitation by factors , and .

Where O is the biomass concentration or population density. μI,μN,μP​ are the specific growth rates in response to the concentrations of three different limiting nutrients, represented by I,N,P respectively. kI,kN,kP​ are the half-saturation constants for the three nutrients I,N,P respectively. These constants represent the concentration of the nutrient at which the growth rate is half of its maximum. I,N,P are the concentrations of the three nutrients /factors. m is the mortality rate or decay constant.


The use of the equation is limited to a situation where there are steady state ceteris paribus conditions, and factor interactions are tightly controlled.

Protein nutrition

In human nutrition, the law of the minimum was used by William Cumming Rose to determine the essential amino acids. In 1931 he published his study "Feeding experiments with mixtures of highly refined amino acids". [3] Knowledge of the essential amino acids has enabled vegetarians to enhance their protein nutrition by protein combining from various vegetable sources. One practitioner was Nevin S. Scrimshaw fighting protein deficiency in India and Guatemala. Frances Moore Lappé published Diet for a Small Planet in 1971 which popularized protein combining using grains, legumes, and dairy products.

The law of the minimum was tested at University of Southern California in 1947. [4] "The formation of protein molecules is a coordinated tissue function and can be accomplished only when all amino acids which take part in the formation are present at the same time." It was further concluded, that "'incomplete' amino acid mixtures are not stored in the body, but are irreversibly further metabolized." Robert Bruce Merrifield was a laboratory assistant for the experiments. When he wrote his autobiography he recounted in 1993 the finding:

We showed that no net growth occurred when one essential amino acid was omitted from the diet, nor did it occur if that amino acid was fed several hours after the main feeding with the deficient diet. [5]

Other applications

More recently Liebig's law is starting to find an application in natural resource management where it surmises that growth in markets dependent upon natural resource inputs is restricted by the most limited input. As the natural capital upon which growth depends is limited in supply due to the finite nature of the planet, Liebig's law encourages scientists and natural resource managers to calculate the scarcity of essential resources in order to allow for a multi-generational approach to resource consumption.

Neoclassical economic theory has sought to refute the issue of resource scarcity by application of the law of substitutability and technological innovation. The substitutability "law" states that as one resource is exhausted—and prices rise due to a lack of surplus—new markets based on alternative resources appear at certain prices in order to satisfy demand. Technological innovation implies that humans are able to use technology to fill the gaps in situations where resources are imperfectly substitutable.

A market-based theory depends on proper pricing. Where resources such as clean air and water are not accounted for, there will be a "market failure". These failures may be addressed with Pigovian taxes and subsidies, such as a carbon tax. While the theory of the law of substitutability is a useful rule of thumb, some resources may be so fundamental that there exist no substitutes. For example, Isaac Asimov noted, "We may be able to substitute nuclear power for coal power, and plastics for wood ... but for phosphorus there is neither substitute nor replacement." [6]

Where no substitutes exist, such as phosphorus, recycling will be necessary. This may require careful long-term planning and governmental intervention, in part to create Pigovian taxes to allow efficient market allocation of resources, in part to address other market failures such as excessive time discounting.

Liebig's barrel

Liebig's barrel Minimum-Tonne.svg
Liebig's barrel

Dobenecks [7] used the image of a barrel—often called "Liebig's barrel"—to explain Liebig's law. Just as the capacity of a barrel with staves of unequal length is limited by the shortest stave, so a plant's growth is limited by the nutrient in shortest supply.

If a system satisfies the law of the minimum then adaptation will equalize the load of different factors because the adaptation resource will be allocated for compensation of limitation. [8] Adaptation systems act as the cooper of Liebig's barrel and lengthens the shortest stave to improve barrel capacity. Indeed, in well-adapted systems the limiting factor should be compensated as far as possible. This observation follows the concept of resource competition and fitness maximization. [9]

Due to the law of the minimum paradoxes, if we observe the Law of the Minimum in artificial systems, then under natural conditions adaptation will equalize the load of different factors and we can expect a violation of the law of the minimum. Inversely, if artificial systems demonstrate significant violation of the law of the minimum, then we can expect that under natural conditions adaptation will compensate this violation. In a limited system life will adjust as an evolution of what came before. [8]

Biotechnology

One example of technological innovation is in plant genetics whereby the biological characteristics of species can be changed by employing genetic modification to alter biological dependence on the most limiting resource. Biotechnological innovations are thus able to extend the limits for growth in species by an increment until a new limiting factor is established, which can then be challenged through technological innovation.

Theoretically there is no limit to the number of possible increments towards an unknown productivity limit. [10] This would be either the point where the increment to be advanced is so small it cannot be justified economically or where technology meets an invulnerable natural barrier. It may be worth adding that biotechnology itself is totally dependent on external sources of natural capital.

See also

Related Research Articles

<span class="mw-page-title-main">Nutrition</span> Provision to cells and organisms to support life

Nutrition is the biochemical and physiological process by which an organism uses food to support its life. It provides organisms with nutrients, which can be metabolized to create energy and chemical structures. Failure to obtain sufficient nutrients causes malnutrition. Nutritional science is the study of nutrition, though it typically emphasizes human nutrition.

<span class="mw-page-title-main">Fertilizer</span> Substance added to soils to supply plant nutrients for a better growth

A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Many sources of fertilizer exist, both natural and industrially produced. For most modern agricultural practices, fertilization focuses on three main macro nutrients: nitrogen (N), phosphorus (P), and potassium (K) with occasional addition of supplements like rock flour for micronutrients. Farmers apply these fertilizers in a variety of ways: through dry or pelletized or liquid application processes, using large agricultural equipment or hand-tool methods.

<span class="mw-page-title-main">Chickpea</span> Species of flowering plant with edible seeds in the family Fabaceae

The chickpea or chick pea is an annual legume of the family Fabaceae, subfamily Faboideae. Its different types are variously known as gram or Bengal gram, chhana, chana, or channa, garbanzo or garbanzo bean, or Egyptian pea. Chickpea seeds are high in protein. It is one of the earliest cultivated legumes, and 9,500-year-old remains have been found in the Middle East.

<span class="mw-page-title-main">Soil pH</span> Measure of how acidic or alkaline the soil is

Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the negative logarithm (base 10) of the activity of hydronium ions in a solution. In soils, it is measured in a slurry of soil mixed with water, and normally falls between 3 and 10, with 7 being neutral. Acid soils have a pH below 7 and alkaline soils have a pH above 7. Ultra-acidic soils and very strongly alkaline soils are rare.

<span class="mw-page-title-main">Plant nutrition</span> Study of the chemical elements and compounds necessary for normal plant life

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig’s law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.

<span class="mw-page-title-main">Topsoil</span> Top layer of soil

Topsoil is the upper layer of soil. It has the highest concentration of organic matter and microorganisms and is where most of the Earth's biological soil activity occurs.

A limiting factor is a variable of a system that causes a noticeable change in output or another measure of a type of system. The limiting factor is in a pyramid shape of organisms going up from the producers to consumers and so on. A factor not limiting over a certain domain of starting conditions may yet be limiting over another domain of starting conditions, including that of the factor.

<span class="mw-page-title-main">History of agricultural science</span>

The history of agricultural science is a sub-field of the history of agriculture which looks at the scientific advancement of techniques and understanding of agriculture. Early study of organic production in botanical gardens was continued in with agricultural experiment stations in several countries.

<i>Lupinus mutabilis</i> Species of plant

Lupinus mutabilis is a species of lupin grown in the Andes, mainly for its edible bean. Vernacular names include tarwi, chocho, altramuz, Andean lupin, South American lupin, Peruvian field lupin, and pearl lupin. Its nutrient-rich seeds are high in protein, as well as a good source for cooking oil. However, their bitter taste has made L. mutabilis relatively unknown outside the Andes, though modern technology makes it easier to remove the bitter alkaloids. Like other species of lupin beans, it is expanding in use as a plant-based protein source.

Theoretical production ecology tries to quantitatively study the growth of crops. The plant is treated as a kind of biological factory, which processes light, carbon dioxide, water, and nutrients into harvestable parts. Main parameters kept into consideration are temperature, sunlight, standing crop biomass, plant production distribution, nutrient and water supply.

In agriculture, the yield is a measurement of the amount of a crop grown, or product such as wool, meat or milk produced, per unit area of land. The seed ratio is another way of calculating yields.

<span class="mw-page-title-main">Point accepted mutation</span>

A point accepted mutation — also known as a PAM — is the replacement of a single amino acid in the primary structure of a protein with another single amino acid, which is accepted by the processes of natural selection. This definition does not include all point mutations in the DNA of an organism. In particular, silent mutations are not point accepted mutations, nor are mutations that are lethal or that are rejected by natural selection in other ways.

<span class="mw-page-title-main">Ecological stoichiometry</span>

Ecological stoichiometry considers how the balance of energy and elements influences living systems. Similar to chemical stoichiometry, ecological stoichiometry is founded on constraints of mass balance as they apply to organisms and their interactions in ecosystems. Specifically, how does the balance of energy and elements affect and how is this balance affected by organisms and their interactions. Concepts of ecological stoichiometry have a long history in ecology with early references to the constraints of mass balance made by Liebig, Lotka, and Redfield. These earlier concepts have been extended to explicitly link the elemental physiology of organisms to their food web interactions and ecosystem function.

<span class="mw-page-title-main">BLOSUM</span> Bioinformatics tool

In bioinformatics, the BLOSUM matrix is a substitution matrix used for sequence alignment of proteins. BLOSUM matrices are used to score alignments between evolutionarily divergent protein sequences. They are based on local alignments. BLOSUM matrices were first introduced in a paper by Steven Henikoff and Jorja Henikoff. They scanned the BLOCKS database for very conserved regions of protein families and then counted the relative frequencies of amino acids and their substitution probabilities. Then, they calculated a log-odds score for each of the 210 possible substitution pairs of the 20 standard amino acids. All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins like the PAM Matrices.

Protein combining or protein complementing is a dietary theory for protein nutrition that purports to optimize the biological value of protein intake. According to the theory, vegetarian and vegan diets may provide an insufficient amount of some essential amino acids, making protein combining with multiple foods necessary to obtain a complete protein food. The terms complete and incomplete are outdated in relation to plant protein. In fact, all plant foods contain all 20 essential amino acids including the 9 essential amino acids in varying amounts.

Astroecology concerns the interactions of biota with space environments. It studies resources for life on planets, asteroids and comets, around various stars, in galaxies, and in the universe. The results allow estimating the future prospects for life, from planetary to galactic and cosmological scales.

In biology and ecology, a resource is a substance or object in the environment required by an organism for normal growth, maintenance, and reproduction. Resources box can be consumed by one organism and, as a result, become unavailable to another organism. For plants key resources are light, nutrients, water, and place to grow. For animals key resources are food, water, and territory.

Kamrun Nahar is a Bangladeshi soil scientist and environmentalist. A prominent biofuels researcher of Bangladesh, her research and publications also aimed to lower dependence on petroleum based foreign oil by producing low carbon and sulphur emitting biofuels from the second generation energy crops cultivated in the unused wastelands of Bangladesh for use in home generators to supplement power.

Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.

Korean natural farming (KNF) is an organic agricultural method that takes advantage of indigenous microorganisms (IMO) to produce rich soil that yields high output without the use of herbicides or pesticides.

References

  1. Sinclair, Thomas R.; Park, Wayne R. (1993). "Inadequacy of the Liebig limiting-factor paradigm for explaining varying crop yields". Agronomy Journal . 85 (3): 472–6. Bibcode:1993AgrJ...85..742S. doi:10.2134/agronj1993.00021962008500030040x.
  2. Sinclair, Thomas R. (1999). "Limits to Crop Yield". Plants and Population: is there time?. Colloquium. Washington DC: National Academy of Sciences. doi:10.17226/9619. ISBN   978-0-309-06427-9. Archived from the original on 2011-07-03.
  3. Rose, W.C. (1931). "Feeding Experiments" (PDF). Journal of Biological Chemistry . 94: 155–65.
  4. Geiger, E. (1947). "Experiments with delayed supplementation of incomplete amino acid mixtures". Journal of Nutrition . 34 (1): 97–111. doi:10.1093/jn/34.1.97. PMID   20244454.
  5. Merrifield, Robert Bruce (1993). Life During a Golden Age of Peptide Chemistry. American Chemical Society. p. 19. ISBN   0-8412-1842-0.
  6. Asimov, Issac (1972) [1962]. "Life's Bottleneck". Fact and Fancy. Doubleday. ISBN   978-0-380-01174-2.
  7. Whitson, A.R.; Walster, H.L. (1912). Soils and soil fertility. St. Paul, MN: Webb. p.  73. OCLC   1593332. 100. Illustration of Limiting Factors. The accompanying illustration devised by Dr. Dobenecks is intended to illustrate this principle of limiting factors.
  8. 1 2 Gorban, A.N.; Pokidysheva, L.I.; Smirnova, E.V.; Tyukina, T.A. (2011). "Law of the Minimum Paradoxes". Bull Math Biol. 73 (9): 2013–44. arXiv: 0907.1965 . doi:10.1007/s11538-010-9597-1. PMID   21088995. S2CID   1671637.
  9. Tilman, D. (2020) [1982]. Resource Competition and Community Structure. Monographis in population biology. Vol. 17. Princeton University Press. ISBN   978-0-380-01174-2.
  10. Reilly, J.M.; Fuglie, K.O. (6 July 1998). "Future yield growth in field crops: what evidence exists?". Soil and Tillage Research. 47 (3–4): 275–290. Bibcode:1998STilR..47..275R. doi:10.1016/S0167-1987(98)00116-0.